欢迎来到学术参考网
当前位置:发表论文>论文发表

关于neutron的论文

发布时间:2023-02-15 13:41

关于neutron的论文

撰文 | 邢志忠(中国科学院高能物理研究所研究员)

130年前的1891年10月20日,英国物理学家詹姆士·查德威克 (James Chadwick) 降生在英格兰西北部小城博灵顿的一个普通人家。他的童年主要是在祖父母身边度过的,这一点与科学巨匠艾萨克·牛顿 (Isaac Newton) 的童年有些类似。大约在11岁那一年,查德威克来到曼彻斯特与父母团聚,并开始接受中学教育。1907年,中学毕业的查德威克获得了曼彻斯特大学的奖学金,顺利升入大学。就在这一年的5月份,36岁的新西兰裔英国物理学家欧内斯特·卢瑟福 (Ernest Rutherford) 加盟曼彻斯特大学,冥冥之中为查德威克带来了福音。

其实查德威克最初想要在大学攻读的是数学而不是物理学。阴差阳错,他在1908年秋季参加了一场由物理系教师主持的面试。将错就错,生性腼腆的查德威克成为一名物理系的本科生。他在第二学年选修了卢瑟福的电磁学课程,立刻就被这位科学大师的魅力打动了,随后决定跟随卢瑟福做一个具体的科研项目,即研究镭元素的放射性。1911年夏天,他完成了自己的本科学业后,成为卢瑟福的研究生。1912年,查德威克与导师合作发表了他的第一篇学术论文。

卢瑟福的杰出科学才能和影响力使得曼彻斯特大学成为核物理学的研究中心,吸引了世界各地的年轻学者前来 “曼彻斯特学派” 朝拜。1912年3月,27岁的丹麦物理学家尼尔斯·玻尔 (Niels Bohr) 来到曼彻斯特大学从事博士后研究,他和查德威克很快成为好朋友。一年之后,即1913年7月,玻尔在久负盛名的英国《哲学与科学杂志》 ( Philosophical Magazine and Journal of Science ) 上发表了一篇重要论文,首次提出了量子化的氢原子模型。这一工作成为量子理论发展史的里程碑之一,也使得玻尔本人荣获了1922年的诺贝尔物理学奖。

身处在曼彻斯特大学如此卓越的学术氛围中,年轻的查德威克想要不成功都难。

1912年夏天,查德威克以优异的科研纪录获得了硕士学位。尽管卢瑟福希望查德威克继续留在自己身边做研究,但由于其他原因,查德威克还是于1913年秋季来到德国柏林,加入到盖革计数器的发明者汉斯·盖格的实验室。

盖革也曾在曼彻斯特工作,是卢瑟福的重要合作者之一,因此爱屋及乌,对查德威克照顾有加。当时柏林是世界核物理学与放射化学的研究中心之一,后来因发现核裂变而名留青史的奥托·哈恩 (Otto Hahn) 和莉泽·迈特纳 (Lise Meitner) 等大科学家都在那里工作,这促使查德威克选择原子核的贝塔衰变作为自己的新研究课题。

一直以来,学术界以为原子核的贝塔衰变是两体过程:母核裂变成子核,并放射出一个电子,因此后者具有确定的能量,即其能谱应该呈现出的是单能分立谱。但到了1913年,曼彻斯特学派与哈恩实验室给出的初步观测结果却与此预期相矛盾。利用比先前的感光胶片探测技术更先进的盖革计数器,查德威克重新测量了贝塔衰变的电子能量,发现其呈现的是连续变化的谱型。他以单一作者的身份在1914年发表了这一测量结果,立即得到了卢瑟福和哈恩等人的认可,却受到了迈特纳的质疑。1927年,曼彻斯特实验室的查尔斯·埃利斯 (Charles Ellis) 和威廉·伍斯特 (William Wooster) 完成了关于贝塔衰变能谱的更可靠测量,确认了电子的能谱为连续谱。他们的实验结果随后也被迈特纳的课题组证实。于是能量在贝塔衰变的过程中是否严格守恒的问题,即所谓的 “能量危机” (energy crisis) ,成为20世纪20到30年代漂浮在核物理学天空的一朵乌云。

为了解释贝塔衰变的连续能谱问题,玻尔提出了在微观世界能量守恒可能只是一个统计平均规律的观点,即对于单个微观反应过程可能存在能量不严格守恒的情况。这一观点无疑与美国物理学家亚瑟·康普顿 (Arthur Compton) 在1923年发表的光子与电子散射的实验结果相矛盾,后者清楚地表明诸如此类的微观散射过程是严格遵守能量和动量守恒定律的。事实上,要想解释当年的贝塔衰变实验结果,理论家们还面临着另一个挑战:怎样保证初态和末态粒子的总角动量守恒?

这时候最有资格说话的人当数1925年1月提出 “不相容原理” (exclusion principle) 的奥地利物理学家沃夫冈·泡利 (Wolfgang Pauli) ,因为他对原子核和基本粒子的自旋角动量太敏感了。1930年12月,泡利在一封写给研究原子核放射性的同行们的公开信中,提出了他解决贝塔衰变“能量危机”问题的方案。他假设在原子核的贝塔衰变过程中,除了产生子核和电子,还会释放出一个质量很小、电中性的新粒子,其自旋量子数等于1/2。泡利将这种看不见、摸不着的假想粒子称作“中子” (neutron) ,显然他还不知道“中子”的概念早在1920年就被卢瑟福发明和占用了——用以描述另一种电中性、质量与质子相当且可以作为原子核基本组分的的假想粒子。后来意大利物理学家恩里科·费米 (Enrico Fermi) 把泡利设想的 “中子” 改称为 “中微子” (neutrino) ,意即微小的 “中子”。

有了中微子的存在,贝塔衰变反应的能量守恒、动量守恒和角动量守恒都不再是问题;而电子的能谱之所以呈现为连续谱,则是由于电子不得不与中微子分享母核与子核的质量差所对应的反应能量。在这样的三体衰变过程中,中微子携带一部分能量和动量逃之夭夭。但当年的实验技术根本无法证实泡利的假说。直到1956年,作为假想粒子的中微子才首次在反应堆实验中被验明正身。

