欢迎来到学术参考网
当前位置:发表论文>论文发表

分子生物学science文章

发布时间:2023-02-22 17:59

分子生物学science文章

  给楼主论文:

  分子细胞基因组的研究

  随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
  发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
  蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
  遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
  基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
  蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
  高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。
  1 植物体细胞杂交后代胞质基因组重组的多样性
  体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。
  2 创制胞质杂种的方法
  2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。
  2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。
  2.3 其它的可能途径
  (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。
  3 胞质杂种中双亲胞质基因的传递遗传学
  3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。
  3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。
  4 植物胞质基因组控制的重要性状
  目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。
  总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

Nature,Science以及CELL的子刊分别有哪些?

1、Nature子刊名

(1)Nature Cell Biology 19.122

(2)Nature Immunology 27.586

(3)Nature Medicine 30.550(03年创刊)

(4)Nature Genetics 26.494(03年创刊)

(5)Nature Structural & Molecular Biology 12.000(Nature Structural Biology)

(6)Nature Materials 13.531

(7)Nature Biotechnology 22.4

(8)Nature Chemical Biology 16.058 (05年创刊)

(9)Nature Physics (05年创刊)

(10)Nature Neuroscience 16.98

(11)Nature Methods (04年创刊)

临床医学类期刊

(1)Nature Clinical Practice Cardiovascular Medicine

(2)Nature Clinical Practice Endocrinology & Metabolism

(3)Nature Clinical Practice Gastroenterology & Hepatology

(4)Nature Clinical Practice Nephrology

(5)Nature Clinical Practice Neurology

(6)Nature Clinical Practice Oncology

(7)Nature Clinical Practice Rheumatology

(8)Nature Clinical Practice Urology

2、Science子刊名

(1)Science Advances

(2)Science Translational Medicine

(3)Science Signaling

(4)Science Immunology

(5)Science Robotics

3、CELL子刊名

(1)Molecular Cell:1997年创刊。细胞生物学、分子生物学。

(2)Developmental Cell:2001年创刊。发育生物学。

(3)Cancer Cell:2002年创刊。癌症领域。

(4)Cell Metabolism:2005年创刊。代谢领域。

(5)Cell Host & Microbe:2007年创刊。感染症领域、微生物学。

(6)Cell Stem Cell:2007年创刊。干细胞领域、再生医学。

扩展资料

Science期刊发展历程:

1880年,纽约新闻记者约翰·迈克尔斯(英语:John Michaels)创立了《科学》,这份期刊先后得到了托马斯·爱迪生以及亚历山大·格拉汉姆·贝尔的资助。但由于从未拥有足够的用户而难以为继,《科学》于1882年3月停刊。

一年后,昆虫学家Samuel Hubbard Scudder使其复活并取得了一定的成功。然而到了1894年,《科学》重新陷入财政危机,随后被以500美元的价格转让给心理学家James McKeen Cattell。

1900年,Cattell与美国科学促进会秘书Leland Ossian Howard达成协议,《科学》成为美国科学促进会的期刊。

在20世纪早期,《科学》发表的重要文章包括托马斯·亨特·摩根的果蝇遗传、阿尔伯特·爱因斯坦的引力透镜以及埃德温·哈勃的螺旋星系。1944年Cattell去世后,AAAS成为《科学》新主人。

参考资料来源:百度百科-nature

百度百科-CELL (《细胞》期刊)

百度百科-科学 (美国科学促进会官方刊物)

国际sci期刊关于遗传的有哪些?

