欢迎来到学术参考网
当前位置:发表论文>论文发表

压制机毕业论文

发布时间:2023-02-24 11:26

压制机毕业论文

毕业设计 可伸缩带式输送机结构设计毕业设计 AWC机架现场扩孔机设计 毕业设计 ZQ-100型钻杆动力钳背钳设计 毕业设计 带式输送机摩擦轮调偏装置设计毕业设计 封闭母线自然冷却的温度场分析 毕业论文 轿车变速器设计 毕业论文 复合化肥混合比例装置及PLC控制系统设计毕业论文 起重机总体设计及金属结构设计毕业论文 四杆中频数控淬火机床的设计制造 毕业论文 撑掩护式液压支架总体方案及底座设计 毕业论文 支撑掩护式液压支架总体方案及立柱设计 毕业论文 膜片弹簧的冲压工艺及模具设计 机械设计课程设计 带式输送机说明书和总装图 课程设计 X-Y数控工作台 毕业设计 ZFS1600/12/26型液压支架掩护梁设计 毕业设计 运送铝活塞铸造毛坯机械手设计 毕业设计 上料机液压系统设计 毕业设计 冲压废料自动输送装置 课程设计 设计一卧式单面多轴钻孔组合机床液压系统 毕业论文 WY型滚动轴承压装机设计 毕业设计论文 经济型数控车床纵向进给运动设计及润滑机构设计 毕业设计论文 J45-6.3型双动拉伸压力机的设计气动通用上下料机械手的设计——机械结构设计毕业设计 水电站水轮机进水阀门液压系统的设计毕业设计 63CY14-1B轴向柱塞泵改进设计 课程设计 设计低速级斜齿轮零件的机械加工工艺规程毕业设计 组合机床改造 毕业设计 普通车床经济型数控改造钩尾框夹具设计(镗φ92孔的两道工序的专用夹具)设计“拨叉”零件的机械加工工艺规程及工艺装备)课程设计 带式输送机传动装置 毕业论文 桥式起重机副起升机构设计毕业论文 桥式起重机小车运行机构设计 课程设计 四工位专用机床传动机构设计 毕业论文 无模压力成形机设计 设计说明书 普通车床主传动系统毕业设计 XK100立式数控铣床主轴部件设计 毕业设计 罩壳设计说明书 设计带式传输机传动装置中的双级斜齿圆柱齿轮减速器 毕业论文 两齿辊破碎机设计 设计“推动架”零件的机械加工工艺及工艺设备 普通式双柱汽车举升机设计63CY14-1B轴向柱塞泵改进设计(共32页,19000字)机电一体化课程设计 线切割机床走丝机构及控制系统设计 基于逆向工程的过程控制系统机电一体化设计 毕业设计 带式输送机的传动装置毕业设计 手柄冲孔、落料级进模设计与制造毕业设计 CA6140车床后托架设计EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 毕业设计 液压拉力器毕业设计 全路面起重机毕业论文 二级圆柱直齿齿轮减速器 玉米脱粒机的设计 毕业设计 连杆孔研磨装置设计注射器盖毕业课程设计说明书旁承上平面与下心盘上平面垂直距离检测装置的设计毕业设计 YZY400全液压压桩机设计(共含论文9篇) 毕业设计 花生去壳机毕业设计 青饲料切割机的设计 毕业设计 颗粒状糖果包装机设计机械设计课程设计 带式运输机传动装置设计机电一体化课程设计 印制板翻板机课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备制定电机壳的加工工艺,设计钻Φ8.5mm孔的钻床夹具壳体零件机械加工工艺规程制订及第工序工艺装备设计 毕业设计 CG2-150型仿型切割机毕业设计 D180柴油机12孔攻丝机床及夹具设计 V带—单级圆柱减速器毕业设计 单拐曲轴零件机械加工规程设计说明书 液压传动课程设计 全自动方便面压制机液压系统设计 机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 课程设计 解放汽车第四速及第五速变速叉加工工艺设计课程设计 轴零件的机械加工工艺规程制定 毕业设计 中直缝焊接机 粉末压力成型机传动系统的设计 毕业设计 C616型普通车床改造为经济型数控车床毕业设计 普通钻床改造为多轴钻床 毕业设计 液压控制阀的理论研究与设计 课程设计 用于带式运输机的一级齿轮减速器 课程设计 带式运输机的传动装置 毕业设计 保持架 毕业设计 钟形壳 机械制造技术基础课程设计说明书 C6410车床拨叉、卡具设计CA6140C车床拨叉工艺,设计铣18mm槽的铣床夹具CA6140C车床杠杆工艺,设计钻直径12.7的孔的钻床夹具 CA6140C车床杠杆的加工工艺,设计钻φ25的钻床夹具CA6140车床拨叉的加工工艺,设计钻φ25孔的钻床夹具 CA6140车床拨叉的加工工艺,设计车圆弧车床夹具 设计“拨叉”零件的机械加工工艺及工艺装备制定后钢板弹簧吊耳的加工工艺,设计铣4mm工艺槽的铣床夹具 制定后钢板弹簧吊耳零件的加工工艺,设计钻?37孔的钻床夹具 制定拨叉零件的加工工艺,设计铣30×80面的铣床夹具 制定CA6140C车床拨叉的加工工艺,铣8mm槽的铣床夹具毕业设计 采煤机的截割部设计 毕业设计 大功率减速器液压加载试验台机械系统设计毕业设计 大流量安全阀课程设计 设计皮带式输送机传动装置的一级圆柱齿轮减速器 