回到1914年8月,查德威克的科研工作由于第一次世界大战的爆发而被迫中断。尽管得到德国同事的保护,作为战争敌对国公民的查德威克还是在当年的11月份遭到当局的逮捕,被关进了柏林西部的一所集中营。不过他在狱中过得并不寂寞,甚至有机会定期给狱友们讲授电磁学和放射性的知识。巧的是,卢瑟福的另一个学生埃利斯也被囚禁在这所集中营,他也因此成了查德威克的好朋友。由于战争所导致的食物短缺,查德威克在狱中因严重的营养不良而患上了消化道疾病。1918年11月,战争终于结束了。查德威克和埃利斯辗转回到自己的祖国英格兰,他们二人后来成为剑桥大学的同事。

1930年,剑桥大学出版社出版了卢瑟福、查德威克和埃利斯三人合作撰写的《放射性物质的辐射》一书,系统地总结了氦核 (即阿尔法粒子) 与氦核、质子以及重原子核的散射实验结果,为强相互作用理论的建立奠定了初步的实验基础。1935年,日本物理学家汤川秀树(Hideki Yukawa)提出原子核之间通过交换轻介子实现相互作用的理论图像,这一工作是他的科研处女作,他一炮而红,并因此于1949年获得了诺贝尔物理学奖。

就在1930年,德国科学家沃尔特·博特 (Walter Bothe) 和赫伯特·贝克 (Herbert Becker) 在氦核与铍原子核的散射实验中观测到一种穿透力很强、不会在电场中偏转的射线,他们将其理所当然地解释为伽玛射线。两年之后的1932年,居里夫人的长女伊雷娜·约里奥·居里 (Irene Joliot-Curie) 与丈夫弗雷德里克·约里奥·居里 (Frederic Joliot-Curie) 重复了这一实验。他们发现用博特和贝克所观测到的射线轰击含有氢原子的物质时,会产生高能质子。那么,这种新型的射线究竟是不是伽马射线呢?

当然不是!查德威克和他的导师卢瑟福都不相信约里奥-居里夫妇的实验结果可以解释为质子与光子的康普顿散射。查德威克马上着手设计了一个实验,并在三周之内就得到了自己的测量结果。他发现新型的射线并非伽马射线,而是一种由电中性、质量与质子相当的新粒子构成的束流。1932年2月27日,英国《自然》期刊发表了查德威克的实验结果。他的这篇题为 “可能存在中子” (Possible existence of a neutron) 的论文长度不足一页纸,不含有任何公式和图表,仅包含大约700个单词。查德威克在论文的结尾处明确指出,“迄今为止,所有的证据都倾向于中子,而量子假设(即伽马射线假设)不成立,除非在某种程度上放弃能量和动量守恒”。于是中子作为原子核的另外一种基本组分被发现了!1935年,44岁的查德威克因发现中子而荣获了诺贝尔物理学奖。

为什么是查德威克而不是约里奥·居里夫妇率先发现了中子?答案很简单: 因为查德威克是卢瑟福的学生,早就知道自然界有可能存在一种与质子的强相互作用属性很相似的粒子,它的名字叫做中子。 这就是在大师身边工作更容易成为大师的绝佳例子。相比之下,约里奥·居里夫妇不得不承认,尽管他们二人也处在大师 (居里夫妇等) 云集的科研环境中,却对中子的概念一无所知,因此未能在第一时间对自己的实验结果做出正确的解释,从而错失了发现中子的良机。

不过令人欣慰的是,两年后的1934年2月10日,《自然》杂志发表了约里奥·居里夫妇合作完成的一篇题为 “一种新型放射性元素的人工产生” ( Artificial production of a new kind of radio-element ) 的论文。这篇论文也不足一页纸,仅含有大约620个单词和1个化学反应方程式,但它却是人工放射性的开山问鼎之作。凭借这一发现,约里奥-居里夫妇以超乎寻常的速度拿下1935年的诺贝尔化学奖!人们不禁要问一个有趣的问题:假如约里奥·居里夫妇在1932年正确地理解了自己的实验结果,并宣布发现了中子,那么他们有可能一举包揽1935年诺贝尔物理学和化学两项大奖吗?

1935年秋天,在获得诺贝尔奖之前,查德威克被聘为利物浦大学教授。他在那里推动建造了一台回旋加速器,使得利物浦成为欧洲核物理学的研究中心之一。查德威克也是英美两国在曼哈顿计划中开展合作的关键人物,因为中子的发现是制造原子弹的重要前提之一。1948年,查德威克重返剑桥大学,成为科维尔与凯乌斯学院的院长。他于1958年底退休,与妻子搬到北威尔士居住;十年后他们又搬回剑桥,住在离女儿们不远的地方。

主要参考文献:

1) A. Brown, The neutron and the bomb: a biography of Sir James Chadwick, Oxford University Press, New York, 1997.

2) G. Ecker, James Chadwick: a head of his time, arXiv:2007.06926, 2020.

3) J. Chadwick, Possible existence of a neutron, Nature 129 (1932) 312.

4) F. Joliot and I. Curie, Artificial production of a new kind of radio-element, Nature 133 (1934) 201.

Multi-elemental Neutron Activation Analysis of Chinese GeoChemical Reference Samples

Zhang Yun jun,Li Xing bin,Song Lin shan

Institute of Geophysical and Geochemlcal Prospecting, Ministry of Geology and Mineral Resources of China

Yuan Ling, Chen Bao guan

Institute of Atomic Energy, Academia Sinica

Chen Bing ru,Wang Yu qi,Sun Jing xin

Institute of High Energy Physics,Academla Sinica

The concentrations of 36 elements in geochemical reference samples issued by the Ministry of Geology and Mineral Resources of China were determined by neutron activation main variants of the technigue, instrumental,epithermal,and preirradiation separation neutron activation analysis(INAA, ENAA, PRAA), were employed in a systematic study of the samples by three laboratories: the Institute of Atomic Energy of the Academia Sinica(INAA,ENAA),the Institute of High Energy Physics of the Academia Sinica(INAA),and the Institute of Geophysical and Geochemical Prospecting of the Ministry of Geology and Mineral Resources(INAA, PNAA).Both long and short irradiations and both Ge(Li)and HPGe detectors were used.A supplementary software package for data processinq was 81%of the data determined by neutron activation agreed with recommended values with in 15%.