American Journal of Preventive Medicine《美国预防医学杂志》美国
ISSN:0749-3797,1984年创刊,全年8期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子3.167。刊载预防医学基础和应用研究论文。涉及的学科包括流行病学、遗传学、营养学、毒理学和社会科学;应用的领域包括卫生管理、传染病防治、职业医学、环境卫生、航空航天医学、老年病、母婴保健、计划生育等。
Annales de Génétique《遗传学纪事》法国
ISSN:0003-3995,1958年创刊,全年4期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子0.625。法国遗传学会的会刊。刊载遗传学研究论文、技术札记、文摘和消息。
Biochimie《生物化学》法国
ISSN:0300-9084,1914年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.461。刊载有关酶学、遗传学、免疫学、微生物学和高分子结构等方面的研究论文及评论。
Biomolecular Engineering《生物分子工程》荷兰
ISSN:1389-0344,1983年创刊,全年6期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子1.435,2005年EI收录30篇。研究分子生物学、细胞生物学、免疫学、生物化学和遗传学中使用的新技术、材料及器械。刊载研究论文和综论。
Cancer Genetics and Cytogenetics《癌遗传学与细胞遗传学》美国
ISSN:0165-4608, 1979年创刊,全年16期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子1.640。刊载癌细胞与分子的基础研究论文。反映癌遗传学和细胞遗传学领域的最新研究进展。
Current Opinion in Genetics & Development《遗传学与发育新见》英国
ISSN: 0959-437X, 1991年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子9.361。著名遗传学权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、疾病遗传学、遗传组织与变异、细胞繁殖、发育模式与机理等方面的研究进展评论。附近期有关学科主要论文索引。
Developmental Biology《发育生物学》美国
ISSN:0012-1606,1959年创刊,全年24期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子5.234。著名生物学权威专业性学术期刊,从分子、细胞和遗传的水平上研究动植物发育、变异、生长、再生和组织修复的机能。发表论文。
European Journal of Medical Genetics《欧洲医学遗传学》
ISSN: 1769-7212,2005年创刊,Elsevier Science出版社,主要刊载关于给类人研究和医学遗传学以及基因实验模型方面的论文。
European Journal of Pharmacology: Molecular Pharmacology《欧洲药理学杂志:分子药理
浙江工业大学图书馆信息咨询部编 Elsevier Science 出版社期刊投稿指南 60
学分册》荷兰
ISSN:0922-4106,1989年创刊,全年12期,Elsevier Science出版社,刊载分子水平的药理学、药效学、神经系统药理学等方面的研究论文和简报,内容涉及分子神经传递,信号转导机理,蛋白质受体的遗传反应等。
Human Immunology《人类免疫学》美国
ISSN:0198-8859,1980年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.467。刊载人类免疫系统和其他脊椎动物模拟系统的研究论文。侧重于组织适应性和免疫遗传学的研究。
Infection, Genetics and Evolution《传染、遗传和进化》荷兰
ISSN:1567-1348,2001年创刊,全年4期,Elsevier Science出版社。主要刊载遗传学领域,包括疾病等的传染、遗传、进化等方面的论文。
Journal of Molecular Biology《分子生物学杂志》英国
ISSN:0022-2836,1959年创刊,全年50期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子5.229。刊载原始论文,论述分子生物学的各个方面,涉及基因结构、复制及解译机理、蛋白质、核酸等大分子的结构和性质、细胞和发育生物学、分子遗传学等。
Molecular Genetics and Metabolism《分子遗传学与新陈代谢》美国
ISSN:1096-7192,1976年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.678。1998年前刊名为Biochemical and Molecular Medicine,从生物化学和分子生物学角度对人体正常代谢和代谢病进行研究。发表原始论文、短评和简讯。
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis《突变研究-突变原理与分子结构》荷兰
ISSN:1388-2112,1964年创刊,Elsevier Science出版社。主要刊载关于包括遗传变异基因的作用,并体现突变,可变化合物的代谢方式到以不同的身份和修复受损DNA的细胞复制等方面的论文。
Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》
ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。
Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》
ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。
Mutation Research/Reviews in Mutation Research《突变研究-突变研究评论》荷兰
ISSN:1383-5742,1964年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子5.333。主要刊载突变和疾病的关系,涵盖人类基因组研究进展(包括演变和功能基因突变检测技术)与临床应用遗传学、基因治疗、环境健康风险评估,遗传毒理学和环境突变(包括遗传因素调节活性剂环境)等方面的论文。
Trends in Genetics《遗传学趋势》英国
ISSN:0168-9525,1985年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子12.047。权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、变异、发育方面的评论、札记和书评,涉及临床遗传学、遗传学与社会、应用技术与人口遗传学等问题。

