cnv研究论文
cnv研究论文
从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。
2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。
在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。
2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。
CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所
“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”
除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”
此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。
Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”
该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。
3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )
A.质粒示意图;B.N2a细胞中 Pten 的下调;n检测PTEN及AKT的表达; 与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达
图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )
A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。
图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)
A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;蛋白的表达;病毒质粒示意图;F.实验流程图;的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;面积统计。
2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。
该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。
人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。
在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。
作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。
帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。
该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。
大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。
研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。
为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。
在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。
需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。
(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。
(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。
(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。
RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.
Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.
Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.
Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.
The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).
Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.
One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.
Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.
Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.
The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.
References
Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272
Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514
\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors
\2. CRISPR genetic editing takes another big step forward, targeting RNA
\3. How Editing RNA—Not DNA—Could Cure Disease in the Future
[ ](
10X单细胞个性化分析之CNV篇
目前单细胞分析而言,分析方向大致包括以下几个方面,1)器官发育(这个用空间转录组更为合适);2)疾病样本,尤其是肿瘤样本的分析研究;3)其他非模式物种的细胞图谱。其中对于肿瘤样本的分析,在基因组研究中CNV的分析占了很重要的一部分,CNV(Copy number variation, 拷贝数变异)是由基因组发生重排而导致的, 一般指长度为1 kb 以上的基因组大片段的拷贝数增加或者减少, 主要表现为亚显微水平的缺失和重复。CNV 是基因组结构变异(Structural variation, SV) 的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism), 是人类疾病的重要致病因素之一。而对于单细胞转录组,识别肿瘤细胞和发生的CNV事件同样重要,实际分析中,也经常用软件来判断肿瘤细胞。当然还可以做肿瘤异质性、克隆进化方面的探索,而本篇来介绍单细胞数据的CNV分析。关于单细胞CNV分析,目前主流的分析软件为inferCNV和后起的“新秀”copyCAT,本篇就从这两个软件着手,体现CNV分析在单细胞研究中的重要作用。