The Institute of Geophysical and Geochemical Prospecting of Ministry of Geology and Mineral Resources bas prepared three series of geochemical reference samples: stream sediments(GSD), soils(GSS), and rocks(GSR).The eight stream sediment samples,GSD 1-8,were selected from areas believed to be representative of the types of sediments found in provinces where the sampling sites are located and the lithology of the rocks in the basins sampled are given in a parer by Xie(1).

EXPERIMENTAL

Standards

Primary solution standards were used for of 3-5 elements with no mutual interferences of main energies were combined to form multielement nce samples USGS GXR 1-6, USGS-AGV-1,NES-SRM-1362a,and CCRMP SY-2 and SY-3 were also ermined volumes of solution standards were pipetted onto plastic films or onto circular pieces of filter paper and the films or the papers were packed into aluminium foils of high purity(2).

Sample preparation and irradiation

The homogeneous sample powders were dried in an oven at 90℃-110℃for over 3 hours and sample portions(20-100mg)were then precisely weighed onto aluminium samples and standards were placed in aluminium irradiation containers for INAA and PNAA, and in boron nitride(BN3)container for irradiation times were 2 to 5 min for Dy and Mn,72 to 150 hr for Ag and 3-23 hr for other swimming pool and heavy-water reactors were used for thermal neutron fluxes were(1-2.4)*1013n1cm-2s-1and(5-7)*1013n1cm-2s-1respectively.

Preirradiation separation techniques were used to improve the analytical sensitivities for gold and the rare gold the sample portion(10-20g)was dissolved in aqua regia and the Au then absorbed on activated carbon, whereas for the rare earths, sample portions(1g)werefused in sodium peroxide and the rare earths were extracted by PMBP(1-Pheny1—3-Methy1-4-Bnzoyl-5-Pyrazolone).

Equipment and measurement

Two types of CANBERRA data acquisition systems(SCORPIO-3000 and JUPITER)were used for measuring the gamma coaxial Ge(Li)detector covers the energy range from 60 to 2000 keV and the planar high purity germanium(HPGe)detector from 30 to 300 three laboratories used Ge(Li)for measurements, but in addition, the Institute of Geophysical and Geochemical Prospecting also used HPGe for many of the rare earths, Hf,Ta, and W.

After a given decay period, the irradiated samples were transferred into counting vials in a distance between the irradiated sample and the detector is adjusted to avoid dead times of ADC(Analog-to-Digltal Converter)beyond 10%.Different cooling times were selected to determine isotopes with different half data acquisition times were 500, 1000 or 2000s, depending upon the intensity of the sample activity.

Data processjng

The spectra of Various samples were transferred to discs and processed with software packages SPECT-RAN-F and SPCSUP to obtain element concentrations in samples and to print out various SPECTRAN-F was developed by CANBERRA;the SPCSUP,a software package to supplement SPECT-RAN-F, is in BASIC language and was designed by the laboratory of the Institute of Geophysical and Geochemical method of least squares was used to calculate the calibration curves when the number of element standards is equal to or more than U fission interferences were corrected automaicaly both for standards and for samples.

As many asfour gamma-lines were used to determine concentrations;the results obtained for each line are stored results of gamma lines with tolerable interferences are included in averages, depending on the cooling time and complexity of sample main parameters used in NAA and listed in table 1 were obtained from(3-5).

RESULTS AND DISCUSSION

The three neutron activation labs determined 36 elements in GSD 1-8 and these elements amount to 66.7%of the total number of elements(54)certificated for recommended values(1).The results of the 36 elements for GSD 1-8 obtained by NAA are presented in table 2 together with the recommended values(RV).Data for 31 elements were obtained by two or three NAA remaining five elements were furnished by one single NAA laboratory: Ga by the Institute pf Atomic Energy(IAE), Br and Ni by the Institute of High Energy Physics(IHEP),and Au and Ho by the Institute of Geophysical and Geochemical Prospecting(G&G).The standard deviations for most elements are less than or equal to 15%.

Most of our data are agree well, not only among the three laboratories, but also with the recommended values, These values were calculated from data by 41 laboratories which used various analytical Institute of Geophysical and Geochemicsl Prospecting did a statistical analysis of the differences, in%, between its NAA data obtained with a Ge(Li)detector and the recommended the 214 differences,95,or 44.4%agree with the RV within 5%;173,or 80.8%agree within 15%;and 195, or 91.1%agree within 25%of the recommended overall agreement of data by Ge(Li)detectors with the recommended values confirms the importance of application of NAA to geochemistry.

The Institute of Geophysical and Geochemical Prospecting has obtained results for 9 elements(Ce, Gd,Hf,Nd,Sm,Ta,Tm,W and Yb)using HPGe with better resolution in the range of low energy than in the case of Ge(Li).For instance, the HPGe detector can better distinguish the following peaks:97.4 keV of Gd-153,100.3 keV ofTa-182 and 103.2 keV of is unnecessary to wait a long ti me for Sm-153 to decay, or to correct the interference from Ta-182 for the measurement of the Gd-15397.4 keV peak.

The ENAA is helpful in the suppression of the Na-24 interference in the determination of Ga and W, and sometimes of Br as interference of Na-24 in the INAA of some geological samples is a severe problem and corrections for such interference should always be made.

The Au preirradiation separation technique has the advantage of being able to avoid interferences(Eu-152411 keV and Ho-166m 410.8keV for Au198411.8 keV),and to reduce the detection limit of Au to 0.05 use of large sample portions(10-20g)in the separation technique for gold,rather thanthe small sample portions <100mg)normally used in INAA procedures,helps to avoid the large variances in gold data that may occur because of the possible presence of a few small particles of free gold in the stream sediments.

