基因工程课程论文5000字
基因工程课程论文5000字
20世纪后期,生物工程迅速发展,给人类生活
带来了巨大的变化。有人说,生物工程给人类带来
了更大的希望,也有人说,它也会相应给人类带来灾
难。学者们众说纷纭,褒贬不一。其中,植物转基因
工程更是如此。
植物转基因工程就是指通过基因枪等基因工程
手段,将一种或几种外源基因转移到原本不具有这
些基因的植物体内,并使之有效表达,产生相应性
状,这种具有相应性状的植物称之为转基因植物。
1983年,第一例转基因植物———转基因烟草问
世。从此,转基因植物的研究就以惊人的速度发展,
人类看到了更大的希望。1986年,抗虫和抗除草剂
的转基因棉花首次进入田间实验,此后转基因植物
在全球范围内飞速发展,种植面积不断扩大,给人类
带来了非常明显的经济效益。在这同时,人类也注
意到了它可能潜在着的一系列危害,即可能对环境
产生不利影响,影响到生物多样性的保护和持续利
用,并且对人类健康也可能有潜在的危害。
1 转基因植物的利用
植物转基因工程的目的旨在通过导入有用的外
源基因,获得转基因植物,用于植物的改良和有效成
分的生产。目前在抗除草剂、抗虫、抗病、控制果实
成熟以及植物生物反应器等方面已获得了一系列令
人鼓舞的成果。
1.1 抗除草剂的转基因植物
化学除草剂在现代农业中起着十分重要的作
用,理想的除草剂必须具有高效、广谱的杀草能力,
而对作物及人畜无害。但这样的除草剂成本越来越
高,通过转基因技术,在作物中导入抗除草剂基因,
获得抗除草剂作物,就能有效地解决这些问题,提高
经济效益,使除草剂的应用更加方便。据报道,现已
成功地获得了转aro A基因的番茄、油菜、大豆、杨
树等,在田间试验中表现出对除草剂的良好抗性。
1.2 抗虫的转基因植物
虫害对农业生产的危害非常严重,如能在植物
体内转入抗虫基因,使植物获得抗虫性,增加对虫害
的抵抗力,将对农业生产具有重要意义。基于这个
目的,人们现已成功地将苏云金芽孢杆菌(Bacillus
thurigiensis)的B.t毒蛋白基因转入了烟草、番茄、马
铃薯、甘蓝、棉花、杨树等植物,使这些植物获得了抗
虫性。
1.3 抗病的转基因植物
据报道,将烟草花叶病毒(TMV)、黄瓜花叶病毒
(CMV)、马铃薯X和Y病毒(PVX和PVY)、大豆花
叶病毒(SMV)、苜蓿花叶病毒(AIMV)等病毒的外壳
蛋白基因导入不同的植物体后,这些植物均获得了
对相应病毒的抗性,这有望应用于农业生产。
1.4 抗逆的转基因植物
68
小分子化合物(如脯氨酸、甜菜碱、葡萄糖等)与
植物忍受环境渗透胁迫的能力有关,人们若能将与
脯氨酸或甜菜碱等合成有关的酶的基因克隆后转入
植物,有望提高植物对干旱和盐碱等逆境的抗性。
有报道说,人们现已成功地将相关基因转入了烟草、
苜蓿、马铃薯等植物,使它们获得了对不同逆境的抗
性。
1.5 植物生物反应器生产药物蛋白
生物反应器(bioreactor)是指利用生物系统大规
模生产有重要商业价值的外源蛋白质,用于医疗保
健和科学研究。将不同的基因转入植物,可使转基
因植物产生植物抗体、口服疫苗、植物药物和人类蛋
白质等。据报道,到目前为止,人们已成功地获得了
4种具有潜在医疗价值的植物抗体。
2 转基因植物存在的潜在风险
2.1 转基因作物对生态环境的潜在风险
在耕地上栽种那些实验室里培育出来的转基因
植物可能会对生态环境造成许多负面影响,转基因
植物对非目标生物可能造成危害,转基因植物通过
基因漂变对其它物种也可能产生有害影响。
2.2 对人类健康的潜在危害
转基因食品里的新基因可能对消费者造成健康
威胁,因为转基因植物是在传统植物接受了动物、植
物、微生物的基因的基础上形成的,所以很可能对人
类健康产生影响。人们正在关注这样一些问题:毒
性问题、过敏反应问题、对抗生素的抵抗作用问题、
营养问题等。
3 展望
20世纪末生物技术取得了突飞猛进的发展,其
涉及面之广、进展之快乃前所未有。从1986年美国
批准第一个转基因作物进行大田试验,至1999年4
月,已有4987个转基因作物被批准进行大田试验。
自1994年至1999年五年间转基因农作物的种植面
积增加了23倍多。美国的转基因抗虫棉花的种植
面积已占其棉花总种植面积的13%。
从发展趋势看,转基因植物将向多元化发展,例
如品质改良、高产、抗逆(抗旱、抗寒、抗低光照、耐盐
碱、耐瘠薄等)的基因工程发展。
随着转基因技术的深入发展,人们也将把转基
因植物应用到医药化工领域,建立基因工厂,从而利
用转基因植物生产各种化工原料和药品,摆脱传统
化工厂对日益短缺的化工原料的依赖和生产过程中
对环境的严重污染。
在21世纪,科学技术更加透明,更加公平,人们
需要更多、更大的知情权,所以,国际社会对这个问
题给予了极大关注,各国政府也高度重视。争论本
身就是推动社会前进的动力。通过争论,弄清是非,
避免破坏性后果的发生,这将推动科学技术沿着健
康的道路发展前进。
任何科学技术都不应该滥用,但也不能扼杀能
给人类和社会创造巨大财富的技术成果。在应用植
物转基因工程技术中,人类应该像对待其它科学技
术一样,扬长避短,全面、理性地看问题,把握尺度,
使植物转基因工程更加健康地发展,造福全人类。
关于基因工程的发展、现状、应用的论文!