求论文:病毒中核算在分子生物学中的应用

【综述】
几种用于发现未知病毒核酸序列的技术及其应用
翁康生
病毒是引发人类传染性疾病的主要病原体之一, 它们极
大地威胁着人类健康。目前还存在人类尚未认知或新出现的
病毒, 随时可能严重危害人类健康安全〔1 - 3〕。及早地发现,
鉴别未知的或新出现的病毒, 是有效的预防和控制的先决条
件之一。因此, 建立、储备、改良、发展、乃至创新应用于
发现、鉴别未知或新出现病毒的技术方法是十分必要的。
近20 多年来, 常采用传统的微生物学技术方法和现代分
子生物学技术方法相结合的途径, 发现和鉴别未知病毒。通
过细胞培养的方法分离病毒、电镜观察、用已知病毒的抗血
清建立的免疫学方法作排他性检测、用已知病毒核酸序列建
立的PCR、杂交等方法, 作特异核酸序列的检测、用分子生物
学技术获得未知病毒核酸序列, 查询基因数据库, 检出并确
定未知病毒基因组序列, 最终发现鉴别出未知病毒。
对于无法用细胞分离培养的未知病毒, 有的采用免疫学
与分子生物学技术相结合, 筛选获取病毒特异抗原编码基因
的克隆, 进而发现鉴别出该病毒。更多的则是采用相应的分
子生物学技术, 从被检样品中发现获取未知病毒的核酸序列,
进而发现鉴别未知病毒。无论未知病毒是否可以用细胞培养
分离, 最终对其基因组序列的测定分析, 是鉴别和判断的决
定性依据之一, 而获取未知病毒的核酸序列是前提条件。
从少量样品中, 从高度复杂的宿主细胞核酸物质中, 分
离、扩增、获取足够量的无基因序列资料的未知病毒的核酸
片段, 供进一步克隆、测序、生物信息学分析, 是用分子生
物学技术发现、鉴别未知和新出现病毒的关键之一〔4〕, 也是
最终测定分析, 拼接出未知和新出现病毒基因组序列的瓶颈
步骤。病毒所携核酸物质有DNA 和RNA 之分, 可采用的技术
方法也有所不同, 现将有关技术与其应用作一简介, 以供
参考。
1 代表性差异分析法
代表性差异分析法是为寻找分析两个生物样品复杂的基
因组间有何差异而发展建立起来的分子生物学技术方法, 并
不断得到演化, 发展和应用。病毒感染宿主细胞后, 与未感
染的同类细胞相比, 二者核酸物质间的差异主要在于是否存
在病毒核酸。消减去二者核酸间相同序列的背景部分, 扩增、
比较、选取余下可能存在差异的部分, 进一步分析以发现未
知病毒的核酸序列。病毒的核酸结构各有不同, 可选用相应
的代表性差异分析法, 见表1 。
111 DNA 代表性差异分析法(DNA Representation difference
analysis , DNA RDA)
此方法是Lisitsyn 等〔5〕利用核酸消减杂交技术〔6〕、PCR 方法
和双链DNA 热变性后互补链退火复性的二级动力学原理〔7 - 8〕
作者单位:上海市疾病预防控制中心 200336
表1 病毒核酸类型与各代表性差异分析法的选用
病毒核
酸类型
DNA RDA c DNA RDA
非rRNA 序列
6 核苷酸引导
c DNA RDA
ds DNA 线状√
ds DNA 环状√
ss RNA polyA( + ) √
ss RNA polyA( - ) 3 √
ds RNA polyA( - ) √
3 负链ss RNA polyA( - ) 视病毒在宿主细胞的转录机制而定。
而建立的。方法中将需分析的样品DNA(Test DNA ,T- DNA) 和
对照DNA(Driver DNA ,D - DNA) 设为二组,分别用同一种限制
性内切酶酶切处理,并接上5′端去磷酸化的人工接头,补齐接
头后,加入与接头序列互补的引物作PCR 扩增。切除扩增产物
上的人工接头后,切出的T - DNA 连上第二种人工接头,变性
后与过量的变性D - DNA 杂交。通过杂交,消减去T- DNA 中
与D - DNA 中同源的核酸序列,而只存在于T - DNA 中的靶序
列DNA(Target DNA) 则自我退火复性,其两端连有第二种人工
接头。加入与第二种接头互补的引物作PCR ,只有靶序列DNA
呈指数扩增,因而得到进一步富集。进过如此重复的几个轮回
后,以电泳检测比较T- DNA 和D - DNA ,将T- DNA 中呈现的
差异部分作分离,克隆,序列分析。
Lisitsyn 等以10μg 人淋巴细胞基因组DNA 作为D - DNA ,
在相同的人DNA 中加入相当于单拷贝量的120 pg 腺病毒DNA
作T- DNA。以此作为实验模型,用DNA 代表性差异分析法成
功的寻找、鉴定出外加入的腺病毒DNA 序列。应用此技术,
Chang 等〔9〕在艾滋病相关的卡波西肉瘤(Kaposis Sarcoma) 中发现
一段类似人类疱疹病毒的基因, 并由此发现一种新的病毒
HPV8。以后人们又以此技术发现鉴定了HPV6、TTV 病毒、黄热
病毒样基因组、MDV 等〔10 - 13〕DNA 病毒。
112 cDNA 代表性差异分析法(cDNA Representation difference
analysis , cDNA RDA)
Hubank 等〔14〕针对mRNA 所含序列相对简单的特点,提出
了cDNA 代表性差异分析法。它的基本原理与DNA RDA 相同,
主要不同在于,采用识别4 核苷酸序列的限制性内切酶,它的
识别位点在mRNA 反转录成的cDNA 中出现的频率更高,平均
酶切片段长度约256 bp ,保证了cDNA 序列群中绝大多数序列,
至少被切出一个片段可扩增,供差异分析,分离鉴定。
cDNA RDA 技术相对经济,可高效灵敏地用于非常少的起
始材料而获得结果〔15〕。具有polyA( + ) - RNA 病毒,其核酸可
类似于mRNA 分离纯化,因此可应用此技术。利用cDNA RDA
技术,发现鉴定了TiV、MenV ,等〔16 ,17〕RNA 病毒。
113 非rRNA 序列6 聚核苷酸引导反转录的cDNA RDA
中国预防医学杂志2007 年6 月第8 卷第3 期 Chin Prev Med , June 2007 , Vol18 No13 ·317 ·
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.
polyA( - ) - RNA 病毒,其核酸物质不似于mRNA ,需和宿
主细胞总RNA 同时分离,并用随机引物作反转录。因为宿主细
胞总RNA 中rRNA 约占80 % ,由于竞争反应、靶序列信号被湮
灭等原因,从这样的总RNA 抽提物中,用随机6 聚核苷酸引物
引导反转录的cDNA RDA 技术,发现鉴别polyA( - ) - RNA 病