The REE preirradiation separation technique not only avoids similar effects, but it helps in the more precise determination of other rare earths such as Ho, Tm and is quite difficult to determine Ho using INAA.

ACKNOWLEDGEMENTS

We are indebted to Chang-Cuo Li, Mei-Zhuo Zhao, and Jian-Wen Shi of the Institute of Geophysical and Geochemical Prospecting of the Ministry of Geology and Mineral Resources, Yuan-Ji Zhang of the Institute of High Energy Physics of the Academia Sinica for their participation in this are also thankful to Cheng-Wei Yu of the Central Laboratory of the Bureau of Geology of Province Shanxi, who helped in the separation of the rare earth l thanks are extended to an of USGS for his careful correction and editing of this paper.

Table parameters used in NAA(In column of GAMMA-RAYS the A,B and C are additional subscripts used by the Institute of Geophysical and Geochemical Prospecting in its data processing for identification of the same isotope with different primary gamma rays.G,Ge(Li)detector.H,HPGe detector)

张玉君地质勘查新方法研究论文集

Table 1(Cont'd.).Main parameters used in NAA(In column of GAMMA-RAYS the A,B and C are additional subscripts used by the Institute of Geophysical and Geochemical prospecting in its data processing for identification of the same isotope with different primary gamma rays.G,Ge(Li)detector.H,HPGe detector)

张玉君地质勘查新方法研究论文集

Table n activation determinations of elements in GSD stream sediment reference samples by three laboratories(In parts per million,except Au in parts per billion,and Fe,K,and Na in ,standard deviation.S,preirradiation separation.G, Ge(Li)detector.H,HPGe ,recommended value(1)

张玉君地质勘查新方法研究论文集

Table 2(Cont'd.).Neutron activation determinaions of elements in GSD stream sediment reference samples by three laborato-ries(In parts per million,except Au in parts per billion,and Fe,K and Na in ,standard deviation.S,preirradiation separation.G,Ge(Li)detector.H,HPGe ,recommended value(1)

张玉君地质勘查新方法研究论文集

Table 2(Cont'd.).Neutron activation determinations of elements in GSD stream sediment reference samples by three laboratories(In parts per million,except Au in parts per billion,and Fe,K and Na in ,standard deviation.S,preirradiation separation.G,Ge(Li)detector.H,HPGe ,recommended value(1)

张玉君地质勘查新方法研究论文集

Table 2.(Cont'd.).Neutron activation determinations of elements in GSD stream sediment reference samples by three laboratories(In parts per million,except Au in parts per billion,and Fe,K,and Na in ,standard deviation.S,preirradiation separation.G,Ge(Li)detector.H,HPGe ,recommended value(1)

张玉君地质勘查新方法研究论文集

Table 2(Cont'd.).Neutron activation determinations of elements in GSD stream sediment reference samp1es by three laboratories(In parts per million,except Au in parts per billion,and Fe,K,and Na in ,standard deviation.S,preirradiation separation.G,Ge(Li)detector.H,HPCe ,recommended value(1)

张玉君地质勘查新方法研究论文集

Table 2(Cont'd.).Neutron activation determinations of elements in GSD stream sediment reference samples by three laboratories(In parts per million,except Au in parts per billion,and Fe,K,and Na in ,standard deviation.S,preirradiation separation.G,Ge(Li)detector.H,HPGe ,recommended value(1)

张玉君地质勘查新方法研究论文集

RESUME

Huit échantillons géochimioues de référence prépares par le“Ministry of Geology and Mineral Resources of China”ont éte analyses pour 36 éléments par trois méthodes différentes de 1'activation neutronique, instrumentale,épithermale et radiochimique,Trois laboratoires(“Institute of Atomic Energy of the Academic Chinica, the Institute of High Energies and the Institute of Geophysical and Geochemical Prospecting of the Ministry of Geology and Mineral Resources”)оnt pacticiрé à cette étude d'une fason systématique, selon les méthodes en vigoeur dans chaque l'ensemble, les résultats par l' activation neutronique se comparent parallèlement avec ceux recommandés.

REFERENCES

(1)Xie,X.J.e tal.(1985)

Geochemical Reference samples,drainage sediment GSD 1-8,from China:Geostandards Newsletter,9:83-159.

(2) Soete,R Gijbels and (1972)Neutron Actlvation Analysis.

(3)amel(1970)

Applied Gamma-Ray Spectrometry,second edition.

(4)R.L Heath

Gamma-Ray Spectrum Catalogue Ge(Li)and Si(Li)Spectrometry,Vo1.1 and 2.

(5)Tables of Common Data of Nuclei,Beijing,Atomic Energy Press(1975).

原载《Geostandards Newsletter》,1986,Vol.X,No.1.

用堆中子活化法分析我国首批化探标样GSD1-8的方法技术

张玉君 李杏彬 宋林山

(地矿部地球物理地球化学勘查研究所)

袁玲 陈保观

(中科院原子能研究所)

陈冰如 王玉琦 孙景信

(中科院高能物理研究所)

在现代分析方法中,中子活化分析方法以其高灵敏度而著称,它对于许多痕量元素的测定具有高准确度;除了高灵敏度和高准确度外,中子活化分析的另一优点是非破坏性,不经化学处理在许多情况下即可同时进行多元素测定,国内外纯仪器中子活化分析通常均可测定25种以上元素。在地质领域的众多方面:岩石分析、地质标准参考物分析、新矿物的发现和鉴定、采自月球或登山等方面珍贵样品分析,地质理论研究中的稀土分量分析,化探采样分析等等均已使用中子活化分析技术,已完成了大量高质量的分析工作,中子活化分析在地学样品的分析工作中占有重要地位。

作为我国全国区域化探扫面样品分析一级监控用的首批水系沉积物标准参考样GSD1—8的定值分析引起了活化分析界的高度重视。中国科学院原子能研究所(以下简称原子能所)、中国科学院高能物理研究所(以下简称高能所)及地矿部地球物理地球化学勘查研究所(以下简称物探所)通过堆照射中子活化分析,测定了GSD1—8中的36个元素,采取了短照(数分钟)、长照(10~20h)、加长照射(数天)、超热中子照射、照射前富集金、照射前富集稀土元素、锗(锂)探测器测量及高纯锗探测器测量等多种方法技术。物探所研制了一个补充软件包(SPCSUP),实现了活化分析数据处理全过程计算机化。大多数元素测定结果的相对标准偏差小于15%,三个实验室均利用国际标准参考物质GXR1—6、AGV—1、SY2—3、SRM—1362a等,验证了分析方法的可靠性,大多数元素的活化分析结果与鉴定值吻合良好。

