积的乘方论文知网
积的乘方论文知网
乘方的运算法则有同底数幂法则,正整数指数幂法则,分数的乘方法则,积的乘方,同指数幂乘法,完全平方等运算法则。
乘方的运算法则
一.乘方的运算法则
1.同底数幂法则:同底数幂相乘除,原来的底数作底数,指数的和或差作指数。a^m×a^n=a^(m+n)
a^m÷a^n=a(m-n)
2.正整数指数幂法则
(a^k=a×a×…×a),其中k∈N^*(既k为正整数)
3.平方差:两数和乘两数差等于它们的平方差。
用字母表示为:(a+b)(a-b)=a^2-b^2
4.分数的乘方法则
(a/b)^k=a^k/b^k
5.幂的乘方法则:幂的乘方,底数不变,指数相乘。
用字母表示为:(a^m)^n=a^(m×n)
6.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
用字母表示为:(a×b)^n=a^n×b^n
7.同指数幂乘法:同指数幂相乘,指数不变,底数相乘。
8.完全平方:两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。
二.有理数乘方的符号法则
1.负数的偶次幂是正数,负数的奇数幂是负数。
2.正数的任何次幂都是正数。
3.0的任何正数次幂都是0。
am表示a的m次方,其它类推~~~
同底数幂的乘法公式和法则
(1)公式:
am·an=am+n(m、n都是正整数)
am·an·ap=am+n+p(m、n、p都是正整数)
(2)法则:
同底数幂相乘,底数不变,指数相加.
注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.
Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.
1.幂的乘方的公式及法则
(1)公式:
(am)n=amn(m、n都是正整数)
〔(am)n〕p=amnp(m、n、p都是正整数)
(2)法则
幂的乘方,底数不变,指数相乘.
2.积的乘方的公式和法则
(1)公式
(ab)n=an·bn(n是正整数)
(abc)n=an·bn·cn(n是正整数)
(2)法则
积的乘方等于每一个因数乘方的积.
上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)
an·bn=(ab)n(n是正整数)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的体积与半径的倍数关系
(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.
(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍
1.同底数幂的除法公式和法则
(1)公式:
am÷an=am-n(a≠0,m、n都是正整数,m>n)
(2)法则:
同底数幂相除,底数不变,指数相减.
注意:满足公式成立的条件.
2.零指数与负指数
规定:a0=1(a≠0)
a-p= (a≠0,p是正整数)
说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去.
.单项式乘单项式
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.
Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.
Ⅲ.结果的次数应等于两个单项式的次数之和.
2.单项式乘多项式
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.
Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.
3.多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.
你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.
Ⅱ.乘的过程中,不要漏掉,注意每项的符号.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
乘方的所有计算法则
认真看一下,所有法则都在这里了,am表示a的m次方,其它类推~~~
同底数幂的乘法公式和法则
(1)公式:
am·an=am+n(m、n都是正整数)
am·an·ap=am+n+p(m、n、p都是正整数)
(2)法则:
同底数幂相乘,底数不变,指数相加.
注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.
Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.
1.幂的乘方的公式及法则
(1)公式:
(am)n=amn(m、n都是正整数)
〔(am)n〕p=amnp(m、n、p都是正整数)
(2)法则
幂的乘方,底数不变,指数相乘.
2.积的乘方的公式和法则
(1)公式
(ab)n=an·bn(n是正整数)
(abc)n=an·bn·cn(n是正整数)
(2)法则
积的乘方等于每一个因数乘方的积.
上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)
an·bn=(ab)n(n是正整数)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的体积与半径的倍数关系
(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.
(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍
1.同底数幂的除法公式和法则
(1)公式:
am÷an=am-n(a≠0,m、n都是正整数,m>n)
(2)法则:
同底数幂相除,底数不变,指数相减.
注意:满足公式成立的条件.
2.零指数与负指数
规定:a0=1(a≠0)
a-p=
(a≠0,p是正整数)
说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去.
.单项式乘单项式
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.
Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.
Ⅲ.结果的次数应等于两个单项式的次数之和.
2.单项式乘多项式
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.
Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.
3.多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.
你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.
Ⅱ.乘的过程中,不要漏掉,注意每项的符号.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
积的平方等于什么
积的乘方等于什么 先把积中的每一个乘数分别乘方,再把所得的幂相乘。可以简记为,积的乘方等于乘方的积。用字母表示为:(a×b)^n=a^n×b^n。
乘方的公式
同底数幂相乘除,原来的底数作底数,指数的和或差作指数。【 a^m*a^n=a^(m+n)】推导:设a^m*a^n中,m=2,n=4,那么a²*a⁴=(a*a)*(a*a*a*a)=a*a*a*a*a*a=a⁶=a²⁺⁴所以代入:a^m*a^n=a^(m+n)用字母表示为:a^m·a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均为自然数)例如:1)15²×15³; 2)3²×3⁴×3⁸; 3)5×5²×5³×5⁴×…×5⁹⁰1)15²×15³=15²⁺³=15⁵2)3²×3⁴×3⁸=3²⁺⁴⁺⁸=3¹⁴3)5×5²×5³×5⁴×…×5⁹⁰=5¹⁺²⁺³⁺…⁺⁹⁰=5⁴⁰⁹⁵ a⁰=1 ,其中a≠0 ,k∈N*推导:a⁰=a¹⁻¹=(a¹)/(a¹)=a/a=1 【 a^(-k)=1/(a^k) 】,其中a≠0,k∈N*推导:a^(-k)=a^(0-k)=(a^0)/(a^k)=1/(a^k) 【 a^[-(m/n)]= 】,其中,a^m≠0( ≠0,a≠0),m/n>0,n≠0,m,n∈N*推导:a^[-(m/n)]=a^(0-m/n)=(a^0)/[a^(m/n)]=1/[a^(m/n)]=1/=分数指数幂时,当n=2k,k∈N*, 且a^m<0时,则该数在实数范围内无意义特别地,0的非正数指数幂没有意义 两数和乘两数差等于它们的平方差。用字母表示为:【(a+b)(a-b)=a²-b²】推导:(a+b)(a-b)=(a+b)a-(a+b)b=(a²+ab)-(b²+ab)=a²-b² (a/b)^k=a^k/b^k证明:(a/b)^k=a^k*b^-k=a^k/b^k 幂的乘方,底数不变,指数相乘。用字母表示为:【(a^m)^n=a^(m×n) 】特别指出:a^m^n=a^(m^n) 积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。用字母表示为:【 (a×b)ⁿ=aⁿ×bⁿ 】这个积的乘方法则也适用于三个以上乘数积的乘方。如:(a×b×c)ⁿ=aⁿ×bⁿ×cⁿ同指数幂乘法同指数幂相乘,指数不变,底数相乘。用字母表示为:(aⁿ)*(bⁿ)=(ab)ⁿ 两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。用字母表示为:【 (a±b)²=a²±2ab+b² 】我们一般把它叫作完全平方公式 。 艾萨克·牛顿发现了二项式。二项式是乘方里的复杂运算。右图为二项式计算法则。一般来说,二项式的各项系数按排列顺序也可以这样表示:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…… …… ……这就是著名的杨辉三角。 (1)负数的偶次幂是正数,负数的奇数幂是负数。( 2)正数的任何次幂都是正数。(3)0的任何正整数次幂都是0。
上一篇:顽主论文研究
下一篇:论文研究悲剧