毒核酸序列是困难的。Endoh 等〔18〕罗列了6 聚核苷酸所有可
能的排列组合,共计4 096 个序列模式,以大鼠18S、518S、28S 等
rRNA、微卫星重复序列、SARS - CoV、BI - 3 病毒等的序列数据
为模型,筛选出在rRNA 序列中出现频率极低或不出现的6 聚
核苷酸序列模式共96 种。将这些序列分别合成并混合后,称
之为非rRNA 序列6 聚核苷酸引物。生物信息学分析96 种序
列模式在哺乳动物病毒科具代表性的1 791 个病毒基因组序列
中出现的频率,数据表明,非rRNA 序列6 核苷酸引物可引导绝
大多数病毒的cDNA 合成。分别用非rRNA 序列6 聚核苷酸引
物和随机6 核苷酸引物作cDNA 反转录效率、cDNA RDA 试验,
结果表明,二类引物对人工合成的RNA (二类引物在其序列中
出现的频率相似) 反转录效率几乎相等,而前者对细胞总RNA
反转录效率远低于随机引物。用二类引物作cDNA RDA ,检测
人工合成的RNA ,前者灵敏度是用随机引物的30 倍。在模拟
实验中用非rRNA 序列6 聚核苷酸引物引导反转录,串联cDNA
RDA 技术,检测鉴别出感染细胞的BI - 3 和SRAS - Cov 核酸序
列片段。
此方法能从1μg 总RNA 中检测出3 ng 的外来RNA ,其检
测灵敏度不及普通的PCR 检测方法,但对于检测鉴别在宿主细
胞中复制,但不知其基因序列的poly A( - ) - RNA 病毒而言,也
是一个可选择的方法。
114 抑制消减杂交
cDNA RDA 技术结合消减杂交和PCR 抑制作用〔19〕的技术
原理,Diatchenks 等〔20〕等发展出了抑制消减杂交技术( suppression
subtractive hybridization ,SSH) 。与前两种RDA 技术不同点在于,
SSH 技术将内切酶酶切处理的T - cDNA 分为两份,分别接上
不同序列的去磷酸化的接头1 和2 ,分别于过量的D - cDNA
作第一轮杂交。杂交过程中两组中的单链T - cDNA 浓度趋
同,T- cDNA 中的非靶序列单链cDNA 与D - cDNA 中相应序列
形成杂交双链而被消减, T - cDNA 中差异表达的单链cDNA
被显著富集。合并一轮杂交物,加入过量变性D - cDNA ,作第
二轮杂交。合并的二组份一轮杂交物中剩下的趋同化、经消减
杂交后的单链T - cDNA 能互补杂交, 可以形成: 原组内
T- cDNA 单链间的杂交、T - cDNA 与D - cDNA 单链间的杂
交、二组间T- cDNA 单链间的杂交。补齐杂交反应后双链cD2
NA 末端,用分别与接头1 和2 的外侧部分序列互补的寡核苷
酸为引物,作PCR 扩增。二组份间T- cDNA 互补单链杂交物,
因两端分别具有接头1 和2 ,可被指数扩增;T - cDNA 与D -
cDNA 杂交物和剩余单链T- cDNA ,因一端具接头序列,被线性
扩增;而同组间T- cDNA 杂交物两端具反转重复长序列,因抑
制性PCR 效应,在PCR 反应循环中分子内退火形成稳定的“锅
柄结构”〔19〕而不被扩增。因此,SSH 技术通过二轮消减杂交和
抑制性PCR 特异扩增,使假阳性大大降低,提高了检出低丰度
靶mRNA 的灵敏度。
Hu 等〔21〕应用SSH 技术,结合反转录酶的模板切换(tem2
plate - switching) 功能, 以HCV RNA 阳性血清体外感染的人
MOLT- 4 急性淋巴母细胞白血病T 细胞系为模型,通过反转录
合成全长cDNA、抑制性消减杂交、消减的cDNA 文库构建、反相
斑点杂交筛选,在被筛的96 个克隆里,T- cDNA 探针杂交呈特
异阳性的16 克隆中,序列分析后得到4 个插入HCV 序列的
克隆。
2 非特异多重引导滚环式扩增法
乳头瘤病毒、痘病毒等,其基因物质为环状DNA 分子。在
事前未知基因序列的情况下,发现和鉴别这类病毒核酸序列还
可选择非特异多重引导滚环式扩增法(multiply primed rolling -
circle amplification ,RCA) ,扩增、分离、获取其基因片段供进一步
分析。
自然状况下,环状DNA 经常以滚环方式进行复制。Dean
等〔22〕应用随机6 聚核苷酸作引物,加入φ29 DNA 聚合酶,以质
粒DNA 和噬菌体DNA 为模型,建立了多重引物引导的滚环式
扩增法。φ29 DNA 聚合酶可长距离( > 70 000 nt) 地结合于DNA
模板,进行链置换DNA 合成。而随机6 聚核苷酸引物可多位
点的与单链环状DNA 互补复性。在φ29 DNA 聚合酶作用下,
以随机引物引导,合成与模板互补的DNA 链。当合成链延伸到
与模板结合的随机引物5′端时,在φ29 DNA 聚合酶的链置换活
性作用下,下游被延伸的随机引物链被“甩”出模板。而上游的
延伸链继续在环状模板上复制合成。同时,被从单链环状模板
上“甩”出的互补链,又成为新的模板,随机引物与之结合,在
φ29 DNA 聚合酶作用下,继续以枝杈的形式进行链延伸和链置
换,最后以双链DNA 串联体形式释放。用此法可使1 ng 纯
pCU18 环状DNA 模板延展式地扩增至107倍。
Rector 等〔23〕以此原理建立了不依赖已知的特定基因序列
(非序列依赖性) 的多重引导滚环式扩增环状DNA 病毒基因组
方法,并应用其扩增获取了HPV 16 的基因组DNA。在接近实
样的试验样品中,由于稀释倍数和环状DNA 分子较大等原因,
将HPV 16 基因组DNA 扩增了214 ×104 倍。
3 病毒颗粒相关核酸的非序列依赖性PCR 扩增
病毒核酸可包裹于病毒外壳内,病毒的蛋白外壳或脂膜对
病毒核酸具有保护作用。而病毒颗粒具有不同于细菌或其他
真核细胞的理化特性。利用这样的特点Allender 等〔24〕和Stang
等〔25〕各自建立了病毒颗粒相关核酸的非序列依赖性PCR 扩增
方法(sequence - independent amplification) 。两种方法的共同点在
于,依据病毒颗粒小、具一定密度,用0122μm 滤器过滤、或再串
上超速密度梯度离心,从样品中分离出病毒颗粒,DNA 酶酶解
游离的DNA ,裂解病毒颗粒,抽提获取较纯的病毒颗粒相关
核酸。
Allender 等〔24〕借鉴RDA 原理,对病毒颗粒相关核酸用限制
性内切酶酶切后,作非序列依赖性单引物PCR 扩增( sequence -
independent single primer amplification ,SISPA) :将抽提获取的DNA