在GSD1—8的制备过程中,中子活化分析还承担了颗粒度影响、振动影响和均匀度检查的测定。

GSD1—8样品中子活化分析方法的研究,展示了中子活化分析在化探标样定值工作中的有效性及其对于地质样品分析的巨大潜力。同时由于有众多个国内有经验的实验室及数个国际实验室投入GSD1—8的定值分析,所采用的分析方法种类繁多,在这样广泛的比对工作中,我国活化分析水平受到了一次极好的检验。

一、方法原理

多种稳定同位素经中子照射后生成人工放射性同位素,测定其 γ射线的能量和强度可以对元素进行定性和定量分析。中子活化分析的基本公式如下[1]:

张玉君地质勘查新方法研究论文集

式中:S(t)—在时间t的放射性强度;

NA—阿弗加德罗常数,为6.02×1023;

A—待测元素的克原子量;

P—样品重量;

W—待测元素的浓度;

m—被激活同位素的丰度;

样品中靶核数;

Φ—中子通量;

σ—靶核活化截面;

T—激活核素的半衰期;

t1—照射时间

称为饱和因子;

td—冷却时间;

E—探测系数。

式中W为待定值,其余各个参数或为已知或可测出,故原则上讲可利用上式进行绝对法中子活化分析;但实际上Φ、σ、E等参数测得准确值相当困难,故通常采用相对比较法,此时活化公式便简化为:

张玉君地质勘查新方法研究论文集

式中:S0(W)—待测核素特征γ射线能峰净峰面积的归一化值;

S0(C)—标准中同一核素的同一能峰净峰面积的归一化值;

W—样本中待测元素的含量;

C—标准中同一元素的含量。

二、分析技术

原子能所、高能所及物探所在进行GSD1—8的分析时所采用的方法技术基本相同,但具体在制样、照射、测量、照射前富集及数据处理等方面各有差异,简要列入表1:

1.制样及照射

长照是中子活化分析主要的方法,通常照射10~20h,样品用高纯铝箔包装,开包和首次测量一般在出堆三天以后,铝的活性已衰减,不会使操作者受到大剂量。而在短照时,由于目的在于测定短寿同位素,样品包装不宜用铝箔,而代之为电容纸或玻璃纸。超热中子照射时,样品用铝箔包好后,装入氮化硼制成的小筒内,它的壁厚为1.5mm,硼对于热中子吸收截面很大,有些元素(如Ga、W、K等)对超热中子有共振吸收,故超热中子照射有利于这些元素的测定。照射在一个重水型反应堆和两个游泳池型反应堆上进行。物探所和原子能所利用该所的自动化快速“跑兔”系统进行了短照试验,高能物理所是在小堆上进行短照,然后快速运回实验室测量。

表1 三个实验室的方法技术特点

三个实验室均采用相对比较法,为此需将标准与样品同时在一个照射筒中伴照。所采用的标准有单元素或人工合成多元素化学标准,也有数种国际标准参考物质(SRM)。化学标准用滤纸或塑料薄膜做衬垫;粉末标准参考物质与粉末样晶的照前制备采用相同的方法,都经过烘干再称样。

2.照射前富集

为了改善样品的代表性,压制干扰并提高对Au和REE的分析灵敏度,进行了金和REE的照射前富集试验。金的照射前富集取样10g,用30%浓度的王水溶矿,又经装有活性炭纸浆的布氏漏斗抽滤吸附,吸附有金的活性炭纸浆饼经炭化后,全都包入高纯铝箔做成的小袋待照。稀土元素的照前富集取样1g,经过氧化钠高温熔矿,又经草酸沉淀并灰化后,用盐酸热溶,经 PMBP苯萃取液振荡萃取。所得10~15ml稀土溶液保存在试管中。当进行稀土长照试验时,根据样品中稀土总量的高低取1~4ml稀土溶液,倒入瓷坩埚中,加入直径为10mm的滤纸片10层,水浴蒸干,将滤纸片用高纯铝箔包好待照。当进行稀土短照试验时,取5~6ml稀土溶液,用E105型强酸性均相阳离子交换薄膜提取48h,用电容纸包好备用。为了对稀土元素进行相对转移系数的计算,每一个经处理的样品均同时伴照其粉末样品,利用粉末样品显示准确的稀土分量如La、Sm、Ce、Eu、Yb等,与经前处理样品中这些元素的异常做比较,求出该样品的稀土平均转移系数,用它求出其他稀土元素的含量。

3.测量

三个实验室所用测量设备水平接近。物探所的测量系统为Jupiter系统,Ge(Li)探测器的探测效率为25%,其分辨率对60Co的1.33MeV峰FWHMFWHM为半峰值处的全峰宽为1.9keV,HPGe探测器的分辨率对57Co的122keVFWHM为155eV。原子能所的测量系统为SCORPIO—3000系统,Ge(Li)探测器的探测效率为30%,其分辨率对60Co的1.33MeV峰FWHM为2.0keV。高能所的测量系统也为SCORPIO—3000系统,Ge(Li)探测器的探测效率为28%,其分辨率对60Co的1.33MeV峰FWHM为1.9keV。

仪器中子活化分析的定性分析基本办法是“躲避”,充分使用时间和能量两个参数来达到同位素识别正确。不仅采用不同的照射时间,而且还采用不同的冷却时间,以突出不同半衰期的核素。多数元素的分析结果靠长照获得,长照出堆后测量3~4次,冷却时间分别取四天、两周、一个月及三个月。定性解释时尽量选用相互干扰较小的γ射线峰,以干扰最少的峰做为主峰,而辅之以一个或数个确认峰。在做定性解释时还需充分考虑各元素活化截面的大小及其在地样中的可能浓度。根据核参数[2-4]及地质的实际情况重新编辑了峰库和分析库。三个实验室所采用的主要测量参数列入表2中。