毕业设计 刨煤机传动系统及缓冲装置的设计毕业设计 刨煤机的截割部设计及滑靴设计数据库实验指导课件毕业设计 马达盖设计CA6140车床后托架的加工工艺,设计钻孔的钻床夹具 制定机械密封装备传动套加工工艺,铣8mm凸台的铣床夹具 CA6140法兰盘的加工工艺,设计钻φ6mm孔的钻床夹具毕业设计 单拐曲轴工艺流程毕业设计 壳体机械加工工艺规程 毕业设计 连杆机械加工工艺规程 课程设计 二级圆柱齿轮减速器 毕业设计(论文) 座板的机械加工制造 机械设计课程设计 卷筒输送机减速器机械设计课程设计说明书 减速机设计子程序在冲孔模生产中的运用编制数控加工(1#-6#)标模点孔程序 毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 “减速器传动轴”零件的机械加工工艺规程(年产量为5000件)机械制造工艺与机床夹具课程设计 推动架的工装设计 五吨电弧炉下部外壳机械加工制造——编制机械加工工艺圆锥-圆柱齿轮减速器装配图及其零件图 二级直齿圆柱齿轮减速器装配图及其零件图 蜗轮蜗杆减速器装配图及其零件图斜齿圆柱齿轮减速器装配图及其零件图 毕业设计 粗镗活塞销孔专用机床及夹具设计课程设计 带式输送机传动装置设计 毕业论文 塑料箱体锁扣的设计 毕业论文 材料成型综合实验报告书 毕业设计(论文)说明书 中单链型刮板输送机设计 课程设计 杠杆的加工 毕业设计 HFJ6351D型汽车工具箱盖单型腔注塑模设计 数控专业毕业论文 数控铣削编程与操作设计 课程设计 填料箱盖夹具设计毕业设计(论文) 立轴式破碎机设计 毕业设计 GKZ高空作业车液压和电气控制系统设计毕业设计 高空作业车液压系统设计 毕业设计 高空作业车工作臂结构设计及有限元分析毕业设计 工程网架结构参数化建模和动力特性分析 毕业设计 高空作业车的转台结构设计及有限元分析 毕业设计论文(说明书) 无轴承电机的结构设计 机械设计基础课程设计 一级蜗轮蜗杆减速器 钢板弹簧吊耳的加工工艺,设计钻?30工艺槽的铣床夹具设计“CA6140车床”拨叉零件的机械工艺规程及工艺装备机电一体化课程设计 CA6140车床开环纵向系统设计 江阴职业技术学院毕业设计说明书 带传动减速器设计机械设计课程设计 热处理车间零件清洗用传送设备的传动装置课程设计 拨叉零件的工艺规程及夹具设计 机械制造工艺学课程设计 法兰盘机加规程设计(附零件图) 课程设计说明书 车床手柄座加工夹具设计 《机械设计》课程设计设计说明书 单级蜗杆减速器机械设计课程设计计算说明书 圆锥—圆柱齿轮减速器毕业论文 数控铣高级工零件工艺设计及程序编制 毕业论文 数控铣高级工心型零件工艺设计及程序编制 2007届毕业生毕业设计 机用虎钳设计 毕业设计 电织机导板零件数控加工工艺与工装设计毕业设计 连杆的加工工艺及其断面铣夹具设计毕业设计 茶树重修剪机械设备 一级直齿圆柱齿轮减速器的设计课程设计报告毕业论文 QY40型液压起重机液压系统设计计算 毕业设计(论文) C6136型经济型数控改造(横向) Z3050摇臂钻床预选阀体机械加工工艺规程及镗孔工装夹具设计毕业设计 WY型滚动轴承压装机设计毕业设计 普通机床的数控改造 数控专业课课程设计 X-Y数控工作台设计毕业设计 液压台虎钳设计荆门职业技术学院课程设计 设计星轮零件的机械加工工艺规程机械设计基础课程设计 设计带式输送机的传动装置毕业设计说明书 新型手电筒设计ML280螺旋钻采煤机推进机构的设计毕业设计 二级直齿轮减速器设计毕业设计论文 电动车产品造型设计活动钳口零件的机械加工工艺规程及专用夹具设计 毕业设计 心型台灯塑料注塑模具设计 毕业设计 平面关节型机械手设计 毕业设计 三自由度圆柱坐标型工业机器人毕业设计 XKA5032A/C数控立式升降台铣床自动换刀设计 本科生毕业论文(设计)书 经济型数控系统研究与设计机械制造工艺学课程设计说明书 设计“轴”零件的机械加工工艺规程(年产量为4000件设计一用于带式运输机上的传动及减速装置XX轻工职业技术学院毕业设计 管座及其加工模具的设计毕业设计 四通管接头的设计XK 5040数控立式铣床及控制系统设计毕业设计(论文) 行星减速器设计三维造型虚拟设计分析T108吨自卸车拐轴的断裂原因分析及优化设计毕业设计(论文) 柴油机曲轴断裂分析毕业设计(论文) 柴油机曲轴失效分析毕业设计(论文) 超声波发生器与换能器的匹配设计 毕业设计(论文) 齿轮油泵轴的失效分析及优化设计毕业设计(论文) 电机轴的失效分析和优化设计 毕业设计(论文) T68镗床的控制系统的改造 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 毕业设计论文 双活塞液压浆体泵液力缸设计标准减速器总图 毕业设计论文 关节型机器人腕部结构设计 陕西科技大学课程设计说明书:数控车床纵向进给系统设计AutoCAD 2002 三维绘图教程 水泵的各种样式详图齿轮减速器CAD图库标准减速器总图 制定小轴的机械加工工艺规程 q 348414338