InferCNV用于探索肿瘤单细胞 RNA-Seq 数据,以确定体细胞大规模染色体拷贝数改变的证据,例如整个染色体或大段染色体的gain或loss。这是通过与一组参考“正常”细胞相比,探索肿瘤基因组位置上基因的表达强度来完成的。 生成的热图说明了每个染色体上的相对表达强度,并且与正常细胞相比,肿瘤基因组的哪些区域过度表达或更少表达通常变得很明显。
用inferCNV判断肿瘤细胞的CNV事件通常包括以下几个步骤(如下图):
1)样本的基础质控和注释;
2)选择合适的reference;
3)依据基因在染色体上的位置对基因进行排序;
4)数据处理,包括肿瘤细胞与ref的信号比较去除、数据均一化处理、降低噪音等过程;
5)CNV最终的预测。
从分析过程中来讲,inferCNV需要的输入文件包括:表达矩阵、细胞注释信息、基因在染色体上的位置信息。
使用inferCNV分析单细胞转录组,确定reference是最关键、也是最开始需要考虑的内容,如果不指定reference,那么软件默认会把 样本中所有细胞的基因平均表达值作为“基线”来识别肿瘤细胞 ,这种方法目前没有文章引用,原因也很简单,混淆所有细胞作为reference,其中也包括了肿瘤细胞,无法确定分析结果的准确性。所以做inferCNV最为基础和关键的地方, 还是前期对样本的质控和细胞注释,选择合适的reference,在此基础上才可以合理地进行inferCNV分析 。
最佳的reference选择是对应肿瘤细胞类型的正常细胞类型,也是高分文章通常的做法,例如上皮细胞癌变,那么就以正常的上皮细胞作为reference来分析肿瘤细胞的CNV事件,这样分析的结果可靠,但是有一个问题,尤其对于人的肿瘤样本,往往取不到正常的组织区域,就会给CNV分析带来不小的麻烦,有些肿瘤样本会带有癌旁区域,癌旁部分含有正常的细胞类型,但是在细胞解离的过程中跟肿瘤细胞混淆在一起,后续的分析无法很好的区分,这种情况下,只能退而求其次,选择免疫细胞(T、NK等)作为reference,同时遵守一个原则,尽量多的选择reference细胞类型,最大限度保证结果可信,在文章A single-cell and spatially resolved atlas of human breast cancers中,就将免疫和内皮细胞最为reference来推断肿瘤细胞的CNV事件,下图为中设置E8细胞作为reference分析得到的CNV结果,可见选择合适的reference会得到良好的分析结果,不仅可以判断细胞类型发生的CNV事件,也可以分析肿瘤细胞内部的异质性。
InferCNV算法的详细步骤涉及以下内容:
1)过滤基因:从计数矩阵中删除那些在少于“min_cells_per_gene”中表达的基因,这一步类似于样本质控过程中的基因去除。
2)测序深度的归一化(总和归一化):read counts per cell are scaled to sum to the median total read count across cells。 值不是每百万计数 (cpm) 等指标,而是每中位数总和的计数(这一点区别于Seurat分析单细胞的均一化)。
3)对数转换:单个矩阵值 (x) 转换为log(x+1),这里对数转换的作用与Seurat分析中的相同。
4)center by normal gene expression: 从对应基因的所有细胞中减去正常(参考)细胞中每个基因的平均值。 由于此减法是在对数空间中执行的,因此这有效地导致了相对于正常细胞平均值的对数倍变化值。
5)对数倍数变化值的阈值动态范围。 abs(log(x+1)) 超过'max_centered_threshold' (default=3) 的任何值都被设定为该值(设置了最高上限)。
6)chromosome-level smoothing:对于每个细胞,沿每个染色体排序的基因具有使用加权运行平均值拟合的表达强度。 默认情况下,这是一个包含 101 个基因的窗口,具有pyramidinal weighting scheme。
7)centering cells:如果大多数基因不在 CNV 区域中,每个细胞的中心表达强度中值设定为零。
8)相对于正常细胞的调整:再次从肿瘤细胞中减去正常值的平均值。 这进一步补偿了拟合处理后产生的差异。
9)log转换被还原,这使得amplification 或 deletion的证据在平均值周围更加对称。
上述就是推断CNV分析的基本过程,但是通常为了更加准确的推断CNV事件,往往还要添加两个步骤 de-noising filters 和HMMs算法。
降噪的目的是降低噪音(正常细胞中的残余信号),同时保留肿瘤细胞中可被解释为 CNV 的信号。
基础分析结束后的正常信号保存在初步的 inferCNV 对象,该对象已被smoothed、centered,并减去了正常(参考)细胞的平均值,如下图:
为了确定分析得到的是真正的CNV事件,需要对肿瘤细胞的CNV信号进行检验,也就是降噪,inferCNV通常有三种方法处理这一过程。
1)可以使用“noise_filter”属性设置与平均值的特定阈值偏差,如下图:
如上图,设置0.1为过滤阈值,也就是在这种情况下,reference基因表达0.9~1.1以外的基因表达被判定为CNV事件,高于1.1为gain,低于0.9为loss,这也是inferCNV默认的过滤方法。
2)动态阈值设置:可以使用“sd_amplifier”设置调整阈值。 可以使用 1.5 * reference基因表达的标准差进行过滤,如下图:
如前所述,低于最小阈值为loss,高于最大阈值为gain。
3)通过 sigmoidal(逻辑)函数调整强度(软阈值):可以通过应用 sigmoidal 函数来应用过滤梯度,而不是应用严格的阈值,该函数可以减少接近均值的强度,而不是更远离均值的强度,如下图:
目前inferCNV支持两种基于 HMM 的 CNV 预测模型,称之为 i3 和 i6 模型。每种方法都对已通过标准 inferCNV 处理的对象操作,包括减去与“正常(参考)”细胞对应的信号和smoothed操作。
1)i3模型:loss、normal、gain三种状态,如前所述,大多数信号对应于normal而异常信号强度对应于CNV。
2)i6 模型:一种六态 CNV 模型,可预测以下 CNV 水平:
· state 1 : 0x = complete loss · state 2 : 0.5x = loss of one copy · state 3 : 1x = neutral · state 4 : 1.5x = addition of one copy · state 5 : 2x = addition of two copies · state 6 : 3x = essentially a placeholder for >2x copies but modeled as 3x.
