2021年数学小论文二年级
2021年数学小论文二年级
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。
数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。
四则运算
四则运算的意义和计数方法。
加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。
运算定律与简便方法、四则混合运算。
减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。
运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。
复合应用题
长度、面积和体积以及其同类量之间的进率。
质量单位和他们之间的进率。
1吨=1000千克 一千克=1000克。
时间单位进率、人民币进率。
1小时=60分钟 1分钟=60秒。
1块=10角。
比与比例。
正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。
图形与空间
图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。
以上内容参考:百度百科-小学数学
小学数学应用小论文
培养学生应用能力,提高数学课堂教学的效果,是当前数学教学改革的一个重要课题,只要不断尝试,联系实际,大胆探索,就会收到预期效果。接下来我为你整理了小学数学应用小论文,一起来看看吧。
摘 要 数学应用意识是我们对于客观物质世界中存在的数学知识应用的反映。数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。因此对学生进行数学应用意识的培养,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。但更重要的是使学生认识到:数学与我有关,与生活相关,数学是有用的,我要用数学,我能用数学。这种意识将成为学生终生受用的财富。
关键词 数学;应用意识;培养
对学生进行数学应用意识的培养,使他们逐渐形成数学应用的意识是学生将来适应现代信息社会的需要。小学数学教学中学生的应用意识主要体现在以下三个方面:第一,面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略。主要表现在两方面:一是在实际情境中发现问题和提出问题的意识;二是主动应用数学知识解决问题的意识。第二,面对新的数学知识时,能主动寻找其实际背景,并探索其应用价值。第三,认识到现实生活中蕴涵着的大量的数学信息,数学在现实世界中有着广泛的应用。那究竟应怎样培养学生的应用意识呢?
1 提高教师自身的数学应用意识和应用能力
要培养小学生的数学应用意识,作为教师就必须要有较强的数学应用意识和应用能力,这样,才能使数学教学过程少一些纯数学问题,多一些实际应用问题,潜移默化地感染学生,使学生逐步形成数学应用意识。教师要提高自身的数学应用意识和应用能力,首先要认真研读新《课标》,领会课标的精神实质,以《课标》的教育教学理念为准绳,用以指导自己实施新课程的航灯。其次,积极参加提高学历层次的学习,提高自身的专业水平和数学素养;再次,在平时的业务培训及自学中,有意识地学习有关数学应用意识和应用能力的内容,用以增强自身的数学应用意识和应用能力。
2 精心设计课前活动,注重数学知识的来龙去脉
就小学生而言,他们已有的生活常识、经验往往是他们学习数学的基础。小学阶段的许多数学知识,如概念的产生、计算法则的由来、几何形体的特征及有关公式等,无不渗透着数学在现代生产、生活和科技中的应用。而今使用的教材版本多,内容丰富、呈现方式也极具生活化,充分体例现了 “数学源于生活服务于生活的理念”,因此,在教学中充分利用这一特点,在进行有关数学知识的教学之前,精心设计课前活动,让学生在课前活动中寻找生活中的数学,了解数学知识的来龙去脉,体验数学来源于生活。这样学生不仅真正体会到“数学有用、要用数学”,且激发学生的学习兴趣,使学生爱数学,同时,也为学生知识的构建积累必要的经验。这样的学习,不仅极大地调动了学生的学习热情,更使学生真切地感受到数学就在自己的身边,认清数学知识的现实性和实用性,从而对数学产生了浓厚的兴趣。
3 开阔学生的视野,了解数学的应用价值
在小学数学教学中培养学生的应用意识,需要以知识、实践、能力的培养为基础。由于小学生的生活经验不足,对数学的应用价值不可能会有很全面的了解。在教学过程中,教师不仅应该关注学生对于数学基础知识、基本技能以及数学思想方法的掌握,而且还应该帮助学生形成一个开阔的视野,了解数学对于人类发展的价值,特别是它的应用价值。
方案③的表面积:20×15×4+15×5×2+20×5×4=1750(平方厘米)
通过计算比较,学生发现:第一种包装方法最节约包装纸。紧接着让学生尝试(四人小组合作):将三盒这样的糖果包装成一包,怎样才能节约包装纸?(接口处不计)学生在动手包装时我提出了要求:请你一边包装一边想一想,不用计算,你能知道哪种包装方法最节约包装纸吗?