150分求“机电一体化”相关论文至少5000字 被采用追加再100分

课题名称四柱压力机的设计(电子控制)

姓 名 陈晨
学 号 060503350715
专 业 机电一体化
班 级 06机电
指导老师 曹晓冶

2009年 03 月

目录
1. 课题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1
2. 课题简介 技术要求及设计参数
3. 油压机的介绍
4.设计前油压机是电机厂的专用设备。
5.油压机的总体结构及油压机压制工安全操作规程。
6.总体设计对液压缸的要求
7.液压缸的密封
8.油缸的缓冲和排气
9.液压控制原理图及油器和阀类压力顺损失分析
10.电控设计
11.课程总结
12.设计总结
13.参考资料
14.毕业实习报告

一. 设计课题 四柱液压机
二. 课题简介 具体要求及主要参数
四柱压力机为中型油压机。一般用于成型压力机针对电机厂压轴的要求进行设计。利用液腔、电控装置采用四轴单缸散梁的 结构,力求工作平稳效率等、操作方便。
具体要求、主要参数。
1. 四柱式下压结构、活动横梁上下运动,为方便于吊梁起见,有手动小车及卸载导轨。
2. 压机公称压。40吨
3. 活动横梁行程。600mm
4. 活动横梁下行速度。17mm/s
5. 电机效率。7.5kw左右
6. 活动横梁返回速度。50mm/s
7. 油缸公称压力 P=250kgf/cm
8. 选用10YcY14-1。柱塞变量泵
三. 油压机的介绍
油压机由主机及控制机构两大部分组成。油压机主机部分包括机身、主缸、顶出缸及充液装置等。动力机构由油箱、高压泵、低压控制系统、电动机及各种压力阀和方向阀等组成。动力机构在电气装置的控制下,通过泵和油缸及各种液压阀实现能量的转换,调节和输送,完成各种工艺动作的循环。油压机是电机厂的专用设备,是将转子的轴压进转子中。
(1)油压机的分类
利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。油压机按结构形式现主要分为:四柱式油压机、单柱式(C型)油压机、卧式油压机、立式框架油压机等。
(2) 油压机的用途
主要分为金属成型液压机、折弯液压机、拉伸液压机、冲裁液压机、粉未(金属,非金属)成型液压机、压装液压机、挤压液压机等
(3) 油压机工作原理
液压传动是利用液体压力来传递动力和进行控制的一种传动方式. 液压装置是由液压泵,液压缸(液压马达等执行机构),液压控制阀和液压辅助元件
液压泵:将机械能转换成液压能的转化装置.
液压缸(液压马达等执行机构):将液压能转化为机械能.
控制阀:控制液压油的流量,流向,压力,液压执行机构的工作顺序等及保护液压回路作用.讲的通俗一点就是控制和调节液压介质的流向,压力和流量.从而控制执行机构的运动方向,输出的力或力矩.运动速度.动作顺序,以及限制和调节液压系统的工作压力,防止过载等作用(如单向阀,换向阀,溢流阀,减压阀,顺序阀,节流阀.调速阀等)
辅助元件:1、油箱:用来储油,散热.分离油中空气和杂质作用 2、油管及油管接头 3、滤油器 4、压力表 5、密封元件
四. 设计前油压机是电机厂的专用设备。
为了更好的地完成设计课题。我们多次前往南通电机厂实地参观参考仔细了解了工作全过程。
1. 活动横梁起动,并以17mm/s速度下行。
2. 当活动横梁压入转子时,吨位加大导致转子的轴压入转子。
3. 到位后,活动横梁速度为零。瞬间的停止谓之保持状态。
4. 活动横梁回程运动,以吨位50mm/s速度上行,完成一个工件的工作过程。另外,我们也对其他压力机有了较为详尽的了解参阅有关情报资料,为设计油压机打下基础。
五.油压机的总体结构及油压机压制工安全操作规程。
油压机一般有主体(主机)操作系统及泵站等三大部分组成。
泵站为动力源,供给液压机各执行结构以及控制机构予以高压液体。操作系统属于控制结构,它通过控制工作液体流向来使各执行机构按工艺要求完成应有的动作,本体为液压机执行机构。
总体布局:按照工艺要求,液压机三面须留有1米的观察空间,以观察工件的渗透情况。根据此要求,泵站布置在距主机1米处,油管从上面横跨于主机于液压站之间高度大于2米油管安装应设置支架。液压站上压力表应正对操作者安装,便于观察。
外购件油压缸安装时也要避开此空间。
在主机的一面安装有工作台等高的相互垂直的输送滚道,用于减轻工人的劳动强度,提高劳动生产率。
液压站和邮箱为一体,方便于散热、液压站应安装在通风良好之处。