或RNA 分别补齐,合成第二链DNA ,或反转录,合成双链cDNA。
限制性内切酶酶切后,酶切片段两端连接一种接头,并以与接
头同序列的单一寡核苷酸为引物,作PCR 扩增。扩增产物进一
步克隆与序列分析。用此法检验HBV 阳性血清和GBV - B 阳
性血清样品,结果在相当于106/ ml 个基因组拷贝浓度的50μl
样品中,可重复试验检出相应的病毒基因片段。
Stang 等〔25〕则在得到双链DNA 或双链cDNA 后加入k - 随
机引物,此种引物5′端含有20 个固定序列的核苷酸,3′端则有
·318 · 中国预防医学杂志2007 年6 月第8 卷第3 期 Chin Prev Med , June 2007 , Vol18 No13
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.
MNNMNM6 核苷酸随机简并序列。与变性模板退火时,6 核苷
酸随机简并序列随机地与模板相应序列互补退火,在T4 DNA
聚合酶作用下作链延伸。然后在延伸产物中加入k - 随机引物
中固定序列部分的20 寡核苷酸作引物,进行PCR 扩增。扩增
产物电泳分析、克隆、测序。用此方法检验由实时- PCR 定量,
包括病毒颗粒相关核酸及游离核酸在内的病毒基因组拷贝数
为109/ ml 的Cox - 3 和MAV - 1 培养物。前者的12 克隆中,
9 个克隆插入有肠道病毒的四个不同区域的同源基因片段;而
6 个MAV - 1 中分离的克隆内,5 个含有99 % 同源MAV - 1 基
因片段。
基于病毒颗粒分离纯化、DNase 处理、病毒颗粒相关核酸的
非序列依赖性PCR 扩增,获取、鉴定未知病毒的基因片段,尽管
灵敏度不够高,但其实验时间较短,步骤相对简单,对于病毒拷
贝数高,时间紧急的样品鉴别,是较适宜的一套方法。
病毒的种类、结构、特性多种多样,感染病毒后需要检验的
样品又各不相同,因此用于发现鉴别未知病毒的核酸序列的技
术,也不是固定不变和完全通用的。以上的技术方法各有优缺
点和适用范围。而针对扩增获取未知病毒基因组序列片断,这
一发现鉴定未知病毒的分子生物学技术的要点或瓶颈,必然还
会有新的改进、创新技术出现,将会更快、更灵敏、更简便、更准
确的发现鉴别未知病毒。
参 考 文 献
〔1〕 Drosten C , Gunther S , Preiser W, et al1 Identification of novel corona2
virus in patients with severe acute respiratory syndrome1 N Engl J Med ,
2003 , 348 : 1967 - 19761
〔2〕 ven den Hoogen BG, de Jong JC , Groen J , et al , A newly discovered
human pneumovirus isolated from young children with respiratory tract
disease1 Nat Med , 2001 , 7 : 719 - 7241
〔3〕 Fouchier RA , Hartwig NG, Bestebroer TM, et al1 A previously unde2
scribed coronavirus associated with respiratory disease in human1 Proc
Natl Acad Sci U S A , 2004 , 101 : 6212 - 62161
〔4〕 Muerhoff AS , Leary TP , Desai SM, et al1 Amplification and subtraction
methods and their application to the discovery at novel human viruses1 J
Med Virol , 1997 , 53 : 96 - 1031
〔5〕 Lisitsyn N , Lisitsyn N , Wigler M1 Cloning the differences between two
complex genomes1 Science , 1993 , 259 : 946 - 9511
〔6〕 Lamar EE , Palmer E1 Y- encoded1 Species - specific DNA in mice :
evidence that the Y chromosome exists in two polymorphic forms in in2
bred strains1 Cell , 1984 , 37 : 171 - 1771
〔7〕 Wieland I , Bolger G, Asouline G, et al1 A method for difference
cloning : geng amplification following subtractive hybridization1 Proc Natl
Acad Sci USA , 1990 , 87 : 2720 - 27241
〔8〕 Milner JJ , Cecchini E , Doming PD1 A kinetic model for subtractive hy2
bridizationg1 Nucleic Acids Res , 1995 , 23 : 176 - 1871
〔9〕 Chang Y, Cesarman E , Pessin MS , et al1 Identification of herpesvirus
- like DNA sequence in AIDS - Associated Kaposi’s Sarcoma1 Scie2
nce , 1994 , 266 : 1865 - 18691
〔10〕 Challoner PB , Smith KT , Parker JD , et al1 Plaque - associated expres2
sion of human herpesvirus 6 in multiple selerosis1 Proc Natl Acad Sci
USA , 1995 , 92 : 7440 - 74441
〔11〕 Nishizawa T , Okamoto H , Konishi K, et al1 A novel DNA virus (TTV)
associated with elevated transaminase levels in pasttransfusion hepatitis