如此的数学教学,不仅开阔了学生的数学视野,更真切体会到了数学在当今经济社会中举足轻重的应用价值,使学生在综合应用表面积等知识来解决问题的同时,体现了数学的优化思想,同时提高了学生解决问题的能力,感受数学的应用价值与实际生活的密切联系。
4 为学生运用所学知识解决实际问题搭建平台
培养学生应用意识的最有效办法应该是让学生有机会亲身实践。教学中,我努力挖掘学生所学的数学知识在社会生活、生产以及相关学科中的应用,精心设计问题情境,创造条件让学生运用所学的数学知识解决实际问题,让学生体验数学的应用价值,从而形成良好的应用意识。例如在教学“粉刷墙壁”时,(北师大版小学数学第十册)我以小组合作的形式,让学生以下面的步骤进行:
(一)、测量计算
小组合作(一):
1、教室前后黑板共有多少块?分别测量每块黑板的长和宽; 2、分别测量教室的长、宽、高; 3、教室左右两面墙共有多少个窗户,多少个门?分别测量每个窗户的长和宽,每个门的长和宽。
小组合作(二):
1、如果想粉刷除地面以外的五面墙,“粉刷墙壁”测量数据记录表(200 年 月 日)
那么要粉刷的墙面积是多少? 2、计算后完成下面的表格。(如左图)
(二)、购买涂料
如下图,某种涂料分大桶、小桶两种规格包装,根据经验,第一遍粉刷时,每平方米约用涂料0.5千克,此时粉刷教室共需要涂料多少千克?
5 搜集数学应用的事例,加深对数学应用的理解和体会
信息技术的社会化,数学与现代科技的发展使得数学的应用领域不断扩展,其不可忽视的作用被越来越多的人所认同。马克思曾指出:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”。在数学教学中要让学生了解数学的广泛应用,不但可以帮助学生了解数学的发展,体会数学的应用价值,激发学生学好数学的勇气和信心,更可以帮助学生领悟数学知识的应用过程。
总之,数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。学生学习数学就应通过熟悉的数学生活,自己逐步发现和得出数学结论,并逐步具有把数学知识应用于现实生活、服务于现实生活的意识。
体验学习就是在课程实施中根据教材内容的需要,在教师的指导下,把知识对象化,以获得客观准确的知识的过程。它是学生联系自己的生活,凭借自己的直观的感受、体会、领悟,去再认识、再发现、再创造的过程,从中获得丰富的感性认识,加深对理性知识理解的一种教与学的互相过程。在小学数学教学中体验学习不仅能够激发学生的数学学习兴趣,而且有利于探究性学习的培养,因此,教师要善于体验学习的应用。
1 联系生活――体验学习的基础
教育家苏霍姆林斯基说过:“把知识加以运用,使学生感到知识是一种使人变得崇高起来的力量,这是兴趣的重要来源。”《数学课程标准》也指出:“数学教学要体现生活性。人人学有价值的数学。”数学来源于生活,还要应用于生活。数学课堂联系生活,教室善于引导学生已有的生活经验来理解数学知识的真正含义,这样,既可加深对课堂知识的理解,激发学生兴趣,又能使学生体验到数学就在生活实践之中,体验到数学的价值。因此,在数学教学中,要尽可能组织学生实践,让学生亲身体会生活中的数学知识。例如,在教“简单的统计”是,我结合家庭用水、电、煤气生活 实际,要求学生收集自己家庭每月所用的数据,加以分类整理,填写在统计表里,反映实际情况。再如“圆锥的体积”教学中,我结合学生常见的用卷笔刀削圆柱形的铅笔的现象,让学生仔细观察铅笔变化,然后提出圆柱和圆锥变化的问题:被削的这段铅笔前后分别是什么形状?前后体积发生了什么变化?变小了以后的圆锥体与原本这段圆柱体的底面积、高、体积分别有什么关系?这样的教学,让学生认识到生活中处处有数学,使学生积极主动投入到学习数学之中,真切感受到数学存在于生活之中,数学与生活同在,感受到数学的真谛与价值。
2 亲历实践――体验学习的手段
让学生实践操作,体验“做数学”。教和学都要以“做”为中心。“做”就是让学生动手操作,在操作中体验数学。动手操作时小学生认识事物的重要手段,让学生在动手中获得快乐。因此,教室在教学过程中应该充分让学生动手、动口、动脑,在活动中学习新知。通过实践活动,使学生获得大量的感性知识有助于提高学生的学习兴趣,激发求知欲。例如,二年级要进行《表内乘法》的整理和复习,我组织了一次《数学在我们的游玩中》的实践活动。教师可以出示游乐园的价格表后问学生,你想玩哪些项目?根据你的玩法,算一算,一共要多少钱?由于方案不同,计算的结果不是唯一的。有位学生说想玩转马两次,碰碰车两次,自控飞机两次,一共要3×2 + 4×2 + 6×2 = 26(元)。另一位学生马上站起来回答,我也可以这样玩,但我只要付16元就够了,因为我可以和另一个同学一起坐碰碰车和自控飞机。紧接着,我要求学生每人用一张30元得游园券设计出游玩方案。学生通过小组讨论,提出了10种方案,从而打开了学生狭隘的思维空间,让他们了解到同一个问题可以有多种解决方法,体验到解决问题策略的多样性。这种实践性教学,大大地提高了学生的发散思维能力和创造思维能力。
3 经历“错误”――体验学习的需求
在课堂教学中,对于教师提出的问题,学生的回答难免出现不同的错误,这些错误在体验学习中也是宝贵的,通过这些不同的错误,教师可以首先让学生解释形成答案的来龙去脉,让学生充分发表自己的见解,倾听别人的想法,要允许学生“争辩”,然后,教师对这些错误逐个分析、归纳,认真总结“错误”之间究竟有什么联系,其产生的主要原因是什么。这样,教师既摸清了学生对问题认识不清的根源所在,学生也从老师的点拨中得到启发,加深了知识的理解。也就是说,学生经历“错误”体验,达到教师和学生的互动交流,学生更能体验到“错误”的感慨和成功的愉悦。例如在教学第十册《求平均数》时,课本有一道习题:“先锋号机帆船出海捕鱼,上半月出海13天,共捕鱼805吨;下半月出海14天,每天捕鱼64吨,这条船平均每天捕鱼多少吨?”有的学生对这道题列式为805÷13 + 64,而有的同学列式为(805 + 14×64)÷(13 + 14)。显然,第一列式是错误的。那么为什么会出现这样的错误呢?我就让人为第一列式的同学阐述自己的原因,其实,他们错误地认为上半月的平均每天捕鱼数和下半月的平均每天捕鱼数相加,就是这条船这个月每天的捕鱼数。然后,我根据这些“错误”进行纠正,并让学生讨论。在学生获得“错误”的体验后,通过小组讨论得到的结果,往往比老师灌输给他们的“答案”更有说服力,学生对此类题目印象更深。
总之,体验数学需要教师引导学生积极主动参与学习过程,正如《数学课程标准》指出:“义务教育阶段的数学课程,要强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,”由此可见,在数学教学中,教师应该让学生亲身经历数学感念、结论的形成过程,使数学学习成为一个体验过程。在这一过程中,使学生体验学数学的乐趣,培养学生数学素养,应该是我们的目标。