电气控制盒的安装应便于操作工人的操作。
油压机压制工安全操作规程:
1.操作者应熟悉油压机的一般性能和结构,禁止超负荷使用。 2.使用前,应按规定润滑加油,检查高压泵、压力表、各种阀、密封圈等是否正常。 3.开机前,应检查模具是否配套,料重是否符合要求,称料工具是否准确。 4.压制时,摸具必须放在垫板中心位置,禁止偏心使用。每班开机前,试压后,应检查一次模具是否有裂损。 5.多人操作时,要有专人开机,相互协调配合。 6.严禁将手,头置于模具与压头之间。 7.工作完毕,应将压制品、工具、模具整理好并放到指定地方。
六.总体设计对液压缸的要求
要求油缸竖直放置,并与上横梁固定。活塞杆上下运动。活塞杆行程达600mm。总体设计还要求缸筒与端盖固定。结构尽量减少。这样子以不产生油压机头重脚轻的弊病使其整体结构美观。
液压缸的作用在于把液体压力能转换为机械能。
液压缸通常分为柱塞式、活塞式盒差动柱塞式三种。按运动方式分为推力油缸,摆动油缸,利用油液压力推动缸中活塞正反方向运动的油缸,称“双作用油缸”其中常用有双活塞式、齿条活塞式及伸缩套简式。
根据设计要求,泵用双作用单活塞杆式油缸。这种油缸的特点在于活塞两端的有效面积不等,而构成的密封容积腔的大小不同。如果以相同流量的压力油分别进入左腔盒右腔。活塞移动的速度盒进油腔的有效面积成反比,也就是说油液进入有效面积大的一端速度来得小,而相反,油液进入有效面积小的一端速度却要快些。由此得出结论:活塞上产生的最大推力与进油腔的有效面积成反比。
七.液缸的密封
油缸中的压力油可能通过固定部件的联接处及相对运动部件的配合处渗漏,渗漏使液压缸的容积效率降低盒油液发热外泄露还会污染工作场所。泄露严重时会影响液压缸的 工作性能,甚至使液压缸不能正常工作。所以必须采用密封装置。而且,密封装置还有防止空气和污染物侵入的作用。
密封性能的好坏直接影响油缸的性能和效率。要求密封性能在一定工作压力下具有良好性能。具有能随压力升高自动提高,使泄露不致用压力升高而显著增加,还要求密封装置造成的摩擦阻力小,不使相对运动的零件卡死,或造成运动不均匀现象。此外,还要求密封件有良好的耐磨性,即保证足够使用寿命。密封件与液压缸有良好的相合性,结构简单。
对设计的液压缸中,活塞与活塞杆处,上端盖与缸筒导向套与缸筒接触处均导用O型密封圈。因为它与基面油液有良好的相合性,结构简单,密封性能好,摩擦力小,它的摩封性能随压力的增加而提高。缺点是当压力较高时,或者沟槽选择不当时,密封圈易被挤出而造成磨损。因此,在设计中,我在O型密封圈侧面放置挡圈。
O型密封圈安装时,要有一定的预压缩量。(本液压缸采用20*机油)
对于活塞与缸筒导向套盒活塞杆的密封采用Y型密封还是V型密封圈。从密封圈的摩擦阻力看,V型密封圈的摩擦阻力,比Y型大得多,从密封圈结构看,V型密封圈由支承环、密封环、压环三部分叠合而成。而Y型密封圈结构较简单,因此,本液压缸采用“Y”型密封圈。“Y”型也是随压力增大而域压愈紧。
密封圈用聚氨酯浇注模压而成,能耐油、耐磨、耐高压。
八.油缸的缓冲盒排气
当油缸带动质量较大的移动部件以较快速度运动时。因为惯性力较大。具有很大的动量,使行程终了时,活塞与缸盖发生撞击,造成液压冲击盒噪音,引起破坏性事故或严重影响精度,为此,大型高速高精度的油缸常带有缓冲装置。
氧化物。腐蚀液压装置的零件,为了及时排除积存在油缸内的空气,油液最好从油缸的最高点进入和引出。要去高的油缸,常在油缸两端分别装一只排气塞。
本油缸,行程较短,速度不太高,它是转子压轴专用,目的是将转子的轴压入转子,靠轴上和压轴肩限位,到位以后,压不动为止。基于以上原因,这台油压机的设计,缓冲装置和排气阀没有采用。
九.液压控制原理图及速回油路和阀类损失分析
1. 液压系统工作原理如图(见第 页).
原理简析:液压系统中有两个泵,泵是一个高压,大流量恒功率的变量泵。最高工作压力为315kgf/cm2。其压力通过远程调压阀国定。辅助泵2是一个低压小流量的定量泵,主要用以供给电磁阀,液动的控制压力油,其压力由溢流阀22调整。
<1>主缸运动
①下行压制
按下按钮电磁阀YA通电,电磁阀18处于右座,泵2供油径18至液动阀17,17在液控压力油的作用下处于送至单向阀14,然后送至主缸上腔,而主缸下腔的油径单向顺序阀<11.1>组合从17右位至单向阀15然后回到上腔因滑块自重快速下行而造成的上腔真空。
②保压
当主缸上腔的油压达到预定值,压力继电器16发出信号,使电磁铁YA1断电,阀18回复中位,于是阀17失去控制,油压力17也回复中位,此时,油缸上,下腔油路都被封闭。