of unknown etiology1 Biochem Biophy Res Commun , 1997 , 24 : 92 -
971
〔12〕 Simons JN , Pilot - Matios TJ , Leary TP , et al1 Identification of two fla2
vivirus - like genomes in the GB hepatitis agent1 Proc Natl Acad Sci
USA , 1995 , 92 : 3401 - 34051
〔13〕 Endoh D , Cho KO , Tsukamoto K, et al1 Application of representational
difference analysis to genomic fragments of Mark’s disease virus1 J Clin
Microbiol , 2000 , 38 : 4310 - 43141
〔14〕 Hubank M, Schatz DG1 Identifying differences in mRNA - expression by
representational difference analysis of cDNA1 Nucleic Acids Res ,
1994 , 22 : 5640 - 56481
〔15〕 Bowler LD1 Representational difference analysis of cDNA1 Methods Mol
Med , 2004 , 94 : 49 - 661
〔16〕 Chua KB , Wang LF , Lam SK, et al1 Tioman virus , a novel paramyxo2
virus isolated fromfruit bats in Malaysia1Virology , 2001 , 283 : 215 -
2291
〔17〕 Bowden TR , Westenberg M, Wang LF , et al1 Molecular characteriza2
tion of Menangle virus , a novel paramyxovirus which infects pigs , frut
bats , and humans1 Virology , 2001 , 283 : 358 - 373
〔18〕 Endoh D , Mizatanil T , Kirisawa R , et al1 Species - independent detec2
tion of RNA virus by representational difference analysis using non - ri2
bosomal hexanncleotides for reverse transcription1 Nucleic Acids Res ,
2005 , 33 : e651
〔19〕 Siebert PD , Chenchik A , Kellogg DE , et al1 An improved PCR method
for walking in uncloned genomic DNA1 Nucleic Acids Res , 1995 , 23 :
1087 - 10881
〔20〕 Diatchenko L , Lau YF , Campbell AP1 Suppression subtractive hy2
bridization : a method for generating differentially regulated or tissue -
specific cDNA probes and libraries1 Proc Natl Acad Sci U S A , 1996 ,
93 : 6025 - 60301
〔21〕 Hu Y, Hirshfield I1 Rapid approach to identify an unrecognized viral a2
gent1 J Virol Methods , 2005 , 127 : 80 - 861
〔22〕 Dean FB , Nelson JR , Giesler TL , et al1 Rapid amlification of plasmid
and phage DNA using phi 29 DNA polymerase and multiply - primed
rolling circle amplificationg1 Genome Res , 2001 , 11 : 1095 - 10991
〔23〕 Rector A , Tachezy R , Ranst MV1 A sequence - independent strategy
for detection and cloning of circular DNA virus genomes by using multi2
ply primed rolling - circle amplification1 J Virol , 2004 , 78 : 4993 -
49981
〔24〕 Allander T , Emerson SU , Engle RE , et al1 A virus discovery method
incorporating DNase treatment and its applicationg to the identificationg
of two bovine parvovirus species1 Proc Natl Aced Sci USA , 2001 , 98 :
11609 - 116141
〔25〕 Stang A , Korn K, Wildner O , et al1 Characterization of virus isolates by
particle - associated nucleic acid PCR1 J Clin Microbiol , 2005 , 43 :
716 - 7201
(收稿日期: 2006 - 05 - 15)
中国预防医学杂志2007 年6 月第8 卷第3 期 Chin Prev Med , June 2007 , Vol18 No13 ·319 ·
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.