数学小论文(字数不少于1500)...成功率加分20,谢谢。
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
数学小论文(500~2000字)
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
数学小论文‘初二的`
黄金分割
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边 1.618倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的帕撒神农庙就是一个很好的例子,他的<维特鲁威人>符合黄金矩形.<蒙娜丽莎>的脸也符合黄金矩形,<最后的晚餐>同样也应用了该比例布局.
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
|..........a...........|
+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -
|......b......|..a-b...|
通常用希腊字母 表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为(√5-1)/2
黄金分割数是无理数,前面的1024位为:
0.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 1653392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...
生活应用
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数学0.168…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.168…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.168…处。艺术家们认为弦乐器的琴马放在琴弦的0.168…处,能使琴声更加柔和甜美。
数字0.168…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。
0.618与战争:拿破仑大帝败于黄金分割线?
0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。
也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?
0.618与武器装备
在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。
当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。
实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。
在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与0.618十分接近。在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。
0.618与战术布阵
在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。其主要攻击点的选择,恰在黄金分割点上。
把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。或许还有别的更为重要的原因?仔细研究之下,果然又从中发现了黄金分割律的伟大作用。蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。
马其顿与波斯的阿贝拉之战,是欧洲人将0.618用于战争中的一个比较成功的范例。在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。这一战争的深刻影响直到今天仍清晰可见, 在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。
两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。让我们以海湾战争为例。战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了0.618,也就是说,他多多少少托了黄金分割律的福。
此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。
0.618与战略战役
0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。
一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。
1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。
我们常常听说有“黄金分割”这个词,“黄金分割”当然不是指的怎样分割黄金,这是一个比喻的说法,就是说分割的比例像黄金一样珍贵。那么这个比例是多少呢?是0.618。人们把这个比例的分割点,叫做黄金分割点,把0.618叫做黄金数。并且人们认为如果符合这一比例的话,就会显得更美、更好看、更协调。在生活中,对“黄金分割”有着很多的应用。
最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=0.618
最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=0.618
证明方法:
设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为b
AC/AB=BC/AC
b^2=a*(a-b)
b^2=a^2-ab
a^-ab+(1/4)b^2=(5/4)*b^2
(a-b/2)^2=(5/4)b^2
a-b/2=(根号5/2)*b
a-b/2=(根号5)b/2
a=b/2+(根号5)b/2
a=b(根号5+1)/2
a/b=(根号5+1)/2
上一篇:投稿约稿客上的兼职可信吗
下一篇:大学篮球毕业论文开题报告