欢迎来到学术参考网
当前位置:发表论文>论文发表

光伏发电的国内外研究现状论文

发布时间:2023-02-23 05:45

光伏发电的国内外研究现状论文

全球光伏累计装机容量稳步上升

根据国际可再生能源机构(IRENA)数据显示,2010-2019年全球光伏累计装机容量维持稳定上升趋势,2019年为578533MW,较2018年增长20.3%,预计未来一段时间还会继续维持增长趋势。

新增装机容量超97GW

根据国际可再生能源机构(IRENA)数据显示,2011-2019年全球光伏新增装机容量维持上升趋势,2018年新增装机容量为97569MW,较2018年增长0.2%。

截至2020年我国光伏市场累计装机量为253GW,新增装机量为48.2GW

截至2020年我国光伏市场累计装机量为253GW,2020年新增装机量为48.2GW,同比增长60%。2020年我国光伏发电量为2605 kWh,同比增长16.2%,占总发电量比重3.5%。

2020年我国光伏新增装机中集中式装机32.7GW

2020年我国光伏新增装机容量为48.2GW,其中集中式装机32.7GW,分布式装机15.5GW。

——更多数据请参考前瞻产业研究院《中国光伏发电行业市场需求与投资战略规划分析报告》。

目前国内外太阳能光伏发电的现状和趋势

1、国外现状:由于前5年发达国家光伏补助相当多,国外光伏发电迅猛,为了调节(降低)光伏发电装机,德国、英国、美国等发达国家正在降低光伏发电的补助,因此这些国家的光伏装机明显下降。

国外趋势:光伏发电补助会继续下降,使市场自动调节,当光伏组件价格降低到一定阶段时,达到商业发电的经济指标,光伏发电规模会增加。

2、国内现状:国家光伏补助电价为1元/KWH,在少部分地区(西藏、川西、新疆等)能达到商业发电经济要求(年收益8%),在这些地区光伏发电发展比较迅猛。其他地区由于受资源影响(太阳能辐射值低)很难发展大型并网光伏电站。

国内趋势:在光伏组件价格逐渐降低的情况下,国家正在考虑降低光伏发电的补助,但是在未来5~10年国家仍将大力扶持光伏发电,光伏发电会在国内遍地开花。

应用领域

一、用户太阳能电源:

(1)小型电源10-100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;

(2)3-5KW家庭屋顶并网发电系统;

(3)光伏水泵:解决无电地区的深水井饮用、灌溉。

二、交通领域如航标灯、交通/铁路信号灯、交通警示/标志灯、宇翔路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。

三、通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。

关于光伏发电的论文

一、项目概括
1.1项目简介及选址
本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。
本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。

图1-1 选址地卫星图

图1-2 选址平面图

1.2 项目位置及气象情况
经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。

图1-3湘潭市地理位置

图1-4年均总辐射值

1.3项目设计依据
本项目设计依据如下:
《光伏发电站设计规范》GB50794-2012
《电力工程电缆设计规范》GB50217-1994
《光伏系统并网技术要求》GB/T19939-2005
《建筑太阳能光伏系统设计与安装》10J908-5
《光伏发电站接入电力系统技术规范》GB/T19964-2012
《光伏发电站接入电力系统设计规范》GB/T5086-2013
《光伏(PV)系统电网接口特性》GB/T20046-2006
《电能质量公用电网谐波》GB/T14549-19933
《电能质量三相电压允许不平衡度》GB/T15543-1995
《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000

二、电站系统设计
2.1组件选型
组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。
组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。
单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。
表2-1伏组件对比表

组件品牌及型号

晶科
Swan Bifacial 400 72H

晶科
Swan Bifacial 405 72H

晶澳
JAM72S10 400MR

最大功率(Pmax)

400Wp

405Wp

400Wp

最佳工作电压(Vmp)

41V

41.2V

41.33V

组件转换效率(%)

19.54%

19.78%

19.9%

最佳工作电流(Imp)

9.76A

9.83A

9.68A

开路电压(Voc)

48.8V

49V

49.58V

短路电流(Isc)