基因工程技术的现状和前景发展
【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。
【关键词】基因工程技术;前景;现状
一、基因工程应用于植物方面
农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。
由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。
随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。
二、基因工程应用于医药方面
目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。
目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。
三、基因工程应用于环保方面
工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。
四、前景展望
由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。
但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。
【参考文献】
[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.
[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26.
这还有一篇
找一篇关于基因工程利弊的论文(有追加分喔)
基因工程的利弊
基因工程的利与弊说
【摘要与前言】
基因工程技术,在医药及农业上应用广泛。这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。
生物学家在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,组成分为DNA。DNA含有四种碱基(简称A、T、C、G)。这些碱基在DNA中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。
基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?
【正文】
观点:辨证的看待基因工程的利与弊
一.基因工程可用来筛检及治疗遗传疾病。
遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传
疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的
试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。
但是广泛的基因筛检将会引起一连串的社会问题。如果有人接受基因筛检,发现在某个年龄将因某种病死亡,势必将会极度改变他的人生观。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。譬如人寿保险公司将会要求客户提供家族健康数据,如心脏病、糖尿病、乳癌等,而针对高危险群家族成员设定较高的保费。保险公司可由基因筛检资料预知客户的预估寿命。这些人可能因而得不到保险的照顾,也可能使这些人被公司老板提早解聘。
二.基因工程配合生殖科技——全人类的震撼
基因筛检并不改变人的遗传组成,但基因治疗则会。科学家正努力改变遗传病人的错误基因,把好的基因送入其中以纠正错误。因为这是在操作生命的基本问题,必须格外小心。首先须划分医疗及非医疗的行为。医疗行为目的在治病,非医疗者如想提高孩子的身高、智慧等。选择胎儿性别也是非医疗行为,不能被接受,但是遇到某些性连遗传的疾病,选择胎儿的性别就是可被接受的医疗行为。另一项须区分的,就是体细胞(somatic cell)或生殖细胞(germ-line cell)的基因操作。体细胞的基因操作只影响身体的体细胞,不影响后代。但卵子、精子等生殖细胞之基因操作,会直接影响后代,目前基因工程禁止直接用在生殖细胞上。
三.基因治疗法——遗传病人的福音
目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症(bubble-boy disease),患病婴幼童因为腺脱胺(adenosine deaminase)基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒(retrovirus),藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。
另一种较便捷的治疗法亦在实验中,纤维性囊肿(cystic fibrosis)在英国平均每两千人中就有一人罹患此症。病人无法制造形成细胞膜氯离子通道的蛋白。此蛋白分布于分泌性细胞的胞膜上,控制氯离子的运输,使黏液畅通。病人体内因缺乏此蛋白,体内浓黏液堆积阻塞肺部通道,甚至发炎死亡。为了治疗此病,目前正在发展新方法,将正常基因加入雾状喷剂中,病人可借着吸入喷剂,使基因进入肺细胞产生蛋白,达到治疗目的。
四.农林渔牧的应用——生态环保的顾虑
目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。
