运筹学初始可行基的确定论文
运筹学初始可行基的确定论文
在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。
运筹学单纯形法怎么找初始可行基
增加松弛、剩余、人工变量。系数为1的变量就是初始基变量
请问管理运筹学里的初始可行基是什么东西呀???高分求助,求助!!!
初始可行基就是一开始在单纯形表形成单位矩阵的那几个,教你一个简单判断用大M的方法,如果约束方程中有>的或》=的就可以用大M法,但是一般都不采用大M发而是用对偶单纯刑法去解决!因为那样会比较简单。
请问下 怎么在运筹学中 求线性规划的基解 和可行基 最好能有例题 不然有点看不懂哈 急 急 十分感谢
如下例题maxz=2X1+3X2
题中标准形式共有5个变量,但是基变量有3个,非基变量有2个
非基变量取0,基变量不取0
当X1,X2是非基变量时,基解为X=(0,0,8,16,12)
当X1,X3是非基变量时,基解为X=(0,4,0,16,-4)
其他我就不一一列举了,共有基解个数为8个
其中符合约束条件的如第一种情况,为基可行解,不符和约束条件如第二种,为基解
运筹学中,可行解、基本解、基本可行解和最优解的关系
可行解是满足约束条件的解,基本解对应基向量的非基变量为零,基解不一定为可行解,可行解也不一定为基解,既是可行解又是基本解的解是基本可行解,最优解是基本可行解中使目标函数达到最优的解。
在线性规划问题中,满足非负约束的基本解称为基本可行解或基本可行解。如果线性规划问题存在可行解,则必须存在一个基本可行解。
可行解是基本可行解的充要条件如下:非零分量对应的系数矩阵的列向量是线性无关的。基本可行解对应可行域中的极点,是有限的。如果存在一个有界最优解,至少有一个基本可行解是最优解。
1、基本可行解(basic feasible solution)亦称可行点或允许解,是线性规划的重要概念。在线性规划问题中,满足非负约束条件的基本解,称基本可行解,简称基可行解。
线性规划问题如果有可行解,则必有基可行解,可行解是基可行解的充分必要条件为:它的非零分量所对应的系数矩阵列向量是线性无关的。
基本可行解与可行域中的极点相对应,为有限个。若存在有界最优解,则至少有一个基本可行解为最优解。
2、可行解就是满足所有约束条件的决策变量的一组取值,若不满足约束条件,则称为不可行解。
3、基解是满足资源约束的解,不一定是非负的。它的几何意义就是满足资源约束的部分,但是因为可能是负数,所以实际意义不大。
参考资料来源:百度百科-基本可行解
百度百科-可行解
百度百科-基本解
上一篇:特殊学校班主任爱心教育论文
下一篇:车间叉车安全论文500字左右