此外,预测的 CNV 区域使用贝叶斯网络进一步分析,以计算每个细胞属于给定状态的 CNV 区域的后验概率。 具有高于最大阈值的平均后验概率正常(无 CNV)的 CNV 区域作为可能的假阳性预测被移除。
在肿瘤研究中,可以通过CNV预测分析区分肿瘤细胞和非恶性细胞。2018年纽约大学计算医学研究所等单位的研究人员在 Nature Biotechnology 发表了利用单细胞和空间转录组研究胰腺导管癌(PDAC)异质性的文章。为了区分癌细胞和非恶性导管细胞,该研究对PDAC-A和PDAC-B 2例单细胞数据进行了CNV预测分析。发现PDAC-A中高表达 TM4SF1 (簇1)和 S100A4 (簇2)的两个细胞群及PDAC-B中高表达 TM4SF1 的一个细胞群表现出拷贝数变异特征。通过免疫荧光验证发现PDAC-A中TM4SF1和S100A4在恶性导管细胞中表达,PDAC-B中TM4SF1与恶性细胞标志物KRT19共定位,结合CNV预测结果证实了PDAC样本存在转录不同的肿瘤细胞群。
在肿瘤研究中,可以通过CNV预测分析探索肿瘤的克隆进化。2020年美国迈阿密大学等单位的研究人员在 Nature Communications 发表了利用单细胞测序研究葡萄膜黑色素瘤进化复杂性的文章。该研究对8例原发癌和3例转移癌进行单细胞CNV预测分析,发现不同样本间存在显著的拷贝数变异差异,揭示了葡萄膜黑色素瘤潜在的肿瘤间异质性。进一步根据某个CNV在细胞中的占比构建进化树,发现驱动葡萄膜黑色素瘤突变的3条进化轨迹—低度转移肿瘤中的 EIF1AX 突变、中度转移肿瘤中的 SF3B1 突变及高度转移肿瘤中的 BAP1 突变,绘制了葡萄膜黑色素瘤的进化轨迹及发展机制。
1)为分析来自第一代 scRNA-seq 技术的数据而设计的,技术具有较低的细胞通量和较高的覆盖深度。
2)不适用于分析来自新开发的高通量 scRNA-seq 平台(微滴和纳米孔平台)的数据,这些平台执行全转录组扩增和仅在非常稀疏的覆盖深度下对 mRNA 的 3' 或 5' 端进行测序(10X的单细胞技术具有这个特点)。
3)不能准确地解决 特定染色体断点的基因组位置或从非整倍体拷贝数谱中对肿瘤和正常细胞进行分类 。
CopyKAT 的工作流程将贝叶斯方法与层次聚类相结合(inferCNV其实也用到了层次聚类),以计算单个细胞的基因组拷贝图谱,并从高通量 3' scRNA-seq 数据中定义克隆亚型。 分析流程将唯一分子标识符 (UMI) 计数的基因表达矩阵作为计算的输入。分析从每行的基因注释开始,按照它们的基因组坐标对它们进行排序(跟inferCNV的原理一致) 。执行 Freeman-Tukey 变换以稳定方差,然后执行多项式动态线性建模 (DLM) 以smoothed单细胞 UMI 计数中的异常值。下一步是检测具有高置信度的正常细胞(reference),以推断正常 2N 细胞的拷贝数基线值(软件CopyCAT自动检测)。为此,将细胞细分为几个小的聚类(层次聚类),并使用高斯混合模型 (GMM) 估计每个聚类的方差。通过遵循严格的分类标准,具有最小估计方差的cluster被定义为“reference”。当数据只有少数正常细胞或肿瘤细胞具有接近二倍体基因组且拷贝数畸变 (CNA) 事件有限时,可能会发生潜在的错误分类。在这种情况下,CopyKAT 提供了一种“GMM 定义”模式来逐个识别二倍体正常细胞,其中假设单个细胞中基因表达的三种高斯模型的混合代表基因组 gain、loss和中性状态 。当处于中性状态的基因占表达基因的至少 99% 时,细胞被定义为“normal”细胞。
为了检测染色体断点(chromosome breakpoints),整合了泊松伽马模型和马尔可夫链蒙特卡洛 (MCMC) 迭代来生成每个基因窗口的后验均值,然后应用 Kolmogorov-Smirnov (KS) 检验来加入在它们之间没有显著差异的相邻窗口方法。为了加快计算速度,将数千个单细胞分成clusters,找到一致的染色体断点并将它们合并在一起,形成样本中整个细胞群的基因组断点的联合。然后将每个窗口的最终拷贝数值计算为跨越每个细胞中相邻染色体断点的所有基因的后验平均值。通过将基因重新排列到 220-kb 可变基因组bin中,进一步将得到的拷贝数值从基因空间转换为基因组位置,从而以大约 5 Mb 的分辨率获得每个单细胞的全基因组拷贝数谱。基因组分辨率是根据整个基因组的中位相邻基因距离(~20 kb)乘以基因窗口的大小(25个基因)来估计的(精度高于inferCNV)。然后对单细胞拷贝数数据进行层次聚类,以确定非整倍体肿瘤细胞和二倍体基质细胞之间的最大距离;但是,如果基因组距离不显著,切换到 GMM 定义模型来逐个预测单个肿瘤细胞。最后,对单细胞拷贝数数据进行聚类以识别克隆亚群并计算代表亚克隆基因型的共有谱,以进一步分析它们的基因表达差异,流程图如下:
为了估计从单细胞 RNA 数据推断出的拷贝数谱的预期分辨率,需要GRCh38 (v28) 中所有基因的 BED 文件。因为染色体 Y 不包括在拷贝数计算中,只考虑了位于染色体 1-22 和染色体 X 上的基因,它们共有 56,051 个基因。 通过取基因起始位置和基因结束位置的平均值来估计单个基因的基因组中心位置 。接下来, 根据基因组位置对所有基因进行排序,并通过计算两个基因中心之间的距离来估计两个相邻基因之间的距离 。总的来说,在整个基因组中定义了 56,028 个基因区间。从染色体 1-22 和染色体 X 中,基因区间的数量如下:5,127, 3,872, 2,925, 2,430, 2,779, 2,802, 2,292, 2,189, 2,137, 3,189, 2,857, 1,279, 2,152, 2,081, 2,440, 1,133、2,917、1,350、795、1,300 和 2,281。整个基因组中基因间隔的第一四分位数、中位数、平均值、第三四分位数和最大值如下:9,430 bp、24,532 bp、52,806 bp、58,485 bp 和 21,765,992 bp。因为基因区间的大小分布严重向右倾斜, 计算了中值来估计拷贝数分辨率 。 因为需要在pipeline中的整个单细胞群中检测到至少 7,000 个基因 ,所以这个数字相当于基因检测率的中位数 7,000/56,051 ≈ 12.5%。最后,将分析中的最小基因间隔计算为每个基因间隔 24,532 bp ÷ 12.5% ≈ 200 kb。使用 25 个基因窗口启动拷贝数分析;因此,估计片段的最小大小为 200 kb × 25 = 5 Mb,用于检测每个细胞基因组中的拷贝数事件的基因组分辨率。
同样地,copycat的输入文件也需要三个:表达矩阵、注释信息和基因位置文件,窗口的设置在25~200之间(inferCNV默认是50),在数据处理和分析结果方面大多借鉴了inferCNV,下图是copycat和inferCNV的分析结果比较。
从结果来看,copycat检测的CNV与inferCNV基本一致,在细节方面copycat表现更好一点,尤其在断点处基因的分析,分析更加精细化。
并非所有癌症类型都具有可用于区分正常细胞和肿瘤细胞的非整倍体拷贝数事件。特别是,小儿癌症和造血系统癌症(例如AML和CLL)的拷贝数变化很少,因此可能不适合CopyKAT分析。另一个限制是,CopyKAT主要限于基于整个基因组读取深度的变化来检测CNA事件,而不能用于检测其他有助于基因组多样性的基因组事件,包括染色体结构重排、插入、缺失和体细胞突变。此外,由于3''scRNA-seq数据的技术差异,CopyKAT无法在具有独特基因型的单个细胞的基因组上提供可靠的拷贝数信息。这使得CopyKAT更适合于分析许多细胞已扩增并具有相似基因型的肿瘤中亚克隆,而不是分析复杂细胞或极为罕见的亚群。CopyKAT一个潜在问题是, 当scRNA-seq数据集没有任何肿瘤细胞时,CopyKAT可能会尝试错误地检测具有最高基因表达水平的簇中的CNA事件 。在这种情况下,推断的CNA事件将与这些癌症中已知的细胞遗传事件不一致,具体需要忽略。
写在后面
CNV分析在单细胞肿瘤样本中占据了重要的分析篇幅,在预测基因发生的CNV事件中即表征了肿瘤内的关键变化,也体现了瘤内的异质性,对于我们认识肿瘤起到了非常关键的作用;同时也要认识到,单细胞肿瘤样本中的CNV推断对于样本前期的质控处理有很高的要求,同时也要添加注释信息,以此为基础来判断CNV事件,这就要求再分析的过程一定要做好基础分析,个性化的分析才足够的可靠、可信。
文献
[1] Anoop P. Patel, Itay Tirosh, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014 Jun 20: 1396-1401.
