潘建伟毕业论文
潘建伟毕业论文
北京时间1月7日凌晨,中国科学技术大学潘建伟团队在《自然》杂志上发表了题为“跨越4600公里的天地一体化量子通信网络”的论文,验证了广域量子保密通信技术在实际应用中的条件已初步成熟。
中国科学技术大学教授潘建伟表示:“我们的工作表明,量子通信技术对于大规模的实际应用已经足够成熟。类似地,如果把来自不同国家的国家量子网络合并在一起,并且如果大学,机构和公司聚集在一起以标准化相关协议、硬件等,则可以建立全球量子通信网络。”
全球首个天地一体化量子通信网络
研究团队在量子保密通信京沪干线与“墨子号”量子卫星成功对接的基础上,构建了世界上首个集成700多条地面光纤量子密钥分发(QKD)链路和两个星地自由空间高速QKD链路的广域量子通信网络,实现了地面跨度4600公里的星地一体的大范围、多用户量子密钥分发,并进行了长达两年多的稳定性和安全性测试、标准化研究以及政务金融电力等不同领域的应用示范。
这项研究成果由潘建伟及其同事陈宇翱、彭承志等与中国科学院上海技术物理研究所王建宇研究组、济南量子技术研究院及中国有线电视网络有限公司合作。
“论文是对上述成果的一个系统性总结,证明了广域量子保密通信技术在实际应用中的条件已初步成熟。我国科研人员通过构建天地一体化广域量子保密通信网络的雏形,为未来实现覆盖全球的量子保密通信网络奠定了科学与技术基础。”中国科学技术大学在官方网站上称。
尽管研究论文是一项总结性的工作,但是意义重大。自“墨子号”量子卫星于2016年8月发射以来,研究团队在优化地面站接收光学系统、提高QKD发射系统时钟频率并应用更高效QKD协议的基础上,实现了卫星对地面站的高速量子密钥分发,生成速率比之前的工作高出约40倍;研究团队还成功地将卫星与地面的安全成码距离从1200公里拓展到2000公里,相应的地面站俯仰角跨度可达170 ,几乎可覆盖整个天空。
与传统的加密不同,量子通信被认为是不可破解的,因此银行,电网和其他部门的安全信息传输的未来。量子通信的核心是量子密钥分发(QKD),它使用粒子的量子状态(例如光子)形成一串加密字符串或者密钥,在发送方和接收方之间进行的任何窃听都会更改此字符串或密钥,并立即引起注意。
目前普遍的QKD技术使用光纤进行数百公里的传输,具有很高的稳定性,但对通信信道损耗很大;而利用卫星和地面站之间的自由空间进行千公里级别的传输,将地面光纤和自由空间结合,可以实现大规模、全覆盖的全球化量子通信网络。
根据中国科学技术大学介绍,按通信信道的不同,量子密钥分发主要有光纤和自由空间两种实现方式。光纤QKD技术的信道稳定性较好,可以实现基本恒定的安全码率,在城域城际范围内可以方便的连接到千家万户;在超远距离、移动目标、岛屿和驻外机构等光纤资源受限的场景,可以通过卫星中转的自由空间信道连接。
量子通信网络已接入多个行业领域
2017年9月底正式开通的量子保密通信京沪干线,总长超过2000公里,覆盖四省三市共32个节点,是目前世界上最远距离的基于可信中继方案的量子安全密钥分发干线。研究团队攻关了高速量子密钥分发、高速高效率单光子探测、可信中继传输和大规模量子网络管控监控等系列工程化实现的关键技术。建成后,开展了长达两年多的相关技术验证和应用示范以及大量的稳定性测试、安全性测试及相关标准化研究,同时京沪干线网络的密钥分发量可以支持1.2万以上用户同时使用。
目前该天地一体化量子通信网络已经接入包括金融、电力、政务等150多家行业用户。2019年初,国家电网有限公司基于该网络,建立了跨越2600公里的量子密钥分发信道,实现了电力通信数据加密传输,首次从工程上检验了星地量子通信开展实际业务的可行性。
“本工作发展的相关技术也为量子通信系统小型化、低成本、国产化奠定了基础。”中国科学技术大学方面表示,“最近团队成功研制了重量约百公斤的小型地面站,实现了与墨子号的星地量子密钥分发实验,和国际多个地面站的进行了星地量子密钥分发实验,未来有望进一步做到可单人搬运;同时,在保证密钥分发速率的前提下已经成功研制几十公斤的小型化空间量子密钥分发载荷,这些成果也为形成卫星量子通信国际技术标准奠定了基础。”