③泄压回程
保压过程结束时间继电器发生信号使电磁铁YA2通电,<当定程压制时,由行程开关SQ2发信号>使电磁铁18处于左位控制回程由泵2油提供的压力油径18左位送至17,使17处于左位泵与供油径17的右位送至主缸下腔,而上腔的通过液控单向阀14流至17,然后回到油箱。
④停止
当按下电控系统的停止按钮(定位状态时,挡铁压下行程开关SQ1)电磁铁YA2断电主缸被阀17所紧(17已回复中位)停止运动,回程结束,此时,应将溢流阀的压力值调大,以防止活塞滑块因自重而下滑11.12组成单向顺序阀,此处作为平衡回路。
<2>顶处缸
① 顶出
按下启动按钮YA3通电吸和,电磁阀19处于左位,泵2供油径19的左位至20,使液动阀20处于左位,则泵5供油从20的左位送至顶出缸下腔,而其上腔的油径20的左位回到油箱。
② 退回
YA3断电YA4吸和,油路换向,顶出缸活塞下降。
2. 速回油路和阀类压力损失分析
根据液压原理图和速回油路管道及阀类元件的压力损失,液压系统的压力损失是:
(1) 管路系统的压力损失
因为实际液压系统中,其管道往往是一般一段的直管。通过一定方式连接。此外,为了控制、测量和其他需要,还要在管道上安装控制阀和其他元件。这样除了y
沿程损失外。液体流过各接头、阀门等局部时会产生撞击,漩涡流等现象,导致一定的能量损失。
(2) 进油路压力损失
(3) 阀类的局部压力损失
根据液压系统进行分析,经对此获知总压力损失与原假设总压力损失相差不大。因为液压缸的工作压力与假设最大工作压力相差不大,所以不必对泵设计进行修正。
十.电控设计
可编程序控制器的设计
的概述
PLC使在传统的继电器—接触器控制的基础上,总结先进的微机技术发展起来的新型工业控制装置。PLC把计算机的功能完善通用,灵活的特点与继电接能控制的简单,直观价格便宜等特点结合起来,形成以微机技术为核心的电子控制设备。
PLC接受由操作面上的按钮开关,选择开关,数字开关等给出的主令输入信号及表示设备状态的限位开关光电开关等。传感器送来的输入信号。去控制如电磁阀,马达,电磁离合器等驱动性负载及指示灯,数字显示器性负荷。
PC使一种小类的可靠性极高的智能控制工具,是各种自动控制系统中的核心部件。小电磁阀,导向阀等小型负载可由可编程控制器直接驱动,而三相马达。大容量电磁阀等大负载则需要通过接能器或中间继电器的驱动。可编程控制器的内部结构。
PC采用以微型计算机为核心的电子线路。它可等效地看成普通继电器定时器计时器等组成的综合件。
PC中的输入继电器由接通输入端的外部开关来驱动。
PC中的输出继电器除提供外部输出接触点外,还有多种内部辅助点供编程使用。
PC的内部部件还有:
定时器(T) 计算器(C)
辅助继电器(M) 状态寄存器(S)功能块线圈(F)等,这些元件都有许多供编器,使用的 常开触头和常闭触头,可在编程控制器内部使用,
机型选择:
F系列可编程控制器是输入输出点数12~120点的 小型专用,可编程控制器,具有优异的技术性能,尤其突出了容易操作和方便应用的 特点,
考虑本设计中将用到将近30个输出接点,我们选择F—30MR(共30个 点)输入输出元件号,
输入继电器
401—407,410—413,11点
500—503,510 5点
输出继电器 基本单位
430—437 8点
450—451 2点 400
特殊辅助继电器(本设计所需的)
M71 初始化脉冲
M574 禁止状态转移
2.本设计PC控制的具体运行情况
(一)工作方式
1.调整(点,动) 2,手动
3,单循环 4,自动
(二)输入输出点安排
1,旋钮开关(规范选择)
调整*500 手动*501
单循环*502 自动*503
2.现场器件(按钮)
输入点:SQ3(顶缸上限接近开关)*401
SQ4(顶缸下限接近开关)*403
SB6(主缸下行起动开关)*404
SB7(主缸上行启动开关)*404
SP(压力继电器)*407
SQ1 (主缸上行接近开关)*410
SQ2(主缸上行接近开关)*411
SQ8(顶缸顶出起出开关)*412
SB9(顶缸退回开关)*413
SB3(PC停止开关)*402
SB4(PC传动开关)*510
输出点:
YA1(电磁铁KA1)Y430 接显示灯 Y434
YA2(电磁铁KA3) Y431 Y435
YA3(电磁铁KA4) Y432 Y436
YA4(电磁铁KA5) Y433 Y437
KT1 T450
KT2 T451
三.整体程序机构图