分子生物学进展

科学领域中任何一门学科的形成和发展,一般很难准确地说明它是何时、何人创始的。分子生物学的产生和发展,同其它学科一样,经历了漫长而艰辛的过程,逐步走向成熟而迅速发展的道路。
1871年,Lankester就提出,生物不同种属间的化学和分子差异的发现和分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。后来,随着德国、美国生理化学实验室的
建立和生物化学杂志的创办,促进了生物化学的发展。当生物化学深入到研究生物大分子时,
1938年Weaver在写给洛克菲勒基金会的报告中,首次使用了分子生物学(molecular biology)一词。他写道:“在基金会给予支持的研究中,有一系列属于比较新的领域,可称之为分子生物学……”。一年以后,研究蛋白质结构的Astbury使用了这个名词,以后它变得越来越普遍。特别是在1953年,Watson和Crick发表了著名论文“脱氧核糖核酸的结构”以后,DNA双螺旋结构的发现,促进了遗传学、生物化学和生物物理学的结合,推动了分子生物学的形成和迅速发展,使生命科学全面地进入分子水平研究的时代,这是生物科学发展史上的重大里程碑。1956年剑桥医学研究委员会率先建立了分子生物学实验室,1959年创刊了《分子生物学》杂志,1963年成立了欧洲分子生物学国际组织,分子生物学从而成为崭新的独立学科,带动着生命科学迅猛发展,成为现代自然科学研究中的重要领域。
在分子生物学的形成和发展过程中,有许多重大的发现和事件,具体情况如下:
1864年:Hoope-Seyler结晶并命名了血红蛋白。
1869年:Mieseher第一次分离了DNA。
1871年:Lankester首先提出生物不同种属间的化学和分子差异的发现与分析,对确定系
统发生的关系,要比总体形态学的比较研究更为重要。
1926年:Sumaer从刀豆的提取物中得到脲酶结晶,并证明此蛋白质结晶有催化活性。同年,Svedberg创建了第一台分析用超高速离心机,并用其测定了血红蛋白的相对分子质量约为6.8X104。
1931年:Pauling发表了他的第一篇关于“化学键特性”的论文,详细说明了共价键联结的
规律。后来,又建立了处理生物分子的量子力学理论。
1934年:Bernal和Crowfoot发表了第一张胃蛋白酶晶体的详尽的X-射线衍射图谱。
1941年:Astbury获得了第一张DNA的X-射线衍射图谱。
1944年:Avery提供了在细菌的转化中,携带遗传信息的是DNA,而不是蛋白质的证据。实验证明,使无毒的R型肺炎双球菌转变成致病的S型,DNA是转化的基本要素。8年后,1952年,Hershey和Chase又用同位素示踪技术证明T2噬菌体感染大肠杆菌,主要是核酸进入细菌内,而病毒外壳蛋白留在细胞外。烟草花叶病毒的重建实验证明,病毒蛋白质的特性由RNA决定,即遗传物质是核酸而不是蛋白质。至此,DNA作为遗传物质才被普遍地接受。
1950年:Chargaff以不同来源DNA碱基组成的精确数据推翻了四核苷酸论,提出了Chargaff规则,即DNA的碱基组成有一个共同的规律,胸腺嘧啶的摩尔含量总是等于腺嘌呤的摩尔含量,胞嘧啶的摩尔含量总是等于鸟嘌呤的摩尔含量,即[A]=[T]和[G]=[C]。
1951年:Pauling和Corey应用X-射线衍射晶体学理论研究了氨基酸和多肽的精细空间结构,提出了两种有周期规律性的多肽结构学说,即alpha螺旋和B-折叠理论。
1953年:这是开创生命科学新时代的第一年,具有里程碑意义的是Watson和Crick发表了“脱氧核糖核酸的结构”的著名论文,他们在Franklin和Wilkins X-射线衍射研究结果的基础上,推导出DNA双螺旋结构模式,开创了生物科学的新纪元。同年,Sanger历经8年的研究,完成了第一个蛋白质一胰岛素的氨基酸全序列分析。
随后,1954年Gamnow从理论上研究了遗传密码的编码规律;1956年Volkin和Astrachan发现了mRNA(当时尚未用此名);1958年,Hoagland等发现了tRNA在蛋白质合成中的作用;Meselson和Stahl应用同位素和超离心法证明DNA的半保留复制;Crick提出遗传信息传递的中心法则。
1960年:Marmur和Dory发现了DNA的复性作用,确定了核酸杂交反应的专一性和可靠性;Rich证明DNA-RNA杂交分子与核酸间的信息传递有关,开创了核酸实际应用的先河。与此同时,在蛋白质结构研究方面,Kendrew等得到了肌红蛋白0.2nm分辨率的结构,Perutz等得到了血红蛋白0.55nm分辨率的结构。
1961年:这是分子生物学发展不平凡的一年。Jacob和Monod提出操纵子学说,发表了蛋白质合成中遗传调节机理的论文,此论文被誉为是分子生物学中文笔优美的经典论文之一。同年,Brenner等获得mRNA的证据;Hall和Spiegelman证明T2 DNA和T2专一性RNA的序列互补;Crick等证明了遗传密码的通用性。
1962年:Arber提出第一个证据,证明限制性核酸内切酶的存在,导致以后对该类酶的纯
化,并由Nathans和Smith应用于DNA图谱和序列分析。
1965年:Holley等采用重叠法首先测定了酵母丙氨酰-tRNA的一级结构,为广泛、深入地研究tRNA的高级结构奠定了基础。
1967年:Gellert发现了DNA连接酶,该酶将具有相同粘末端或者平末端的DNA片段连接在一起。同年,Philips及其同事确定了溶菌酶0.2nm分辨率的三维结构。
1970年:Temin和Baltimore几乎同时发现了反转录酶,证实了Temin 1964年提出的“前
病毒假说”。在劳氏肉瘤病毒(RSV)感染以后,首先产生的是含有RNA病毒基因组全部遗传信息的DNA前病毒,子代病毒的RNA是以前病毒的DNA为模板进行合成的。反转录酶已成为目前分子生物学研究中的一个重要工具。
1972年~1973年:重组DNA时代到来。Berg、Boyer和Cohen等创建了DNA克隆化技术,在体外构建成具有生物学功能的细菌质粒,开创了基因工程新纪元。与此同时,Singer和Nicolson提出生物膜结构的液态镶嵌模型。