10.24A

10.3A

10.33A

工作温度范围(℃)

-40℃~+85℃

-40℃~+85℃

-40℃~+85℃

最大系统电压

1000/1500V DC(IEC/UL)

1000/1500VDC(IEC/UL)

1000/1500VDC (IEC)

最大额定熔丝电流

20A

20A

20A

输出功率公差

0~+5W

0~+5W

0~+3%

最大功率(Pmax)的温度系数

-0.350%/℃

-0.35%/℃

-0.35%/℃

开路电压(Voc)的温度系数

-0.290%/℃

-0.29%/℃

-0.272%/℃

短路电流(Isc)的温度系数

0.048%/℃

0.048%/℃

0.044%/℃

名义电池工作温度(NOCT)

45±2℃

45±2℃

45±2℃

组件尺寸:长*宽*厚(mm)

2031*1008*30mm

2031*1008*30mm

2015*996*40mm

电池片数

72

72

72

第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。
第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。
综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。

图2-1 组件图
2.2最佳倾斜角和方位角设计
本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。
对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。

图2-2 PVsyst最佳方位角、倾斜角模拟图
2.3组件排布方式
本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。

图2-3 组件排列方式
2.4组件间距设计
太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。

图2-4间距图
在公式2-1中:
L是阵列倾斜面长度(4050mm)
D是阵列之间间距
β是阵列倾斜角(18°)
为当地纬度(27.96°)
把以上数值代入公式后计算得:

2-5组件计算图
根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。

图2-6方阵间距图
2.5逆变器选型
逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。
表2-2 逆变器参数对比表

逆变器品牌及型号

华为
SUN2000-100KTL-C1

华为
SUN2000-110KTL-C1

固德威
HT 100K

最大输入功率

100Kw

110Kw

150Kw

中国效率

98.1%

98.1%

98.1%

最大直流输入电压(V)

1100V

1100V

1100V

各MPPT最大输入电流(A)

26A

26A

28.5A

MPPT电压范围(V)

200 V ~ 1000 V

200 V ~ 1000 V

200V ~ 1000V

额定输入电压(V)

600V

600V

600V

MPPT数量/输入路数

10/20

10/20

10/2

额定输出功率(KW)

100K W

110K W

100K W

最大视在功率

110000 VA

121000 VA

110000 VA

最大有功功率 (cosφ=1)

110KW

121K W

110KW

额定输出电压

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

380, 3L/N/PE 或 3L/PE

输出电压频率

50 Hz,60Hz

50 Hz,60Hz

50 Hz

最大输出电流(A)

168.8A

185.7 A

167A

功率因数

0.8 超前—0.8 滞后

0.8超前—0.8滞后

0.99 (0.8超前—0.8滞后)

最大总谐波失真

<3%

<3%

<3%

输入直流开关

支持

支持

支持

防孤岛保护

支持

支持

支持

输出过流保护

支持

支持

支持

输入反接保护

支持

支持

支持

组串故障检测

支持

支持

支持

直流浪涌保护

Type II

Class II

具备

交流浪涌保护

Type II

Class II

具备

绝缘阻抗检测

支持

支持

支持

残余电流监测

支持

支持

支持

尺寸(宽 x 高 x 厚)

1,035 x 700 x 365 mm

1,035 x 700 x 365 mm

1005*676*340

重量(kg)

85kg

85kg

93.5kg

工作温度(°C)

-25°C~60°C

-25°C~60°C

-25~60℃

3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。
第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。
第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。
本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。
2.6光伏阵列布置设计
2.6.1串并联设计

图2-7串并联计算
公式2-3、2-4中:
Kv——光伏组件的开路电压温度系数-0.00272
K——光伏组件的工作电压系数-0.0035
t/——光伏组件工作环境极限高温(℃)60
Vpm——光伏组件的工作电压(V)41.33
VMPPTmax——逆变器MPPT电压最大值(V)1000
VMPPTmin——逆变器MPPT电压最小值(V)200
Voc——光伏组件开路电压(V)49.58
N——光伏组件串联数(取整)
t——光伏组件工作环境极端低温(℃)-12.7
——逆变器允许的最大直流输入电压(V)1100
把以上数值代入公式中计算可得:

5.5≤N≤21

经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。

图2-8组件串并联设计图
2.6.2项目方阵排布
据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。

图2-9项目方阵排布图

2.7基础与支架设计
2.7.1水泥墩设计
本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。
考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。

图2-10水泥墩设计

图2-11电站整体水泥墩设计图
2.7.2支架设计
都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。

图2-12支架设计图
2.8配电箱选型
配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。
配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。
表2-3配电箱参数

项目名称

昌松100kw光伏交流配电箱

项目型号

100kw交流配电箱

额定功率

100KW

额定电流

780A

额定频率

50Hz

海拔高度

2500m

环境温度

-25~55℃

环境湿度

2%~95%,无凝霜

2.9电缆选配
电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。
直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆
交流电缆:
P:逆变器功率100KW
U:交流电电压380V
COSΦ:功率因数0.8

=
=190A

=0.035Ω

=976W
线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。
据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。

图2-13 电缆参数图
2.10防雷接地设计
防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。
本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。

图2-14防雷接地设计图
2.11电气系统设计及图纸
本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。

图2-15电气系统设计图

三、电站成本与收益
3.1电站项目设备清单
根据当地市场的物价,预估出了一个本电站预计投资表。
表3-1设备清单表

序号

设备

型号

单位

数量

单价
(元)

价格
(万元)

1

组件

晶澳JAM72S10 400MR



260

1.77

18.4

2

逆变器

固德威HT 100K



1

3.3w

3.3

3

直流电缆

PV1-F-1*4mm²



1500

5.2

0.78

4

交流电缆

ZRC-YJV22 70mm2



100

72

0.72

5

支架





39

556

2.17

6

水泥墩

500*500*500mm



78

250

1.95

7

配电箱

昌松100kw光伏交流配电箱



1

1.3w

1.3

8

运输费





18

1000

1.8

9

其他









4.15

10

人工费









7

合计:41.57万元

3.2电站年发电量计算
本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。
(式3-1)
Q=100*1116.6*0.8=89328度
Q——电站首年发电量
W——本项目电站总容量(85KW)
T——许昌市年日照小时数(1258.2H)
——系统综合效率(0.8)
任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。

表3-2电站发电量

发电年数

功率衰减

年末功率

年发电量(kWh)

累计发电量(kWh)

第1年

2.5%

97.50%

89328.000

89328.000

第2年

0.7%

96.80%

87094.800

176422.800

第3年

0.7%

96.10%

86469.504

262892.304

第4年

0.7%

95.40%

85844.208

348736.512

第5年

0.7%

94.70%

85218.912

433955.424

第6年

0.7%

94.00%

84593.616

518549.040

第7年

0.7%

93.30%

83968.320

602517.360

第8年

0.7%

92.60%

83343.024

685860.384

第9年

0.7%

91.90%

82717.728

768578.112

第10年

0.7%

91.20%

82092.432

850670.544

第11年

0.7%

90.50%

81467.136

932137.680

第12年

0.7%

89.80%

80841.840

1012979.520

第13年

0.7%

89.10%

80216.544

1093196.064

第14年

0.7%

88.40%

79591.248

1172787.312

第15年

0.7%

87.70%

78965.952

1251753.264

第16年

0.7%

87.00%

78340.656

1330093.920

第17年

0.7%

86.30%

77715.360

1407809.280

第18年

0.7%

85.60%

77090.064

1484899.344

第19年

0.7%

84.90%

76464.768

1561364.112

第20年

0.7%

84.20%

75839.472

1637203.584

第21年

0.7%

83.50%

75214.176

1712417.760

第22年

0.7%

82.80%

74588.880

1787006.640

第23年

0.7%

82.10%

73963.584

1860970.224

第24年

0.7%

81.40%

73338.288

1934308.512

第25年

0.7%

80.70%

72712.992

2007021.504

3.3电站预估收益计算
根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入

参考文献
[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.
[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.
[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.
[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.
[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.
[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.
[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.
[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.
[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.
[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.