[2] Gao R , Bai S , Ying C H , et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes[J]. Nature Biotechnology, 2021:1-10.
[3] Moncada R, Barkley D, Wagner F, et al. Integrating Microarray-based Spatial Transcriptomics and Single-cell RNA-seq Reveals Tissue Architecture in Pancreatic Ductal Adenocarcinomas[J]. Nature Biotechnology , 2018, 38(3):333-342.
[4] Durante M A, Rodriguez D A, Kurtenbach S, et al. Single-cell Analysis Reveals New Evolutionary Complexity in Uveal Melanoma[J]. Nature Communications , 2020, 11(1):496.
毕业论文答辩决议书
毕业论文答辩决议书范文(通用10篇)
艰苦的大学生活即将结束,大学毕业前都要通过最后的毕业论文,毕业论文是一种比较正规的、比较重要的检验学生学习成果的形式,那么应当如何写毕业论文呢?下面是我帮大家整理的毕业论文答辩决议书范文,希望能够帮助到大家。
复旦大学硕士研究生XX的学位论文《XXXXX》从单核苷酸多态性(SNP)和拷贝数变异(CNV)两个不同的遗传学研究角度对中国人痛风遗传变异进行深入研究,发现了4个新的痛风易感候选基因,并分析了遗传异质性因素对于遗传因素和痛风易感性关联的影响,从尿酸排泄和炎症反应两个痛风发生的生理过程部分解释了痛风的发病机制。
当前,随着痛风/高尿酸血症研究的不断深入,遗传因素对于疾病发生中的作用越来越受到重视。本论文进一步在中国人群中探讨了遗传因素对于痛风易感性的作用,为今后的诊断和防治提供了宝贵的信息。
本论文立题有一定新意,论文工作量饱满,结构合理,逻辑结构清晰,文字表达清晰,图标清楚,达到硕士研究生学位论文要求。在论文答辩中,该生思路清晰,表达准确,较为清楚地回答了委员们提出的问题。因此,答辩委员会认为XX同学具有扎实的基础理论和系统的专业知识,具备了从事本学科的科学研究工作的能力。
经过答辩委员会讨论和无记名投票,一致通过XX同学的硕士论文答辩,建议授予XX同学硕士学位。同时答辩委员会一致认为学位论文。《XXXXX》是一篇优秀的硕士学位论文。
xxxx大学xxx学院xxx专业研究生xx所完成的题目为“”的学位论文,选题适当,具有较深的理论意义和广泛的实用价值。作者系统地归纳和综合地评述了有关文献,掌握了该领域内的研究现状和发展方向。本文作者通过大量的文献阅读和亲身的实践经验研究了一种基于xxxx的xxxxx法,完成了对xxxxxx,并设计出了xxxxxxx系统。
论文取得了下列研究成果:
1、详细介绍了基于xxxx的xxxxxxx法,并与传统的xxxxxx法进行了比较,总结出每种xxxxxxx方法的优缺点,指出采用xxxxxxxx法的优势。
2、研究并设计了基于法的xxxxxxx电路。由于采用该种方法不需要xxxxxxxx电路,因此,解决了传统的xxxxxxx等问题。
3、研究并设计了基于的xxxxxx硬件电路。其中,包括对控制电源、单片机外围电路、驱动电路、逆变电路以及保护电路的设计等,并在硬件电路设计中考虑了软硬件抗干扰措施。