根据《自然》论文,未来该团队将与来自奥地利、意大利、俄罗斯和加拿大的国际合作伙伴进一步扩大在中国的网络。他们还将致力于开发小型、经济高效的QKD卫星和地面接收器,以及中高地球轨道卫星,以实现空前的万公里级QKD传输。
另据中国科学技术大学介绍,在天地一体化量子通信网络大量测试结果及标准化研究的基础上,全球三大标准化组织之一ISO/IEC正在基于京沪干线的实践编制国际标准《QKD安全要求、测试与评估方法》,另一国际组织ITU也正基于京沪干线的建设模式起草可信中继安全要求、QKD网络功能架构等国际标准。
潘建伟:下一个量子突破将在五年后发生
光子盒研究院出品
最近, 中国科学技术大学潘建伟、陆朝阳、朱晓波等和西班牙塞维利亚大学Adán Cabello教授合作, 首次实验排除实数形式的标准量子力学。研究人员利用超高精度超导量子线路实现确定性纠缠交换,以超过43个标准差的实验精度证明了实数无法完整描述标准量子力学,确立了复数的客观实在性。
2月3日,西班牙《国家报》[1]报道了对潘建伟院士和Adán Cabello教授的采访。
报道首先回顾了这项中国和西班牙团队合作的研究。去年,一组研究人员在《自然》杂志上[2]提出了一个想法,即基于实数的量子理论的替代方案可以通过实验被证伪。这是量子领域的顶尖科学家潘建伟提出的一项挑战,塞维利亚大学的物理学家Adán Cabello参与了这项挑战。他们的联合研究证明了“复数(例如-1的平方根)在标准量子力学中不可或缺的作用。”这些结果使得使用这种技术的计算机的开发取得了进展,根据Cabello的说法,“在以前无法进入的领域测试量子物理。”
现年51岁的潘建伟1987年毕业于中国科学技术大学,维也纳大学博士研究生,他领导着世界上规模最大、最成功的量子研究团队之一,被诺贝尔物理学奖得主Frank Wilczek称为“自然的力量(a force of nature)”。潘建伟在维也纳大学的论文导师、物理学家Anton Zeilinger补充道:“没有潘建伟,我无法想象量子技术的出现。”
潘建伟在这项研究中的领导地位至关重要。他解释说:“这个实验可以被视为两个玩家之间的 游戏 :实数量子力学和复数量子力学。这个 游戏 是在一个带有四个超导电路的量子计算机平台上进行的。通过发送随机测量基数并测量结果,就可以获得 游戏 分数,该分数是测量基数和测量结果的数学组合。 游戏 规则是,如果 游戏 分数超过7.66分,则排除实数量子力学,我们的工作就是这样。”
这个实验由中国科学技术大学和塞维利亚大学合作进行,并被科学杂志《物理评论快报》[2]报道。它旨在回答一个基本问题:复数对于自然的量子力学描述真的有必要吗?结果排除了标准量子物理中只使用实数的替代方案。
根据潘建伟的说法:“物理学家用数学来描述自然。在经典物理学中,实数似乎可以完整地描述所有经典现象中的物理现实,而复数只是有时被用作一种方便的数学工具。然而,是否需要复数来代表量子力学的理论仍然是个未知数。我们的结果排除了对自然的实数描述,并确立了复数在量子力学中不可或缺的作用。”
Cabello补充道:“这不仅仅是排除一个特定的替代方案,实验的重要性在于,它展示了超导量子比特系统是如何工作的。使我们能够测试量子物理的预测,而这些预测是我们迄今为止进行的实验无法测试的。因为它们需要对几个量子比特进行严格控制。现在我们将能够测试它们。”
中国科学技术大学的陆朝阳教授是这项实验的合著者,他说:“量子计算机最有希望的近期应用是量子力学本身的测试和多体系统的研究。”这一发现不仅为量子计算机的发展提供了一条前进的道路,也为在原子和亚原子水平上理解粒子的行为和相互作用提供了一种接近自然的新途径。
实现拥有拥有数百万量子比特的计算机的目标还有很长的路要走。然而,中国和西班牙团队的研究结果使得扩大现有量子计算机的用途和理解困扰科学家多年的物理现象成为可能。