现代高分辨率探测器谱仪在结合使用时间参数的条件下,常常能正确地判断多核素。例如,110MAg的657.744keV峰与76As的657.0keV峰能量接近,但它们的半衰期相差悬殊,前者为253d,后者仅26.3h,在冷却足够时间后,110MAg的657keV峰可以不受76As的干扰,又例如182Ta的1121.272keV峰干扰46Sc的1120.516keV峰,而且它们的半衰期都很长,分别为115d和83.9d,故Sc的测定仅用889.258keV峰。

利用高纯锗探测器可以更好地区分低能区γ峰。例如在测定Gd时,主峰为153Gd的97.432keV峰,受182Ta的100.3keV峰、153Sm的103.2keV峰及75Se的96.733keV峰的干扰,其中153Sm的半衰期仅为47.1h,冷却一定时间即可避开它对153Gd的干扰,75Se的半衰期为120d,故183Ta及75Se对153Gd的干扰不能利用时间参数避开;利用高纯锗探测器可以改善此问题,但当75Se含量可观时,应采用其他补充手段消除75Se对153Gd的干扰。例如:从75Se主峰136.0keV与96.733keV峰的比例计算应扣除的干扰值,或通过照射前富集将稀土元素加以浓缩再进行活化。

表2 中子活化分析主要参数

续表

续表

地质样品种类繁多,基质复杂,各类样品对中子活化分析的适应性不同,所能分析出来的元素数量各不相同,这主要取决于有多少弱峰能被分辨出来。物探所通过实验了解了相邻峰、康普顿边及康普顿连续线对弱峰分辨的影响。用137Cs获取一条统计性足够的谱线,设其661.638keV峰为强峰,用offset将其位移,并按比例衰减,再与强峰合成,对比独立峰及合成谱的分析结果,弱峰峰位的变化如图1所示。实验结果表明:

(1)两峰相距1OkeV即5倍于FWHM时,弱峰衰至强峰幅度的0.1%,仍不受干扰。

(2)两峰相距5keV即2.5倍于FWHM时,可分辨的最低弱峰幅度为强峰的1%,此时误差为12%。

(3)两峰相距2keV即一个FWHM时,可分辨的弱峰为强峰的1/20,误差为4.7%。

(4)两峰相距1keV即1/2FWHM时,无论两峰幅度比例如何均不可分辨,分析程序均认作为一个峰。

(5)当弱峰位于强峰的康普顿连续线上时,可分辨的最低弱峰为强峰的0.18%,误差为4.6%。

(6)当弱峰位于强峰的康普顿边时,可分辨的最低弱峰仅为强峰的0.85%,误差为16.4%。

图1 强峰对弱峰干扰试验,弱峰峰位及峰强变化示意图

此实验表明地质样品经活化后常常存在的某些强放射性同位素如24Na、59Fe、40Sc等,它们的γ能谱峰及康普顿边都将影响低含量元素的分析灵敏度和精度。

仪器的死时间是造成分析误差的另一主要原因,无论SCORPIO—3000系统或是Jupiter系统均采用了死时间自动补偿;测量时予置活时间,实验证明死时间的补偿是按照下式进行的:

张玉君地质勘查新方法研究论文集

式中:TR—实际测量时间;

TL—予置测量活时间;

D—死时间的百分值。

尽管采取了这样的死时间补偿,实验发现计数损失的补偿仍然是不足的,不仅如此,计数丢失的程度还与计数率本身的大小有关,计数率越弱丢失或欠补偿越严重。40K的1460keV峰是环境本底中一个稳定的峰,图2是在不同死时间条件下,予置测量活时间为500s时,该峰的净峰面积变化情况。

为了验证死时间的补偿对于不同强度的峰是不均等的,取60Co源和137Cs源,调整源距,使137Cs的661 kev峰、60Co的1332keV峰及40K的1460keV峰的净峰面积比例为500∶50∶1,死时间为9.4%,此时各峰包括40K在内较单独测量(源距不变)的计数损失都未超过5%。然后再调整源距,仍保持137Cs与60Co的比值为500∶50,但使死时间增至17.8%,此时三者的计数损失与单独测量相比较分别为2.7%、3.4%和9.4%。即峰强越小,欠补偿越严重。故为了保证弱峰的测量精度,控制源距,使最强的样品测量死时间也不超过10%。

图2 环境本底中40K峰面积随死时间变化图

活化截面大含量又可观的元素中子活化分析的精确度是相当高的。但那些由于活化截面小或含量太低的元素分析精度则降低,从上述分析可知,弱峰测量的误差来源主要有4:

σ1—统计误差,假设在弱峰测量时为10%;

σ2—由于死时间欠补偿而带来的误差,设为5%;

σ3—由于强峰干扰引起的误差设为5%;

σ4—其他来源的误差,如称样、中子流梯度、测量几何条件变化等造成的误差,也设为5%。

那么总体测量误差σ就以下式表达:

张玉君地质勘查新方法研究论文集

将σ1、σ2、σ3、σ4之值代入,

张玉君地质勘查新方法研究论文集

这一估算和实际情况是一致的,对于弱峰的分析精度通常在15%以内。

4.数据处理

SCORPIO-3000系统的谱分析程序为SCORPIO/SPECTRAN,Jupiter系统的谱分程序为SPECT-RAN-F,其原理相同,所给出的分析结果为每一样品各同位素的活性比度,即单位样品量(体积或重量)中的活性:

张玉君地质勘查新方法研究论文集

式中:

张玉君地质勘查新方法研究论文集

λ—为衰变常数,λ=log(2)/T;

Tc—是实际测量时间,而不是活时间;

C—是对半衰期甚短的同位素在测量过程中衰变明显时,所做的校正;

A—峰面积;

td—冷却时间;

T—同位素半衰期;

t1—活获取时间;

ω—伽玛射线的产额;

V—样品量;