四.操作面板
五.各部分程序及说明
1.主控程序的设计(见PC图)
主控程序包括以下程序:
(1) 状态的初始化程序。
(2) 状态的转移起劲。
(3) 状态的转移禁止。

(1) 初始化说明
当开机第一个扫描周期,MT1即对S600复位,做好状态传递的准备。
单循环状态时,X502即对S600复位。
当PC处于调整(X500)手动状态(X501)将600复位。
当PC位调整及手动状态时或开机后一个工作周期,可利用功能指令将S601~S606全部复位。
(2) 转移启动说明
当按下启动按钮X405时,中间继电器M100接通、执行转移启动命令,PC运行一个周期,单周期传送停止。
(3) 状态转移禁止说明
当按下停止按钮X402,特殊辅助继电器M574指定用于禁止状态转移。所有状态转移均被禁止。同样在调整手动状态下禁止状态转移。只有当手动,调整复位后再按启动按钮使M101产生脉冲解除禁止。当PC运行单循环和自动时,按停机按钮,M574自锁,停止在当前过程,当按循环启动按钮时,从该过程开始动作。
2. 调整及手动程序设计(见PC图纸)
说明:(1)无论在调整还是手动状态,程序执行跳转指令CTP700~E3P700间的内容。(2)当手动时,输出Y430~Y433均执行自锁功能。
3. 单循环及自动循环程序设计
(1) 功能图
(2)
(3) 程序图(见PC图纸)
依照梯形图(见A2图纸PC控制梯形图)
设计整体程序如下:
1. LD M71
2. OR X502
3. S S600
4. LD X500
5. OR X501
6. R S600
7. LD X500
8. OR M71
9. OR M71
10. OUT F671
11. K 601
12. OUT F672
13. K 606
14. OUT F670
15. K 103
16. LD X510
17. OUT M100
18. LD X510
19. PLS M101
20. LD X402
21. OR X500
22. OR X501
23. OR M71
24. OR M574
25. ANT M101
26. OUT M574
27. LDI X500
28. ANI X501
29. CJP 700
30. LD X501
31. AND Y430
32. OR X404
33. ANI X411
34. ANI Y431
35. OUT Y430
36. LD X501
37. AND Y431
38. OR X405
39. ANI Y410
40. ANI Y430
41. OUT Y431
42. LD X501
43. AND Y432
44. OR X412
45. ANI X401
46. ANI Y433
47. AND X410
48. OUT Y432
49. LD X501
50. AND Y433
51. OR X413
52. ANI X403
53. ANI Y432
54. AND X410
55. OUT Y433
56. EJP 700
57. STC S600
58. AND X410
59. AND X403
60. AND M100
61. S S601
62. STL S601
63. OUT Y430
64. OUT Y434
65. LD X407
66. S S602
67. LD X411
68. S S603
69. STC S602
70. OUT T450
71. K 60
72. LD T450
73. S S603
74. STC S603
75. OUT Y431
76. OUT Y435
77. LD X410
78. S S604
79. STC S604
80. OUT Y432
81. OUT Y436
82. LD X410
83. S S608
84. STC S605
85. OUT T451
86. K 300
87. LD T45
88. S S606
89. STC S606
90. OUT Y433
91. OUT Y437
92. LD X403
93. AND X502
94. S S600
95. LD X403
96. AND X503
97. S S601
98. RET
99. END

十二.课程总结
通过这次毕业设计。我学到了平时在课堂学不到的知识。培养了我们灵活运用所学知识,时一次综合性的实践过程。不仅提高了 我们的动手实践能力。还使我进一步提高了分析和解决工程技术。问题的能力,进一步掌握了设计程序,规范和方法,树立正确的设计思想(安全第一,制造容易,使用方便,外形美观)。从而巩固、扩大、深化了所学的基本理论。基本知识和基本技能,提高了制图、计算、编写说明书的能力以及正确使用技术资料、标准手册等工具书籍的能力。
在整个设计过程中,我一直保持着严肃认真,一丝不苟和实事求是的工作之风。这次我设计的是油压机中油缸部分,由于对这方面知识掌握得还不十分充足,所以设计中若有错误和不妥之处,务必请指导老师批评指正,以使得我能够进一步完善油缸设计方案。

挖掘机液压方面的论文

  一 绪论
  1.1 液压传动与控制概述
  液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。
  第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。