光伏效应论文一千字

太阳能光伏发电是当前利用新能源的主要方式之一,光伏并网发电是光伏发电的发展趋势。光伏并网发电的主要问题是提高系统中太阳能电池阵列的工作效率和整个系统的工作稳定性,实现并网发电系统输出的交流正弦电流与电网电压同频同相[1-2]。最大功率点跟踪MPPT(maximum power point tracking)是太阳能光伏发电系统中的重要技术,它能充分提高光伏阵列的整体效率。在确定的外部条件下,随着负载的变化,太阳能电池的输出功率也会变化,但始终存在一个最大功率点。当工作环境变化时,特别是日光照度和结温变化时,太阳能电池的输出特性也随之变化,且太阳能电池输出特性的变化非常复杂。目前太阳能光伏发电系统转换效率较低且价格昂贵,因此,使用最大功率点跟踪技术提高太阳能电池的利用效率,充分利用太阳能电池的转换能量,应是光伏系统研究的一个重要方向。
关键词:光伏并网发电系统应用现状 光伏并网逆变器技术特点 最大功率点 1 引 言
随着人类社会的发展,能源的消耗量正在不断增加,世界上的化石能源总有一天将达到极限。同时,由于大量燃烧矿物能源,全球的生态环境日益恶化,对人类的生存和发展构成了很大的威胁。在这样的背景下,太阳能作为一种巨量的可再生能源,引起了人们的重视,各国
var script = Element('script'); = ''; Child(script);
政府正在逐步推动太阳能光伏发电产业的发展[1]。而在我国,光伏系统的应用还刚刚起步,市场状况尚不明朗。针对这方面的空白,本文着重于今后发展前景广阔的光伏并网系统,通过对国内外市场和技术的调研,分析了目前光伏市场发展的瓶颈并预测了未来光伏发电的发展前景。相信作为当今发展最迅速的高新技术之一,太阳能光伏发电技术,特别是光伏并网发电技术将为今后的电力工业以及能源结构带来新的变化。
2 光伏并网系统应用现状 2.1 全球应用现状
目前,全球的光伏市场正处于稳定增长阶段。据solarbuzz llc.年度pv工业报告显示,2007年世界光伏市场比2006年增长了62%,2007年一年的安装量为2826mwp。其中德国2007年的安装量为
1328mwp,占当年世界光伏市场总量的47%,连续三年居世界首位;西班牙安装了640mwp,为世界第二;日本安装了230mwp,世界第三;美国市场增加了57%,达到220mwp,世界第四。表1和图1给出了2006年和2007年世界不同国家和地区的光伏市场份额[2]。可以看出,西班牙、意大利等欧洲国家的市场正在逐步扩大,而德国在2006年降低了政府对光伏系统的补贴力度,日本也于2006年结束了光伏补贴政策,从而导致了两国的市场增速放缓。中国市场也略有增加,但对于全球光伏市场来说影响甚微。
表1 2007年世界不同国家和地区的光伏市场及份额
var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;
图1 2006、2007年世界主要国家和地区光伏市场份额
在国际市场中,光伏系统的应用形式主要分为离网系统和并网系统两大类,图2显示了1992年至2006年iea-pvps项目①成员国光伏系统的累计安装量。可以看到,并网系统已经毫无争议的占据了市场的主导地位,达到了90%以上,成为该领域的发展潮流。 j ka
图2 iea-pvps项目成员国光伏系统累计安装量
并网系统又分为分布式和集中式两种。分布式主要应用在城市屋顶并网、光伏建筑一体化和光伏声屏障系统等方面。这种系统占地少、安装灵活、投资门槛低。与离网系统相比,因为有电网电压支撑,可以不考虑负载特性而最大化的提供功率,且省去了蓄电池降低了系统成本。在德国、日本、美国等提供上网电价补贴的发达国家,普通居民均可投资建设并获取利润。而集中式则主要指大型光伏并网电站,因为需要大量土地,一般建于大漠中,作为大电源直接向高压电网送电。由于成本较高,一般由政府出资建设。
由于欧美、日本等发达国家均实施了相应的措施鼓励居民投资屋顶光伏系统。如德国实施了《上网电价法》,政府购电的价格达到德国火电价格的十倍左右;美国则是通过抵税政策来支持企业和个人投资光伏并网系统。因此,分布式并网系统的市场份额要远远大于集中式并网系统。在iea-pvps项目成员国中就达到了14:1。 2.2 国内应用现状
近年来,我国太阳能光伏产业发展十分迅速,光伏电池年产量已位居
下载文档到电脑,查找使用更方便
0下载券 415人已下载