英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。若以后能由羊奶大量制造,将变得很便宜。但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。
基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种
蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。
其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许
多源自野生黑麦的基因。农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。传统的育种也可大量提高产量。但是传统的育种过程缓慢,结果常常难以预料。基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。不久,在美国即将有基因工程培育出来的西红柿要上市了。这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。
基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。如此农夫就不需费力喷洒农药,使我们有健康的生活环境。也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。但是,会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。在高盐的沼泽地种植基因工程育成的作物,可能会干扰了生态系统。假如热带作物改造得可以于温带地区生长,可能会严重伤害开发中国家的经济,因为农作物水果的输出是他们的主要收入。最近更逐渐发现危害作物的害虫,已经慢慢地演化,以抵抗基因转殖作物所产生的「杀虫剂」了。基因工程培育的鱼,也引起一连串的问题。目前已送两个基因到鲤鱼中,一是生长激素,一是抗冻蛋白(antifreeze protein)。若有人不小心或刻意地把这些鱼放入自然环境的河、湖中,将会严重影响自然界的鱼群生态。
五.基因转殖动物——爱护动物人士的关切
基因转殖动物对于生物医学研究,真是一大恩赐。科学家现在可将基因送入实验室的老鼠,以研究基因的表达调控功能。也可以把实验动物的某个基因刻意破坏,培育出患有类似人类遗传疾病的动物,以利治疗方法的探讨。美国一家公司已经培育出一种基因转殖老鼠,它在数个月大时会长出癌瘤,此项发明正在申请专利。但是爱护动物人士已表示严重关切,他们认为应该限制基因工程技术如此折磨虐待实验动物。
(注:基因工程的应用并不只有以上部分,我只对以上部分发表个人观点。)
【结语】
不久的将来,基因工程技术仍只限于转殖少数的基因,如此培育出来的生物仍将是我们熟悉的生物。但是有很多疾病及生物特征是由多数基因决定的,而且基因常常不是独立行使功能,它们会受环境的影响。譬如一组基因会造成某人罹患气喘,但症状受生活的环境影响很大。一个人罹患糖尿病的机率,也与环境因子(饮食条件)息息相关。一个天才钢琴家的音乐天赋包括听力及灵敏的双手巧妙地配合,这跟他的遗传基因、童年音乐的启发、生活环境等都有关连。所以我们在还未了解基因与环境因子的互动关系前,还不能奢望创造出具有超高智商的人,或是利用基因筛检法筛选出具有特殊天赋的孩子。
21世纪是基因工程技术蓬勃发展的时代,基因工程的兴起是生物革命的必然结果,尽管基因工程的隐忧及争论众说纷纭,但其给人带来的好处是显而易见的。希望随着生物界的不断发展,使基因工程的安全性得到保证,让人们在生活的各个方面都能感受基因工程给人类带来的利益。
求基因工程论文
一、基因工程的基本内容
基因工程,确切地讲就是重组DNA技术,指在体外将不同来源的DNA进行剪切和重组,形成杂合DNA或称嵌合DNA分子,然后将其导入特定的宿主细胞,得到大量扩增和表达,使宿主细胞获得新的遗传特性,产生新的基因产物。基因工程,或称遗传工程,兴起于20世纪70年代。人类实现对基因进行自如地操作、转移和改造的理想,是在核酸限制性内切酶、载体质粒、连接酶和其它修饰酶被陆续发现以后。在此基础上,核酸和蛋白质序列测定、基因体外快速突变、DNA的人工合成等,则使得基因工程逐渐成熟和发展。
二、基因工程的基本程序
质粒:环状DNA分子,它的分子量较小,可以自由地进入细菌细胞,还能独立自主地复制,具有一套与细胞核染色体相对独立的遗传信息。
基因工程的基本程序是:(1)获得目的基因(外源DNA片段)(2)将目的基因连接到载体上,得杂化载体;(3)将杂化载体(环状的DNA)引入宿主细胞(受体细胞),使目的基因及载体上其它基因得以转录和翻译。
例题解析
1、
农业上大量使用化肥存在许多负面影响,“生物固氮”已成为一项重要研究课题,实验证明,生物固氮是某些微生物(如根瘤菌、蓝藻等)将空气中的N2固定为NH3的过程。
(1)与人工合成NH3所需的高温、高压条件相比,生物固氮的顺利进行是因为根瘤菌、蓝藻体内含有特定的
,这类物质的化学本质是 。
(2)人们正在着力研究转基因固氮植物(如固氮水稻、固氮小麦等),某科学家将根瘤菌、细胞中的固氮基因,通过基因工程方法转移到水稻植株细胞中,经检测,转基因水稻具备了固氮功能。据上述材料分析:
①固氮基因已经整合到水稻细胞的 中。
②写出水稻细胞中固氮基因得到表达的反应式。
上一篇:读者杂志投稿一篇稿费多少钱
下一篇:文教资料杂志购买2017年