欢迎来到学术参考网
当前位置:发表论文>论文发表

数学论文证明不等式的方法

发布时间:2023-02-21 22:45

数学论文证明不等式的方法

基本不等式的证明方法如下:

1、比较法:包括比差和比商两种方法。

2、综合法

证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。

3、分析法

证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。

4、放缩法

证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

5、数学归纳法

用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

6、反证法

证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

证明不等式的方法

证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。

作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。不等式证明是一个非常重要的内容,在数量关系上,在对不等式证明题进行分析,寻找解(证)题的途径时,提倡综合法和分析法同时使用,如同打山洞一样,由两头向中间掘进,这样可以缩短条件与结论的距离。

不等式证明方法:

比较法:①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a

综合法是由因导果的证明方法。用综合法证明不等式时,应注意观察不等式的结构特点,选择恰当的公式作为依据,其中均值不等式是最常用的,证法一两次运用三元均值不等式证明,证法二主要是运用不等式的性质证明。

高数中用来证明不等式的方法都有哪些?

高数证明不等式的方法确如楼上所说.
而用初等数学证明不等式,特别是代数不等式,无论是技巧性还是是灵活性,都比高数方法强得多!
按我自己的体会,常用的有:
(1)作差比较法.
(2)作商比较法.
(3)公式法.
(4)放缩法.
(5)分析法.
(6)归纳猜想、数学归纳法.
(7)换元法.
(8)构造.构造函数、复数、向量、数列等.
(9)反证法.
(10)综合法,即由因导果法.
(11)函数单调性法.
(12)凸函数法.
(13)局部不等式法.
(14)增量代换法.
(15)磨光变换法.
(16)导数法.
(17)重要不等式法.如:
基本不等式;
柯西不等式;
赫尔德不等式;
排序不等式;
权方和不等式;
舒尔不等式;
贝努利不等式;
母不等式;
卡尔松不等式;
… …
等等.

不等式的证明方法有哪些?

1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。 3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用分析法证明AB的逻辑关系为:BB1B1 B3 … BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。 4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法。 5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。 6.放缩法放缩法是要证明不等式A<B成立不容易,而借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法。放缩法证明不等式的理论依据主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。 1、比较法(作差法) 在比较两个实数 和 的大小时,可借助 的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。 例1、已知: , ,求证: 。 证明: ,故得 。 2、分析法(逆推法) 从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。 例2、求证: 。 证明:要证 ,即证 ,即,,,, ,由此逆推即得 。 3、综合法 证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。 例3、已知: , 同号,求证: 。 证明:因为 , 同号,所以 , ,则 ,即。 4、作商法(作比法) 在证题时,一般在 , 均为正数时,借助 或 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。 例4、设 ,求证: 。 证明:因为 ,所以 , 。而 ,故。 5、反证法 先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。 例5、已知 , 是大于1的整数,求证: 。 证明:假设 ,则 ,即 ,故 ,这与已知矛盾,所以 。 6、迭合法(降元法) 把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。 例6、已知: , ,求证: 。 证明:因为 ,, 所以, 。 由柯西不等式 ,所以原不等式获证。 7、放缩法(增减法、加强不等式法) 在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。 例7、求证: 。 证明:令 ,则 , 所以。 8、数学归纳法 对于含有 的不等式,当 取第一个值时不等式成立,如果使不等式在 时成立的假设下,还能证明不等式在 时也成立,那么肯定这个不等式对 取第一个值以后的自然数都能成立。 例8、已知: ,, ,求证: 。 证明:(1)当时, ,不等式成立; (2)若时, 成立,则 =, 即 成立。 根据(1)、(2), 对于大于1的自然数 都成立。 9、换元法 在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化。 例9、已知: ,求证: 。 证明:设, ,则, (因为 ,), 所以。

不等式证明都有哪几种方法

比较法
比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab2
分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)

基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及 变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab (当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤1
分析:通过观察可直接套用: xy≤x2+y22
证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥3

综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设 a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥4
左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn3
求证:2f(n)≤f(2n)

分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明: 即证 |a-c|<c2-ab
即证 (a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)2
放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1
又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<1
证明: ∵x,y∈R+, 且x-y=1,x=secθ , y=tanθ ,(0<θ<xy )
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤3
(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥4314
证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+2
把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314

反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤2
分析:本题已知为p、q的三次 ,而结论中只有一次 ,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q3
将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾 ∴p+q≤2
练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.
求证:a>0,b>0,c>0
数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12
那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边> 2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2> 2k+1·2k+3
〈二〉(2k+2)2> (2k+1)(2k+3)
〈二〉4k2+8k+4> 4k2+8k+3
〈二〉4>3 ③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n> 1324

构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2 (x≠0)
证明:设f(x)= x1-2x- x2 (x≠0)
∵f (-x)
=-x1-2-x+x2x-2x2x-1+x2
=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0 ,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于设A(1,a),B(1,b)则0A= 1+a2

上一篇:现代教育科学是核心期刊吗

下一篇:能源经济领域top10期刊