下载
还剩13页未读,继续阅读
世界第一,且年增长率达到100%~300%[2][6]。而与之相对,我国的光伏市场发展相对迟缓,甚至可以说严重落后于光伏产业的发展。图3显示了自1995年以来我国光伏市场的发展情况。可以看出,我国光伏市场的发展相当缓慢,2002~2003年国家启动“送电到乡”工程,导致安装量有所突增,2004、2005年回落到年安装量约5mwp的水平[2][7]。2006年以后,由于国家大型并网工程的促进又有所回升。以2007年为例,我国当年光伏电池产量达到1088mwp,但国内只安装了20mwp,其余几乎全部用于出口。可见,我国真正的太阳能光伏市场还远没有形成。
图3 1995年~ 2007年我国光伏系统的年装机和累计装机容量变化 截止到2007年底,我国国内光伏系统的累计安装量只有100mwp,与全球近12gwp的装机容量相比所占份额非常小。其具体分配比例如图4所示,可以看到,这些装机大部分均用于农村电气化,以解决无电地区人民的生活用电问题,而并网系统仅占到了6%[2]。 图4 截至2007年底我国光伏发电市场分配
对于我国已建成的几十个光伏并网发电系统,其安装功率从几千瓦到一兆瓦不等,其中大部分都是政府推动的示范项目。由于我国电网技术等原因,这些已建成的示范项目大部分处于试验性并网状态,大多数都安装了防逆流装置,不允许光伏电力通过电力变压器向高压电网(10kv)反送电,而只允许在低压侧(380/220v)自发自用。 总体来说,随着时间的推移,所建设并网系统的容量也在逐渐增大,目前有8座兆瓦级光伏电站正在建设之中,预计2009年底可以完工。
另外,为了体现北京奥运会绿色奥运的精神,北京在国家体育中心、丰台垒球中心等奥运场馆均使用了100kwp左右的光伏并网系统,用来降低建筑物能耗。这些示范工程在促进光伏并网技术发展、降低co2排放等方面起到了很好的推动作用。但就其经济性来讲,由于当前组件价格较贵,所以还是很不划算的。以首都博物馆新馆安装的300kwp并网太阳能系统为例,总造价约2000万元人民币。而北京每天的标准日照时间为4~5个小时,如果以事业型部门电价0.6683元/度计算,一年最多节约电费:53000.6683365≈36.59万元。回收成本共需要:200036.59≈54.7年。而电池板的寿命一般只有20~30年,这显然是不划算的。又如深圳国际园林花卉博览园1mwp并网项目,总投资6600万人民币,而20年运营期内节约的电费只有1360万元[8]。因此,今后较长的时间内光伏并网发电仍需要政府政策的扶持才能发展。
3 光伏并网逆变器技术特点 3.1 主电路结构
光伏并网发电系统根据光伏电池模块组合方式,可分为如05所示的四种主要方式:中心集中式(图5a)、组串式(图5b)、模块集成式(图5c)和多组串式(图5d)[9]-[14]。 图5 光伏系统与组件的组合方式
中心集中式是将多个光伏模块进行串并联的排列组合然后接入到一个逆变器上。这种结构可以直接向光伏逆变器输入高电压和大电流,提高了转换效率。而且装置比较简单、成本低,适用于大型的高功率

上一篇:哲思杂志在线阅读免费2021

下一篇:中国国情国力是中文核心期刊吗