  在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。
  在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。
  另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。
  总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。
  1.2 液压机的发展及工艺特点
  液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。
  作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。
  近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。
  液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。
  由于需要进行多种工艺,液压机具有如下的特点:
  (1) 工作台较大,滑块行程较长,以满足多种工艺的要求;
  (2) 有顶出装置,以便于顶出工件;
  (3) 液压机具有点动、手动和半自动等工作方式,操作方便;
  (4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;
  (5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。

  二 150t液压机液压系统工况分析
  本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

  2.2 工况分析
  本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。
  1.工作负载 工件的压制抗力即为工作负载:
  2. 摩擦负载 静摩擦阻力:
  动摩擦阻力:
  3. 惯性负载

  自重:
  4. 液压缸在各工作阶段的负载值:
  其中: ——液压缸的机械效率,一般取 =0.9-0.97。工况 负载组成 推力 F/

  2.3负载图和速度图的绘制:
  负载图按上面的数值绘制,速度图按给定条件绘制,如图:

  三 液压机液压系统原理图设计
  3.1 自动补油的保压回路设计
  考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。
  自动补油的保压回路系统图的工作原理:
  按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。

  3.2 释压回路设计:
  释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。
  根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。
  机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。

  3.3液压机液压系统原理图拟定

  上液压缸工作循环
  (1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为:
  液压缸上腔的供油的油路
  变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15
  液压缸下腔的回油路
  液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱
  油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。
  (2) 保压时的油路情况:
  油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。
  (3) 回程时的油路情况:
  液压缸下腔的供油的油路:
  变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔
  液压缸上腔的回油油路:
  液压腔的上腔——液控单向阀14——副油箱13
  液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱
  油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。
  下液压缸的工作循环:
  向上顶出时,电磁铁4YA通电,5YA失电。
  进油路:
  液压泵——换向阀19左位——单向节流阀18——下液压缸下腔
  回油路:
  下液压缸上腔——换向阀19左位——油箱
  当活塞碰到上缸盖时,便停留在这个位置上。
  向下退回是在4YA失电,3YA通电时产生的,
  进油路:
  液压泵——换向阀19右位——单向节流阀17——下液压缸上腔
  回油路:
  下液压缸下腔——换向阀19右位——油箱
  原位停止是在电磁铁3YA,4YA都断电,换向阀19处于中位时得到的。

  四 液压系统的计算和元件选型
  4.1 确定液压缸主要参数:
  按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积 应为有杆腔工作面积 的6倍,即活塞杆直径 与缸筒直径 满足 的关系。
  快进时,液压缸回油路上必须具有背压 ,防止上压板由于自重而自动下滑,根据《液压系统设计简明手册》表2-2中,可取 =1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降 存在,有杆腔的压力必须大于无杆腔,估计时可取 ,快退时,回油腔是有背压的,这时 亦按2Mpa来估算。
  1) 计算液压缸的面积
  可根据下列图形来计算

  —— 液压缸工作腔的压力 Pa
  —— 液压缸回油腔的压力 Pa
  故:

  当按GB2348-80将这些直径圆整成进标准值时得: ,
  由此求得液压缸面积的实际有效面积为:

  2) 液压缸实际所需流量计算
  ① 工作快速空程时所需流量

  液压缸的容积效率,取

  ② 工作缸压制时所需流量

  ③ 工作缸回程时所需流量

  4.2液压元件的选择
  4.2.1确定液压泵规格和驱动电机功率
  由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为 ,考虑到进出油路上阀和管道的压力损失为 (含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为

  上述计算所得的 是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力 应满足:

  液压泵的最大流量应为:

  式中 液压泵的最大流量
  同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量 。
  系统泄漏系数,一般取 ,现取 。

  1.选择液压泵的规格
  由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:
  1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是( ) ,最高可以达到 。
  2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。
  3) 改变柱塞的行程就能改变流量,容易制成各种变量型。
  4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。
  根据以上算得的 和 在查阅相关手册《机械设计手册》成大先P20-195得:现选用 ,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率 ,重量71kg,容积效率达92%。
  2.与液压泵匹配的电动机的选定
  由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。 液压泵的总效率。柱塞泵为 ,取 0.82。

  选用1000r/min的电动机,则驱动电机功率为
  选择电动机 ,其额定功率为18.5KW。

  4.2.2阀类元件及辅助元件的选择
  1. 对液压阀的基本要求:
  (1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。
  (2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大
  2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格
  主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:

  序号 元件名称 估计通过流量
  型号 规格
  1 斜盘式柱塞泵
  156.8 63SCY14-1B 32Mpa,驱动功率59.2KN
  2 WU网式滤油器 160 WU-160*180 40通径,压力损失 0.01MPa

  3 直动式溢流阀 120 DBT1/315G24 10通径,32Mpa,板式联接
  4 背压阀 80 YF3-10B 10通径,21Mpa,板式联接
  5 二位二通手动电磁阀 80 22EF3-E10B
  6 三位四通电磁阀 100 34DO-B10H-T 10通径,压力31.5MPa
  7 液控单向阀
  80 YAF3-E610B 32通径,32MPa
  8 节流阀
  80 QFF3-E10B 10通径,16MPa
  9 节流阀
  80 QFF3-E10B 10通径,16MPa
  10 二位二通电磁阀
  30 22EF3B-E10B 6通径,压力20 MPa
  11 压力继电器
  - DP1-63B 8通径,10.5-35 MPa12 压力表开关
  - KFL8-30E 32Mpa,6测点
  13 油箱

