数学建模及其应用期刊官网
数学建模及其应用期刊官网
全美数学建模官网是
美国大学生数学建模竞赛(MCM/ICM),是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛,为现今各类数学建模竞赛鼻祖。MCM/ICM 是 Mathematical Contest In Modeling 和 Interdisciplinary Contest In Modeling 的缩写,即“数学建模竞赛”和“交叉学科建模竞赛”。MCM 始于 1985 年,ICM 始于 2000 年,由 COMAP(the Consortium for Mathematics and Its Application,美国数学及其应用联合会)主办,得到了 SIAM,NSA,INFORMS 等多个组织的赞助。MCM/ICM 着重强调研究问题、解决方案的原创性、团队合作、交流以及结果的合理性。2015年,共有来自美国、中国、加拿大、芬兰、英国、澳大利亚等19个国家和地区共9773支队伍参加,其中包括来自哈佛大学、普林斯顿大学、西点军校、麻省理工学院、清华大学、北京大学、北京航空航天大学、浙江大学、南开大学、上海交通大学、华中科技大学,南京大学等国际知名高校学生参与此项赛事角逐。
数学建模及其应用 CN37-1485/O1 是核心期刊吗?
是的,现在的影响力在不断增强
数学建模
最近在复习和学习数学建模的东西,主要是《数学建模优秀论文精选与点评(2011-2015)》和《数学建模方法及其应用》两本书,资源在下面。(包括文中出现的一些案例就来源于书中)
个人觉得数学建模是介乎业务模型和数据挖掘之间的东西,既要有将实际问题转化为数学模型的思维,同时在采用的模型、算法方面和数据挖掘有极大的重合。所以对于开拓横向的数据化业务思维、分析能力以及基础的数据挖掘能力都有帮助。
链接:
数学建模方法:
数学建模步骤: 问题分析→模型假设→模型建立→模型求解→解的分析与检验→写作和应用
基础理论:
典型场景 微分方程一般是时间微分方程,微分方程稳定性问题的典型场景是判断博弈过程,判断最终哪一方会赢、哪一方会败,比如下面的战争问题;或者就是消息/疾病随时间传播的过程。
基础理论:
差分只是一个过程变量,既可以求微分,也可以求积分。而且差分方程本身也是需要求解、以及判断稳定性的,但是似乎利用差分方程求解方程本身很少,而利用差分/差商来积分反而更常用
基础理论:
拟合方法:
一般线性最小二乘拟合方法是可以直接求解的,但是非线性最小二乘问题,通常求解很复杂,可以采用梯度法(这个最常用)、共轭梯度法、最速下降法(后两者是求解特殊的正定矩阵)进行求解。。。。
基础理论: 方案层、准则层、决策目标→构造比较矩阵→相对权重向量确定→一致性校验→计算组合权重和组合一致性校验(两层权重的累加) 应用场景: 实际应用应该很广了,发现一个可以用在互联网运营中的:
基础理论:
采用概率分布:
基础理论:
参数估计:
方差分析: 分为单因素方差分析法和多因素方差分析法。这里只考虑单因素。
相关分析方法:
基础理论:
多元回归方程的显著性校验和拟合校验:
回归模型正交化 正交化的目的只是为了计算,比如自变量有x1,x2和x3=x1*x2,这个时候明知变量中有相关性问题存在,正交化的计算最快。实际应该不会考虑这种情况,反正都是机器跑。
基础理论:
线性规划的求解方法 知己用lingo吧骚年!