1975年:Southern发明了凝胶电泳分离DNA片段的印迹法;Gruustein和Hogness建立了克隆特定基因的新方法;O'Farrell发明了双向电泳分析蛋白质的方法,为分子生物学的深入发展创造了重要的技术条件;Blobel等报导了信号肽。
1976年:Bishop和Varmus发现动物肿瘤病毒的癌基因来源于细胞基因(即原癌基因)。
1977年:Berget等发现了“断裂”基因;Sanger、Maxam和Gilbert创立了“酶法”“化学法”测定DNA序列的方法,标志着分子生物学研究新时代的到来。
1979年:Solomon和Bodmer最先提出至少200个限制性片段长度多态性(RFLP)可作为连接人整个基因组图谱之基础。
1980年:Wigler等通过与某个选择性标志物共感染,从而把非选择性基因导入哺乳动物细胞;Cohen和Boyer获得一项克隆技术的美国专利。
1981年:Cech等发现四膜虫26S rRNA前体的自我剪接作用,随后又证明前体中的居间序列(intervening sequence,IVS)有五种酶的活力。几乎在同时,Altman从纯化的RNase P中,证明催化tRNA前体成熟的催化剂是RNase P中的RNA。具有催化作用RNA(ribozyme)的发现,促进了RNA研究的飞速发展。
1982年:Prusiner等在感染搔痒病的仓鼠脑中发现了朊病毒(prion)。
1983年:Herrera-Estrella等用Ti质粒作为转基因载体转化植物细胞获得成功。
1984年:McGinnis等发现果蝇、非洲爪蟾等同源异形基因中的同源异形盒(homeobox)的
核苷酸序列;Schwartz和Cantor发明了脉冲梯度凝胶电泳法;Simons和Kleckner等发现了反义RNA。
1985年:Saiki等发明了聚合酶链式反应(PCR);Sinsheimer首先提出人类基因组图谱制
作计划的设想;Smith等报导了DNA测序中应用荧光标记取代同位素标记的方法;Miller等发现DNA结合蛋白的锌指结构。
1986年:Dryja等发现成视网膜细胞瘤(Rb)基因是一种抑癌基因;Robin等采用X-光晶相学,证实了DNA结合蛋白的螺旋-转角-螺旋结构。
1987年:Mirkin等在酸性溶液的质粒中发现三链DNA;Burke等用酵母人工染色体(YAC)作载体克隆了大片段DNA;Hoffman等确定了Dnchenne肌肉萎缩病灶的蛋白产物是萎缩素(dystrophin);Hooper等和Kuehn等分别用胚基细胞进行哺乳动物胚的转基因操作,取得重大进展。
1988年:Landsehalz等在对CyC3(细胞色素C基因调节蛋白)、癌基因产物(MyC、V-jun、V-fos)和CBP(CCAAT盒结合蛋白)的研究过程中,发现了结合区亮氨酸序列的周期性,提出DNA结合蛋白的亮氨酸拉链结构模型;同年,Whyfe等证明癌的发生是癌基因的激活和抑癌基因失活的结果。
1989年:Greider等首先在纤毛原生动物中发现了端粒酶(telomerase)是以内源性RNA为模板的反转录酶;Hiatt等首次报导了在植物中亦可产生单克隆抗体。
1990年:人类基因组计划(HGP)全面正式启动;Simpson等发现了对mRNA前体编辑起指导作用的小分子RNA(guide RNA);Sinclair等在人类Y染色体上发现了新的性别决定基因-SRY基因。
1991年:由欧洲共同体(EC)组织17个国家35个实验室的147位科学家,以手工测序为主要手段,首先完成了第一条完整染色体(酵母3号染色体)的315kb的测序工作;Hake等首次报导在植物中发现含有同源异形盒基因;Blackburn等提出调节聚合序列[通式为(T/A)mGn,m=124,n=1~8]的单链DNA可形成分子内或分子间的四螺旋结构,起着稳定染色体的作用。
1993年:Jurnak等在研究果胶酸裂解酶时,发现一种新的蛋白质结构-平行B螺旋(parallel B helix);Yuan等在哺乳类细胞内发现一种参与调节细胞凋亡并具有剪切作用的蛋白质-IL-1B转换酶(interlukin-1B-convertingenzyme,ICE)。
1994年:日本科学家在((Nature Genetics》上发表了水稻基因组遗传图;Wilson等用3年
时间完成了线虫(Celegans)3号染色体连续的2.2Mb的测定,预示着百万碱基规模的DNA序列测定时代的到来。
1995年:Cuenoud等发现了具有酶活性的DNA;Tu等在中发现了具有转运与信使双功能的RNA-10 Sa RNA。
1996年:Lee等首次报导了酵母转录因子GCN4中的氨基酸片段能自动催化合成自我复制的肽;洪国藩等采用“指纹-锚标”战略构建了高分辨率的水稻基因组物理图谱,DNA片段的长度为120kb;Goffeau等完成了酵母基因组DNA全序列(1.25X10 7bp)的测定。
1997年:Wilmut等首次不经过受精,用成年母羊体细胞的遗传物质,成功地获得克隆羊-多莉(Dolly);Willard等首次构建了人染色体(HACs);Salishury等发现DNA一种新的结构形式-四显性组合,这可能是基因交换期间DNA联结的一种方式。
1998年:Renard等用体细胞操作获得克隆牛-Marguerife,再次证明从体细胞可克隆出遗传上完全相同的哺乳动物;GeneBank公布了最新人的“基因图谱98'’,代表了30181条基因定位的信息;Venter对人类基因组计划提出新的战略-全基因组随机测序,毛细管电泳测序仪启动。
从以上所述分子生物学的发展中,可以看出20世纪是以核酸的研究为核心,带动着分子生物学向纵深发展。50年代的双螺旋结构,60年代的操纵子学说,70年代的DNA重组,80年代的PCR技术,90年代的DNA测序都具有里程碑的意义,将生命科学带向一个由宏观到微观再到宏观,由分析到综合的时代。

上一篇:以人力资源管理为主题的论文

下一篇:论文参考文献总是自动生成二行