4、介绍了在xxxxxxxx模式下的常用的xxxxxxx方法,详细分析了xxxxxxxx控制中最常用的xxxxx技术,并编写出了程序,使xxxx能够顺利xxxxxxxx。
5、完成了控制系统的调试工作,其中包括硬件电路的调试和整个系统的软硬件联调,最后给出了系统调试结果。
论文工作表明作者已经掌握本学科扎实的理论基础和深入系统的专业知识,独立从事科研工作能力强。论文结构合理,论述清楚,逻辑性强,已达到学术硕士学位论文的要求。
答辩过程中表达清楚,回答问题正确。答辩委员会一致同意通过答辩,并建议授予其学术硕士学位。
系统性红斑狼疮和类风湿性关节炎都是由基因和环境因素相互作用的、临床表现复杂的自身免疫性疾病。被用于研究PTPN22基因多态性与云南汉族系统性红斑狼疮和类风湿性关节炎的相关性。
论文采用2个群体(SLE,RA),应用PCR—RFLP和直接测序的方法,对PTPN22基因7个SNPs(rs1217414,rs1217418,rs3765598,rs1746853,rs2470601,rs1970559,rs3811021)多态进行检测,并对检测结果采用SPSS11.5、Plink1.07、HaploView软件进行数据统计分析。并对各个位点的多态与系统性红斑狼疮和类风湿性关节炎相关性进行讨论。得到如下结果:
1、PTPN22基因C1858T位点在云南汉族人群中无多态性。内含子rs1217414,rs1217418,rs1746853多态性可能与云南汉族SLE,RA相关。内含子rs1970559与云南汉族SLE,RA无关。rs3765598和rs3811021位点突变可能与云南汉族系统性红斑狼疮相关,rs3811021位点突变可能与云南汉族类风湿性关节炎相关。
2、rs1217414,rs1746853,rs3811021位点突变与系统性红斑狼疮各临床指标无关。rs1217418突变可能与WBC有关,rs1970559可能与BUT,WBC有关,rs3765598可能与抗ANA1和抗ANA2抗体有关。
3、单倍型(CATTCT)为主要单倍型。单倍型(CAGTCC),单倍型(CATTCC)和单倍型(TATTCT)显著降低系统性红斑狼疮风险性(PPAGTTC)
论文选题新颖,有一定创新性,实验设计和实验结果科学。论文内容丰富,写作规范,逻辑清晰,结构合理。答辩回答问题正确,思路清晰,已达到硕士研究生水平,一致通过答辩,建议授予理学硕士学位。
xxx同学采用实验研究法, 通过干预社区脑卒中患者的功能锻炼, 探讨以保证脑卒中患者肢体功能得到更大程度的恢复, 身体状况得到 更大的改善为最终目标, 寻找一种高效的功能锻炼指导模式, 确保社 区居家脑卒中患者能够获得系统、规范、连续的功能锻炼指导,为其 进一步康复提供保证。 使出院脑卒中患者能在住院治疗后的恢复期中 得到持续的卫生保健服务, 最大程度的重建患者肢体功能, 预防再复 发。同时,该探究将有利于节约社区卫生服务成本,提高社区医护人 员对于脑卒中管理的效率及效果,最终产生良好的经济社会效益。 该论文选题鲜明,具有实用性,研究设计较合理,所得数据真实 可信, 统计方法使用得当, 结果分析较深入, 论文撰写格式符合要求, 该论文已达到硕士学位论文的要求。 该生在论文答辩中回答问题实事求是, 思路清晰。 经答辩委员会 无记名投票,一致通过论文答辩,并建议授予医学硕士学位。
答辩委员会主席:
xxxx年xx月xx日