ε—探测效率。

同一台仪器的探测效率ε对于给定同位素的给定峰是个常数,对于比较法活化分析来说,由于总是用标准和样品的同一能峰进行比较的,故ε值没有实际意义。但是程序执行中又需要这个参数,故而采取了虚拟刻度的办法,对不同能量的效率值均打入1,从而简化了效率刻度的过程。

为了计算出元素含量尚需进行一系列繁杂而易出错误的数据整理工作,而且地质样品常常成批并重复若干次活化。为了减少错误、简化数据整理工作,物探所在基本掌握SPECTRAN-F的基础上,研制了一个补充软件包SPCSUP(SPECTRAN-F SUPPLEMENTAL SOFTWARE PACKAGE),实现了数据处理全过程的计算机化。

SPCSUP由10个程序功能块组成:

* ACFL:计算活化强度,用以选择最佳照射和测量时间、制定人工标准的元素配方、估算测量或开包时的安全度。

* TRFL:简化了传谱操作,把键盘问答减至4个。

* CUFL:进行计算程序块的调用及组合,予置初始参数,提供计算所需文件。

* STEDIT:编制标准库文件。

* BMFL:计算含量工作曲线,当有值标准数≥3时,用最小二乘法,当有值标准数≤2时用斜率或斜率平均法。

一元线性回归方程的一般形式为:

张玉君地质勘查新方法研究论文集

根据三个以上有值标准的含量和放射性比度可以求得回归直线的斜率M和截距B。计算时增加W0=0,I0=0一组数。

张玉君地质勘查新方法研究论文集

*LTFL:将比度列表,并可计算元素转移系数。列表文件把1—12条谱线的定量分析结果汇总成一个仅占5块空间的文件,而12条谱线所占的空间至少为35块×12=420块。

* CNFL:含量计算,可一次将1—12个样品的全部元素含量都计算出来。在BMFL及CNFL中均设计了自动扣除铀裂变影响。

* AVFL:计算数次测量或数次照射结果为平均值及标准差S。

张玉君地质勘查新方法研究论文集

* FRFL:总报告列表。

* LIRP:对每个元素的多次照射分析值进行检查,排队并剔除坏值,打出最终报告单。异常值的舍弃依据狄克松检验准则,这些准则也编入了程序。

以上各功能程序块之间的相互关系及与谱分析软件SPECTRAN-F的逻辑关系表示予图3中。

图3 中子活化分析软件包框图

SPCSUP补充软件包设计的主要特点是:①采用虚拟效率刻度;②利用SPCLST实现定量分析结果的调用;③标准资料编辑成可调用文件;④中间结果均以文件形式保存;⑤利用BATCH进行文件动态组合;⑥通过BATCH调用EDIT,实现程度入口;⑦利用计算操作软件设计技巧,简化功能块的调用,优化人机关系。

此软件包的使用效果明显,与半手工计算相比,数据处理速度提高十倍以上,特别是避免了手工计算的过失误差,资料便于查阅,结果便于保存和复制。

三、结果和讨论

作为我国全国区域化探扫面样品分析一级监控用的首批水系沉积物标准参考样GSD1—8系列,历经3年研制,于1983年7月通过了部级鉴定,对54个元素提出了推荐值或参考值(本文简称为定值)[6],全国有41个实验室的上千名分析工作者为此工作做出了贡献,共对68个元素和成分完成了50,000多个测定。加拿大地质调查所和法国地质与矿产研究所也提供了分析数据。投入的分析手段多达26种11类,各类方法的工作量列入表3。

表3 各类方法工作量比较

三个中子活化实验室提交了36个元素的分析结果,见表4。从表3可知,中子活化连同质谱所提交的原始数据占总数据量的7%,尽管它在11类方法中列为第7位,但中子活化分析所提交的元素数量(36)却占68个元素总数的53%。36个元素中有31个(Ag、As、Ba、Ce、Co、Cr、Cs、Dy、Eu、Fe、Gd、Hf、K、La、Lu、Mn、Na、Nd、Rb、Sb、Sc、Sm、Sr、Ta、Tb、Th、Tm、U、W、Yb、Zn)均有两个或三个活化实验室的数据。其他5个元素只有一个活化实验室做了分析:物探所通过照射富集测定了Au和Ho,原子能所用超热中子(包氮化硼)照射测定了Ga,高能所在游泳池型反应堆上测定了Br和Ni。

36个元素中Au和Br在1983年召开的鉴定会上尚未给出定值,原子能所用超热中子测定Ga, 8个样品全部偏低,偏出参与定值计算的原始数据集。其余参与定值计算的33个元素的中子活化数据准确性均较好,多数位于原始数据集的中部。这33个元素占已定值元素总数54的61%。可见在各类方法中,就纳入定值计算的元素数量而论,中子活化占有明显的优势。特别是中子活化所分析元素中的As、Ce、Cs、Dy、Eu、Gd、Hf、Ho、La、Lu、Nd、Rb、Sc、Sm、Ta、Tb、Tm、U、Yb等元素,其他方法分析困难较大,中子活化就更为重要。无论就数量或质量而论,三个中子活化实验室对GSD1—8系列的定值分析水平,均可与国外同类工作相比拟(加拿大的SY2—3测定了33个元素,日本的JB—1、JG—1测定了28个元素,美国的GXR系列测定了35个元素)。而且中子活化工作在粒级及均匀度检查中也起了很好的作用。

(1)中子活化分析结果精密度和准确度均良好。以物探所提交的33个元素活化分析结果为例,其精密度表现为:多次(10~20)测定有28个元素的相对标准偏差小于15%;准确度表现为:全部活化结果的80.7%与定值的偏离在±20%范围内;如果只取Ge(Li)结果,舍去HPGe结果及照射前富集分析结果,则211个可对比数据中,有154个偏离定值不超过±10%,占211个总数的73%;有183个偏离定值不超过±20%,占86.7%。两者差别的原因之一是REE前富集时重稀土较轻稀土提取率偏低。图4即为物探所Ge(Li)探测器211个数据与定值相比较,将相对偏离做频率统计的结果,此图可以直观地展示中子活化分析的准确度。