参考链接:
[1]
[2]
[3]
潘建伟:与量子纠缠的人生
“上帝是否掷骰子”,这个困扰过爱因斯坦的量子物理核心奥秘同样让潘建伟常常凝神思索,在他眉宇间刻出两道深深的沟痕。
从潘建伟第一次认识到量子世界的诡谲离奇到沉迷其中不可自拔已过去20多年。为何会有量子叠加、量子纠缠这些奇异的现象尚无答案,他却一直致力于利用奇异的量子特性来制造不可破译的密码,发展保密通信,研制强大的量子计算机……
世界首颗量子卫星“墨子号”从太空建立了迄今最遥远的量子纠缠,证明在1200多公里的尺度上,爱因斯坦都感到匪夷所思的“遥远地点间的诡异互动”依然存在。作为量子卫星首席科学家的潘建伟还有更大的目标——在地月间建立30万公里的量子纠缠,检验量子物理的理论基础,并 探索 引力与时空的结构。
在很多人眼里,潘建伟是传奇:29岁,他参与的有关量子隐形传态的研究成果,同伦琴发现X射线、爱因斯坦建立相对论等影响世界的重大研究成果一起,被《自然》评为“百年物理学21篇经典论文”;31岁,任中国科学技术大学教授;41岁,成为中国当时最年轻院士;45岁,获国家自然科学一等奖……
缘起痴迷
潘建伟1970年3月生于浙江东阳,自小成绩优秀。父母从不限制他,由他做感兴趣的事。1987年,他考入中国科学技术大学近代物理系。他对大学生活最深的印象是,同学间比着早起晚睡学习,拼命喝茶熬夜读书。
他的大学同学,如今是暗物质卫星科学应用系统总师的伍健回忆,潘建伟是个很有意思的人。他给潘建伟剃过头发,有点像马桶盖,但是潘并不生气。除了学习,潘建伟也很会享受生活,有次和同学跑到水库摸了一脸盆螺蛳回来,在宿舍煮着吃。
1990年潘建伟第一次接触量子力学。那时他经典力学、电动力学、统计力学都学得很好,却完全搞不明白量子力学,有次期中考试量子力学差点没及格。
“双缝实验中,人没有‘看’电子时,就不能说它是从哪条缝过去的,这实在太奇怪了,这不对啊。一个人要么在上海要么在北京,怎么会同时既在上海又在北京呢?”量子世界的奇怪与陌生让潘建伟陷入这样的苦思。
现在回看,潘建伟认为这是最好的现象,“量子力学的创始人之一玻尔说,如果学了量子力学后,你不觉得奇怪,不觉得不可思议,不犯糊涂的话,那你根本就没学懂。”
量子世界越古怪,潘建伟越想搞明白。于是,他选择与量子“纠缠”下去。
他认识到,物理学终究是门实验科学,再奇妙的理论若得不到实验检验,无异纸上谈兵。然而,上世纪90年代中国缺乏开展量子实验的条件。1996年硕士毕业后,潘建伟赴量子科研的重镇——奥地利因斯布鲁克大学攻读博士学位,师从量子实验研究的世界级大师塞林格。
一个理论物理专业的硕士,想要很快进入实验量子物理前沿,其中困难可想而知。为尽快掌握要领,潘建伟几乎整天泡在实验室里。
在老师眼里,当实验中出现问题,潘建伟从不退缩,把困难当做更上层楼的激励,大家总是听他说“情况很好”,这个非常乐观的人,总能找到解决问题的办法,大家都喜欢他。
量子卫星与阿里站建立链路。(中科院提供)
“毫无疑问,他现在是世界上这个领域最好的科学家,我非常为他骄傲。”塞林格说,“我也很鼓励他回国发展,这里有很好的机会。中国在量子通信领域已步入世界先进行列,这里有很大一部分是潘建伟努力的结果。”
做盘“量子好菜”
潘建伟掌握了先进的量子技术后,迫切地希望中国在信息技术领域抓住这次赶超发达国家并掌握主动权的机会。
1997年起,他每年假期回到科大讲学,为中国在量子信息领域的发展提出建议,带动研究人员进入该领域。2001年,他获得中科院、国家自然科学基金委资助,在科大组建了量子物理与量子信息实验室。
量子信息研究集多学科于一体,要想突破,须拥有不同学科背景的人才。有一手好厨艺的潘建伟知道,做盘好菜,需要各种各样的好原料。
潘建伟将不同学科背景的年轻人送出国门,到德国、英国、美国、瑞士、奥地利等国学习锻炼。就这样,他的团队掌握了国际上最好的冷原子技术,最好的精密测量技术,最好的多光子纠缠操纵技术……