  14 液控单向阀 YAF3-E610B 32通径,32MPa
  15 上液压缸

  16 下液压缸

  17 单向节流阀
  48 ALF3-E10B 10通径,16MPa
  18 单向单向阀
  48 ALF3-E10B 10通径,16MPa
  19 三位四通电磁换向阀 25 34DO-B10H-T
  20 减压阀 40 JF3-10B

  4.2.3 管道尺寸的确定
  油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P=31.25MPa , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。
  尼龙管用在低压系统;塑料管一般用在回油管用。
  胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。
  1. 管接头的选用:
  管接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。
  管接头的种类很多,液压系统中油管与管接头的常见联接方式有:
  焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。
  液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。
  国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。
  2. 管道内径计算:
  (1)
  式中 Q——通过管道内的流量
  v——管内允许流速 ,见表:
  允许流速推荐值
  油液流经的管道 推荐流速 m/s
  液压泵吸油管

  液压系统压油管道 3~6,压力高,管道短粘度小取大值
  液压系统回油管道 1.5~2.6

  (1). 液压泵压油管道的内径:
  取v=4m/s

  根据《机械设计手册》成大先P20-641查得:取d=20mm,钢管的外径 D=28mm;
  管接头联接螺纹M27×2。

  (2). 液压泵回油管道的内径:
  取v=2.4m/s

  根据《机械设计手册》成大先P20-641查得:取d=25mm,钢管的外径 D=34mm;
  管接头联接螺纹M33×2。
  3. 管道壁厚 的计算

  式中: p——管道内最高工作压力 Pa
  d——管道内径 m
  ——管道材料的许用应力 Pa,
  ——管道材料的抗拉强度 Pa
  n——安全系数,对钢管来说, 时,取n=8; 时,
  取n=6; 时,取n=4。
  根据上述的参数可以得到:
  我们选钢管的材料为45#钢,由此可得材料的抗拉强度 =600MPa;

  (1). 液压泵压油管道的壁厚

  (2). 液压泵回油管道的壁厚
  所以所选管道适用。
  4. 液压系统的验算
  上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。
  但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。4.2.4系统温升的验算
  在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。
  当V=10mm/s时,即v=600mm/min

  即
  此时泵的效率为0.9,泵的出口压力为26MP,则有

  即
  此时的功率损失为:

  假定系统的散热状况一般,取 ,
  油箱的散热面积A为

  系统的温升为

  根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50
  所以验算表明系统的温升在许可范围内。

  五 液压缸的结构设计
  5.1 液压缸主要尺寸的确定
  1) 液压缸壁厚和外经的计算
  液压缸的壁厚由液压缸的强度条件来计算。
  液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。
  液压缸的内径D与其壁厚 的比值 的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算

  设 计 计 算 过 程
  式中 ——液压缸壁厚(m);
  D——液压缸内径(m);
  ——试验压力,一般取最大工作压力的(1.25~1.5)倍 ;
  ——缸筒材料的许用应力。无缝钢管: 。
  = =22.9
  则 在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。
  液压缸壁厚算出后,即可求出缸体的外经 为2) 液压缸工作行程的确定
  液压缸工作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅<<液压系统设计简明手册>>P12表2-6中的系列尺寸来选取标准值。
  液压缸工作行程选
  缸盖厚度的确定
  一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。
  无孔时
  有孔时
  式中 t——缸盖有效厚度(m);
  ——缸盖止口内径(m);
  ——缸盖孔的直径(m)。
  液压缸:
  无孔时
  取 t=65mm

  有孔时
  取 t’=50mm
  3)最小导向长度的确定
  当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度(如下图2所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。
  对一般的液压缸,最小导向长度H应满足以下要求:
  设 计 计 算 过 程

  式中 L——液压缸的最大行程;
  D——液压缸的内径。
  活塞的宽度B一般取B=(0.6~10)D;缸盖滑动支承面的长度 ,根据液压缸内径D而定;
  当D<80mm时,取 ;
  当D>80mm时,取 。
  为保证最小导向长度H,若过分增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即

  滑台液压缸:
  最小导向长度:
  取 H=200mm
  活塞宽度:B=0.6D=192mm
  缸盖滑动支承面长度:

  隔套长度: 所以无隔套。
  液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。
  液压缸:
  缸体内部长度
  当液压缸支承长度LB (10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。
  5.2 液压缸的结构设计
  液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。
  设 计 计 算 过 程1) 缸体与缸盖的连接形式
  缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
  本次设计中采用外半环连接,如下图1所示:
  图1 缸体与缸盖外半环连接方式优点:
  (1) 结构较简单
  (2) 加工装配方便
  缺点:
  (1) 外型尺寸大
  (2) 缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构
  参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:

  图2 活塞杆与活塞螺纹连接方式
  特点:
  结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。

上一篇:估计论文模板

下一篇:审题论文题目