XX 同学的硕士学位论文《XXXXXXXXX》 ,选题紧跟我国禁烟控烟 的热点话题,科研设计简单合理,具有一定的理论价值和现实意义。 依据世界卫生组织发布的 《烟草控制框架公约》 和近 5 年来发布的 《中 国控制吸烟报告》 ,确定预防的重点对象是年轻的大学生群体,在文 献研究和时事动态分析的基础上, 对高校大学生吸烟与被动吸烟现况 进行了横断面调查研究,以及详细分析了其各自的影响因素。 论文内容真实,层次分明,逻辑性强,图表清晰度有待加强,论 据比较充分,数据准确,资料详实,统计学处理正确,结论可靠。 答辩时的论述符合一般逻辑,能够正确回答问题,论文表明作者 掌握了社会医学与卫生事业管理专业的基本理论和医学社会科学研 究方法,知识面比较宽广,拥有较强的独立科研能力。 答辩委员会认为本篇论文达到了硕士学位研究生论文水平, 答辩 委员会委员全体无记名投票通过论文答辩,建议授予医学硕士学位。
本论文主要研究裂褶菌F17锰过氧化物酶的酶学性质,并在单因子分析法的基础上,通过响应面法优化了影响该酶活力的各个因素。同时将研究的结果应用于染料脱色中,发挥其在环境保护中的作用。作者还初步进行了基因克隆实验,并且优化了反应体系,获得了一些序列。这些研究结果对于进一步研究、开发应用锰过氧化物酶具有一定的参考意义。论文立项具有一定的理论意义和实际应用价值。
该论文目标明确,研究路线合理,实验数据翔实,实验结果可信,观点正确。论文书写规范,层次清晰,图表规范。作者答辩表达清楚,回答问题思路清晰,论文已达硕士论文的学术水平。
经答辩委员会讨论评议和无记名方式投票表决,一致通过其毕业论文答辩,建议授予理学硕士学位。
本论文主要探讨了产广谱乳酸菌素菌株的.筛选、鉴定、发酵的全过程。筛选到了一株既可抑制革兰氏阳性菌又可抑制革兰氏阴性菌的乳酸菌,经鉴定是一株植物乳杆菌;又通过摇瓶发酵数据优化了菌株发酵条件;并初步探索了菌株固定化的条件。该论文立意新颖,研究目标明确,数据方案设计较合理,方法可靠。论文研究为进一步探索乳酸菌素的生产条件提供了依据与实验研究基础,具有一定的应用价值。
该论文书写规范,逻辑性强。答辩表达清楚,回答问题思路清晰,论文已达硕士论文的学术水平。
硕士学位论文答辩委员会决议: 分布式视频编码是一种新兴的编码框架, 它可以将计算复杂度从编码端转移 到解码端, 同时具有较好的压缩效率和抗误码能力,非常适合于一些新兴的应用 场合。论文对分布式视频编码中的 WZ 帧编码技术进行了研究,选题科学,具有 较高的理论研究意义和实际应用价值。 论文首先利用统计学的原理分析证明边信息与待解码 WZ 帧之间的较强相似 性,提出以边信息来填充 WZ 帧高频子块的思路,并将其运用到嵌入式分级编码 中,构造出改进的基于 DCT 和小波变换的 WZ 帧编码架构。实验表明,改进方法 与 H.263+(帧内编码)、H.264(帧内编码)的性能相当。 论文概念清楚,分析严谨,理论推导正确,做了较多的仿真实验,并对实验 结论作了理论上的阐述和讨论。 论文有创新,表明作者在本专业具有扎实的理论 基础和系统的专门知识,有较强的独立从事科研的能力。答辩时,条理清楚,回 答问题正确。经答辩委员会讨论,一致同意通过硕士论文答辩,建议授予工学硕 士学位。
本文对分级进风燃烧室内的高温气固两相流动与燃烧过程进行了实验研究,对于了解分级燃烧过程的两相流动、燃烧与污染物生成机理,发展分级燃烧技术,具有重要的学术意义和实用价值。
本文取得了以下主要成果:
1)建立了分级进风燃烧室高温气固两相流动热态实验装置系统。
2)应用三维激光粒子动态分析仪对分级进风燃烧室内有气相燃烧的高温气固流动进行了测量,得到了气固两相平均轴向与切向速度和湍流脉动特性以及两相轴向与切向速度的概率密度函数,揭示了燃烧室内高温气固两相流动的特点。
3)对分级进风燃烧室内湍流燃烧的温度场和组分浓度场进行了测量,阐明了二次风率对气体温度场、组分浓度场和NO浓度场的影响规律。
论文表明作者掌握了本学科坚实的基础理论和系统的专门知识,具有独立从事科学研究工作的能力。论文写作规范,图表完备。答辩中叙述清晰,回答问题正确。答辩委员会经表决,5票一致同意通过论文答辩,并建议授予郑晓川工学硕士学位。