近年,潘建伟团队已在《自然》《科学》《物理评论快报》等国际重要学术刊物上发表论文约200篇,被广泛引用。
科学带来内心安宁
实验中难免有让人灰心丧气的时候。但潘建伟说,做自己喜欢的事需要耐心,欲速则不达。“我愿意循序渐进地学习、工作。成功了,当然很高兴;不成功,也不觉得失落,就再来一次。关键是享受这个过程带来的乐趣。”
“追求量子物理的奥妙,能让人获得内心的从容和安宁,如同阳光灿烂的春天,走在青草地上般心情愉快。”他说。
潘建伟是爱因斯坦的崇拜者,大学时就喜读《爱因斯坦文集》,“爱因斯坦的散文是最深刻、最美的,对于我,那就是天籁之音。”
“研究量子物理对我的性格、思想产生了影响。在牛顿力学里面,0和1,黑或白,要么绝对正确,要么绝对错误。但量子力学告诉我们,对错、好坏是很难界定的,这时人就变得包容。”
潘建伟在繁忙工作中参加了很多科普活动,还创办了以科普为目的的墨子沙龙。他说:“建设创新型国家,必须培养公众的科学兴趣,提升公众科学素养,否则就不可能建成真正创新的国家。”
摘取物理“皇冠上的明珠”
时光飞逝。量子世界一如既往地怪异、难以捉摸。神奇的量子纠缠能在时空中无限延展下去吗?
“至少现在理论是这样的,但也许量子纠缠会受到引力影响,它的品质会下降。而通过不断地扩展量子纠缠分发的距离,在实验上探寻量子物理和相对论的边界,我们可能对时空结构和引力开展前瞻性研究。”潘建伟说。
下一步,潘建伟希望在地月拉格朗日点上放一个纠缠光源,向地球和月球分发量子纠缠。通过对30万公里或更远距离的纠缠分发,来观测其性质变化,对相关理论给出实验检测。
“我已经47岁了,希望在60岁左右退休前,把这个实验做完。”他说。
如果这个梦想能实现,潘建伟将摘取这个领域“皇冠上的明珠”。
潘建伟认为,发展量子通信、量子计算技术是国家重大需求,自己义不容辞,而把量子世界最奇怪的问题搞清楚,是自己内心的原动力。
“量子力学为什么会这么奇怪,这个基本问题根本没有解决,我们可能还处于出发点上。对我来说,为什么会有量子纠缠,是最深层次的东西,我始终没有忘记。我把实验做下去,将来可能搞明白。”潘建伟说。
他也认为,科学理论与实用技术不应被割裂,自己愿意竭尽全力推动量子技术发展。
“用量子手段可以做很多事情,例如做原子钟、精密测量,甚至可用来做癌症的早期诊断。操纵好量子,将为人类带来巨大福祉。”潘建伟说。
潘建伟的人物经历
1998年6月,毕业于原杭州大学遗传学专业,获硕士学位,主要从事抗大麦黄花叶病的基因工程研究。1998年8月起,在浙江大学生命科学学院任教。2002年6月,获浙江大学遗传学博士学位,主要从事植物根边缘细胞与铝毒生物学研究。2003年1月至2005年2月,赴新加坡国立大学分子与细胞生物学研究所(IMCB),任研究员(Research Fellow),主要从事拟南芥茉莉酸信号传导途径的研究。2005年2月至2008年2月,赴美国俄克拉何马州Samuel Roberts Noble Foundation研究所,任博士后研究员(Postdoctoral Fellow),主要从事植物PIN介导的生长素极性运输的分子机理研究。2008年2月底回国,在浙江大学生命科学学院任教。2008年11月,加盟浙江师范大学化学与生命科学学院。主持国家自然科学基金2项、国家科技重大研究专项-转基因专项子课题1项、浙江省杰出青年基金1项、浙江省钱江人才计划项目1项,教育部留学回国人员科研启动基金1项,参与完成国家自然科学基金4项、“863”1项、省部级项目5项。在国内外学术刊物上共发表学术论文55篇,其中在Plant Cell、Plant Journal、Plant Physiology、PLoS ONE、Journal of Experimental Botany、Plant Cell Physiology等刊物上发表21篇SCI论文,申请国家发明专利4项,参编教材1部(副主编)。
如何解读中科大潘建伟项目组实现量子瞬间传输技术重大突破?