图4 物探所锗(锂)分析结果与定值相对偏离频率统计

(2)三个中子活化实验室所提交的分析结果,总体上看是很一致的,但仔细对比每一个元素,就会发现各实验室对部分元素存在一定系统偏离的趋势。如对Yb的测定,高能所系统偏低10%~19%,物探所则系统偏高7%~20%,对其原因,只有经过仔细的实验研究,方可进一步做出确切的评价,但就目前所采用的设备条件和测量技术而论,可以较有把握地认为活化分析所采用的标准是影响准确性的关键因素。

(3)Sb的全部活化数据均较定值偏高,且三个活化实验室彼此接近。活化分析以测定124Sb的1690keV峰为主,此能峰无干扰,物探所还测定了122Sb的564keV峰,其结果也一致。美国地质调查所1984年5月也用中子活化法测定了GSD1—8,Sb的分析结果相应为0.28ppm,0.75ppm、6.6ppm、2.15ppm、4.1ppm、1.84ppm、2.96ppm、0.36ppm,也是系统地偏高,落在我国三个实验室之间。可初步认为中子活化的Sb结果是准确的。

(4)表4中同时还列出了物探所用HPGe探测器测定Ce、Gd、Hf、Ho、Lu、Nd、Sm、Ta、Tm、W、Yb等11个元素的结果,这个探头有助于充分利用低能区的能峰,其中Ho仅有 HPGe探测器的结果,其余10个元素与Ge(Li)结果的一致性较好。

(5)照射前富集中子活化分析能降低检出限、提高抗干扰能力并改善样品代表性,如Au经照射前富集将检出限从10-8降低到10-11。此外REE照射前富集还测出了仪器中子活化分析未测出的Ho。

(6)以GSD—1、2、6为例,用三个中子活化实验室的平均结果(表5)所做稀土模式图(图5)曲线光滑,说明中子活化对REE分析的可靠性。GSD—2的稀土模式曲线有三个明显的特点:高稀土含量,Eu严重亏损,重稀土偏高;这符合该样采样地区属年轻花岗岩发育地区的解释。进一步证实了中子活化分析对于地质理论研究中的稀土分量分析是个有利的手段。

表5 稀土元素含量平均值及模式曲线值

图5 GSD—1、2、6稀土模式图

(7)均匀性是标准样必须具备的条件。中子活化完成了GSD—2的均匀性检验,表6列出了部分均匀性检验结果。

表6 GSD-2中子活化分析均匀度检验部分结果

表6表明,实测F0.05值和t0.05值均小于其临界值。这说明在显著度为5%时,总变差和分析变差,及代表总体的A组平均值和代表子样的B组平均值之间没有统计学上的明显差别。虽然中子活化分析的取样量仅为数十毫克,但仍未发现显著的取样变差。进一步证明了样品的均匀度是好的。

表7 用中子活化分析不同性质元素在GSD—2不同粒级中的变化

图6 JUPITER多道能谱仪系统

(8)中子活化测定了GSD—2不同粒级中的元素含量变化,表7列出了Hf、Ta、Ce、Rb、Cs、Co、Zn、Fe等8个元素在GSD—2样品的不同粒级中的分布。此表说明:Rb、Cs、Co、Zn、Fe等元素为主要赋存于易破碎和易风化的矿物及造岩矿物中的元素[5],在细粒级中富集,且在粗粒级中的变化也较平稳,可以判断这些元素在样品中的均匀性较好。Hf、Ta、Ce(代表稀土)等为主要赋存于稳定耐磨的副矿物或微量矿物如锆英石、独居石中的元素,则富集在较粗的粒级中,故这类元素的取样误差是不能忽视的。

中子活化还分析了模拟运输振动对样品均匀度影响的实验样品,表8列出了这一结果。总体来看并未发现经汽车运输后样品的均匀度明显变坏的情况。

表8 GSD—2中子活化分析检查振动对均匀度影响的实验结果

致谢 本文所用稀土元素富集方法是由山西省地矿局虞承伟同志制定的。高能所张元吉同志、物探所赵美卓和史鉴文同志均参加了分析工作。在此一并致谢。

参考文献

[1]De Soete D.,Gijbels R,and Hoste J.:Neutron Activation Analysis,1972.

[2]Crouthamel C.E.:Applied Gamma—ray spcctrometry,Second edition,1970.

[3]Heath R.L.:Gamma—ray spectrum catalogue Ge(Li)and Si(Li)spectrometry,Vol.1 and 2,1975.

[4]核素常用数据表.北京:原子能出版社,1925.

[5]鄢明才等.地球化学水系沉积物标准参考样品的制备,物探与化探,1981,5(6).

[6]Xuejing XIE ct al:Geostandards Newsletter,,No.1,1985.

THE TECHNIQUES OF REACTOR NEUTRON ACTIVATION ANALYSIS FOR

CHINESE GEOCHEMICAL REFERENCE SAMPLES GSD1—8

Zhang Yu jun Li Xing bin Song Lin shan

(Institute of Geophysical and Geochemical Exploration, Ministryof Geology and Mineral Resources of China)

Yuan Ling Chen Bao guan

(Institute of Atomic Energy,Academia Sinica)

Chen Bing ru Wang Yu qi Sun Jin xin

(Institute of High Energy Physics,Academia Sinica)

Abstract Neutron activation analysis has been used to determine the concentrations of 36 elements in geochemical reference samples issued by the Ministry of Geology and Mineral Resources of main variants of the technique, namely, instrumental, epithermal, and preirradiation separation neutron activa-tion analyses(INAA, ENAA and PNAA)were employed in a systematic study of the samples GSD 1—8 by three long and short irradiations and both Ge(Li)and HPGe detectors were used.A sup-plementary software package for data processing has been developed.

说明:表4省略,其内容请查“堆中子活化分析在首批GSD1-8化探标样研制中的重要作用”一文的表2。本文集编辑时,为了使此项工作有一个完整的历史记载,补充了图6(JUPITER多道能谱仪系统)。

原载《勘查地球物理勘查地球化学文集》,第4集。

上一篇:新余学院学报是北大核心吗

下一篇:中华神经科杂志的出版周期