线性规划的对偶问题
常用方法
基础理论
无约束规划的解法
有约束非线性规划的解法
我认为真正的动态规划问题,其实是类似于马尔可夫链的那种问题,这里其实没有涉及到这么高深。反而是把本来可以用静态规划方法求解的,转化成动态来求解。
基础理论
XY分布 分布才是排队论的理论核心,在确定了分布之后,你甚至可以直接用蒙特卡洛模拟出排队结果嘛。
二人有限零和对策的基本模型:
二人有限零和对策的混合策略: (双方为了获取更多的利益,会根据概率来博弈)
二人有限非零和对策:
基础理论
在帕累托最优解中,再找最优解
图 :
树 :
遍历
解法 常采用匈牙利算法,暂时不研究。
图矩阵
书中还给出了一个婚配的案例,但是实际上可以直接线性规划求解的。。。线性规划其实适合很多问题,包括上面的决策等等。。。
基础理论
模糊综合评判 总评分法、加权评分法 然后针对多层次模糊综合评判会涉及到一个矩阵的综合加权
典型场景 问题:中介机构有遵纪守法情况、纳税情况、奖惩情况等等维度的情况,建立综合评估问题。 看计算过程,理解起来还是比较简单,最直观的理解就是,比如针对几个指标,分为差、中、好三个等级,隶属度是一个隶属度矩阵,然后最终的展示结果就是经过加权之后的综合向量,比如是0.3,0.3,0.2,那就是经过模糊综合评判,整体属于差、中、好的隶属度分别是多少。 所以模糊综合评判方法最后也只是给你一个隶属于各个等级的隶属度,但如何确定他是好还是差,还是要再加一个指标判断,而综合评判方法给你提供的便利,只是让多级指标汇总而已。。。 模糊综合评判和AHP很大程度上都是解决一类型问题,就看怎么选择。
个人觉得,灰色系统模型的应用场景一般都是用来对时间做回归预测,那还不如直接用回归呢。所以可能灰色系统模型基本不会采用?
彭济根的人物经历
1992年7月起任教于西安交通大学数学学科,主要工作经历与任职为:►1993年2月至1993年7月在西安铁路信号厂接受基层锻炼,1999年1月至1999年7月、2001年5月至2001年11月赴香港城市大学进行合作研究,2002年9月至2003年3月赴香港大学进行合作研究,2004年7月1日至15日赴香港中文大学作短期访问。► 曾于1998年3月至2003年1月任西安交通大学理学院青年教师协会副会长,于1998年9月至2002年6月任西安交通大学理学院数学系副主任(主管科研与研究生教育),于2002年7月至2004年2月任西安交通大学数学学科副主任(主管教学),于2000年1月至2008年9月任西安交通大学理学院院长助理,于2005年3月至7月赴新疆大学挂职支援并任新疆大学系统科学与数学学院副院长,于2008年10月至2011年12月任西安交通大学理学院副院长兼数学学科主任。► 曾任2006-2010年教育部数学与统计学教学指导委员会数学基础课程教学分委员会秘书长(2006-2012)、《教育部高等学校教学指导委员会通讯》编委、陕西省数学会常务理事兼副秘书长(2006-2012)、西安交通大学理学院学位委员会副主任(2008-2011)、(首届)高等学校大学数学教学改革与发展研究中心学术委员会委员(2009-2013),第五届全国大学生数学建模竞赛(CUMCM)组委会委员,2009、2010、2012、2013年陕西省科学技术奖励评议委员会委员。► 现为2013-2017届教育部高等学校数学类专业教学指导委员会委员、中国数学会理事、第四届中国高教学会理科教育专业委员会常务理事、第六届全国大学生数学建模竞赛(CUMCM)组委会委员;《应用泛函分析学报》、《数学建模及其应用》、《西安交通大学学报(自然科学版)》等杂志编委;全国泛函分析空间理论与应用泛函分析学术委员会副主席;第八届西安交通大学校学术委员会委员、第十届西安交通大学学位评定委员会委员、河海大学数学类专业建设指导委员会副主任(2011,12-2015,12)。► 现任西安交通大学数学与统计学院院长(2011年12月起),陕西省数学会理事长(2012年9月起)。
上一篇:网络时代的新闻道德问题论文
下一篇:2000年1月时尚杂志封面