速生材改性研究是木材科学与应用研究领域十分重要的课题。论文选题紧密结合学科发展和实际应用需要,具有较强的理论意义和较好的应用背景。立题正确。
作者对国内外在木材改性领域的研究情况和发展趋势做了较充分的调研和分析,在此基础上,有针对性地开展了三倍体毛白杨木材化学改性研究。论文采用4种不同的方法对木材进行化学改性处理,通过尺寸稳定性、阻燃性、抗吸水性、硬度等的检测,考察了各种改性木材的物理力学性能,得出以下主要研究结论:
1)用含有纳米SiO2的UF、PF树脂复合处理剂处理木材时,二氧化硅对提高木
材的尺寸稳定性和硬度具有明显的作用,且纳米二氧化硅能够降低处理材的游离甲醛释放量;2)马来酸酐/苯乙烯和马来酸酐/环氧氯丙烷复合处理液均能够在一定程度上提高木材的尺寸稳定性、抗吸水性、抗吸湿性和硬度。研究成果具有一定的理论意义和实际应用价值。
论文实验设计合理,数据完整,撰写认真,文字流畅,图表清晰,工作量饱满。论文答辩中,讲解重点突出,回答问题基本正确,表明该同学具有较好的本学科理论基础及相关的专业知识,具备了较好的综合分析能力和从事科研工作的能力,论文达到了硕士学位水平要求。
全体答辩评委一致同意通过论文答辩,建议授予工学硕士学位。
随着计算机主频、内存的快速发展,显示清晰度和显示尺寸的限制已经成为计算机系统的瓶颈。如何利用高性能价格比的机群实现超高分辨率的高清晰度大尺寸显示正在成为并行可视化方向一个重要的研究课题。李颖敏同学的硕士论文以设计基于机群的拼贴显示系统提供方便的编程接口和编程环境为目的,其选题具有前瞻性,论文的工作有很好的应用前景。(第一段:选题的意义)
论文在分析调研国际目前研究动态的基础上应用“分布式共享显示内存”的新概念提出了一种并行程序环境下的拼贴显示接口,并以两种形式实现了该接口,简化了系统应用的编程实现。提供了一些测试用的应用程序,为今后的研究工作提供了有参考价值的研究平台。展示了基于机群作分布式显示的良好前景。同时作者还利用该拼贴显示接口为一个地理图像信息系统实现了多屏显示应用,满足了该应用对高分辨率显示的需求。(第二段:论文工作取得的成果或新见解) 论文工作表明作者基础理论和专业知识都比较好,掌握了计算机系统结构领域分析问题、解决问题的基本方法和技能。对拼贴显示领域有较深的了解,对机群系统,尤其是有较好的基础知识和技术,具备了一定的独立工作能力和实际动手能力(第三段:对科研能力及对论文的评价)
论文组织合理,叙述清晰,文字简洁流畅,理论与实践结合得较好。答辩中表达清楚,思维敏捷,能够正确回答问题。经答辩委员会无记名投票,一致通过该同学的硕士论文答辩,并一致建议授予李颖敏同学工学硕士学位。(第四段:答辩中的表现及结论性意见)
伴随性负电位(CNV)
伴随性负电位变化(contingent negative variation,CNV),一种特殊的事件相关电位变化。英国学者沃尔特等1964年发现。测量被试反应,在命令信号出现前1.5秒左右,先给予一个警告信号。在警告信号与命令信号之间,脑电出现明显的负向波。因它的出现至少需要两个信号(警告信号与命令信号)伴随,且为负性而得名。它的出现主要与心理因素有关。20世纪80年代有人用三个信号,观察到二级CNV现象,在解释与心理因素的关系上起到概括性作用。已被证明由多种成分构成,与之相关的心理因素也多种多样。是在完成同种任务时,由期待、意动、动机、朝向反应、觉醒和注意等多种因素综合构成的心理负荷加重。曾经是事件相关电位领域的研究热点,其研究成果对分析与解释事件相关电位某些成分的机理具有一定价值。 希望对你有用
上一篇:小城建设毕业论文
下一篇:视频论文素材准备