“墨子号”量子科学实验卫星与阿里量子隐形传态实验平台建立天地链路(合成照片,2016年12月9日摄)。新华社记者金立旺摄 1996年,奥地利老城因斯布鲁克,一位中国小镇青年带着朴素的梦想来到这里,那时他想,一定要在中国建一个国际一流实验室。 21年后的12月19日,国际顶尖学术期刊《自然》在最新一期的特写板块中发布了年度十大人物——在过去一年里对科学产生重大影响的十人,当年的这位青年上榜了。他所带领的中国量子“梦之队”,刷新了中国科研工作者在量子科学领域的国际显示度。
“感谢新时代,感谢伟大的祖国;吾辈当继续努力前行,不负众望1当洋,中国科学技术大学教授、量子通信科学卫星“墨子号”首席科学家潘建伟通过新华社发表感言说。 我们试图走近这位微观世界的探梦者,去琢磨和感悟这追梦无惧、潜心默守、践诺传承的“量子精神”。 十年一步,追梦无惧 1987年,潘建伟从浙江老家考入中国科学技术大学(以下简称中国科大)近代物理系,第一次接触到了量子力学。 “双缝实验中,人没有看电子时,就不能说它是从哪条缝过去的,这实在太奇怪了。一个人要么在上海,要么在北京,怎么会同时既在上海又在北京呢?”量子世界的奇妙与陌生让潘建伟陷入苦思,有一次期中考试,他的量子物理甚至差点没及格。 那一年,他才17岁。
随着对量子世界的逐渐深入,他认识到,物理学终究是门实验科学,再奇妙的理论也需要有实验检验。然而,上世纪90年代中国缺乏开展量子实验的条件。1996年硕士毕业后,潘建伟赴量子科研的重镇——奥地利因斯布鲁克大学攻读博士学位,师从量子实验研究的世界级大师塞林格。 1997年,以他为第二作者的论文《实验量子隐形传态》在《自然》杂志上发表,该成果公认是量子信息实验领域的开山之作,被评为年度全球十大科技进展,入寻百年物理学21篇经典论文”。 那一年,他27岁。 量子光源是一种极其微弱的光信号。单光子级的光信号亮度,相当于一根蜡烛在140公里之外的人眼中的强度。要知道,人类肉眼能够分辨蜡烛光亮的极限距离,大约才700米。 单光子级别的光源能否被地面接收?“就让我们试试看,大概只需要200万元,就可以为星地一体量子通信网络提供实验支撑。”2007年,潘建伟开始这一实验,为中国量子团队“筑梦”。 那一年,他37岁。 在浩瀚的太空,“墨子号”量子科学实验卫星与地面的量子保密通信“京沪干线”一起,首次搭建起天地一体化广域量子通信网络。
3个月前,从中国发出的一声问好,就这样跨越了半个地球来到奥地利,实现了历史上首次洲际量子保密通信。“墨子号”作为近年来重大科技创新成果被写入党的十九大报告。 这一年,他已经47岁。 如今,世界首颗量子卫星“墨子号”从太空建立了迄今最遥远的量子纠缠,证明在1200多公里的尺度上,爱因斯坦都感到匪夷所思的“遥远地点间的诡异互动”依然存在。世界上第一台超越期经典计算机的光量子计算机,在团队内诞生。目前最大数目的超导量子纠缠和完整测量,发布成果……
量子大厦,破土孕育。 潘建伟还有更大的目标——在地月间建立30万公里的量子纠缠,检验量子物理的理论基础,并探索引力与时空的结构。未来,希望结合中国在10至15年后的登月计划,实现Bell不等式检验实验。 在朋友圈,潘建伟曾转发脸谱公司创始人扎克伯格的演讲,并挑出这样一段话:目标是我们意识到我们是比自己更大的东西的一部分,是我们需要更为之努力的东西。 “只希望到60岁,我能把这个实验做完。”他说。 于家为国,潜心默守
上一篇:考古学报论文格式
下一篇:论文查重姓名吗