数学实验毕业论文
数学实验毕业论文
浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学
数学本科毕业论文
数学本科毕业论文--数学教学与学生创造思维能力的培养
摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性
思维的实质就是求新、求异、求变。在数学教学中培养学生的创造思维、激
发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力:
1、指导观察2、引导想象3、鼓励求异4、诱发灵感
关键词:创造 思维
前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发
展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题,
本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法
现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维
的实质就是求新、求异、求变。创新是教与学的灵魂,是实施素质教育的核心;数学
教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积
极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、
激发创造力是时代对我们提出的基本要求。本文就创造思维及数学教学中如何培养学
生创造思维能力谈谈自己的一些看法。
一、 创造思维及其特征
思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。
创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式,
使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般
是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物、提示新规律、
建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果
通常并不是首次发现或超越常规的思考。
创造思维是创造力的核心。它具有独特性、新颖性、求异性、批判性等思维特征,
思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是
正常人经过培养可以具备的。
二、 创设适宜的教学环境
教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛,
只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创
造性思维能力的重要前提。
1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造
因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。例如教学轴对称图形时,提出
“在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位
置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。
三、 怎样培养学生的创造思维能力
1、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。
可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现
的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要
在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生
选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科
学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。
第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。
2、引导想象
想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,
而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问
题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一
般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎
实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察
力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要
使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象
因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学
生的创造性想象。如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉
的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种
有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运
用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一
猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。
3、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异
思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍
门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即
与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。
学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、
多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§2.7平行线的性质”一节时深有感触,一道例题最初是这样设计的:
例:如图,已知a // b , c // d , ∠1 = 115,
⑴ 求∠2与∠3的度数 ,
1
a
b
c
d
⑵ 从计算你能得到∠1与∠2是什么关系?
2
学生很快得出答案,并得到∠1=∠2。我正要向下讲解,
这时一位同学举手发言:“老师,不用知道∠1=115°也能得出∠1=∠2。”我当
时非常高兴,因为他回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学
们报以热烈的掌声。我又借题发挥,随之改为:
已知:a//b , c//d 求证: ∠1=∠2
让学生写出证明,并回答各自不同的证法。随后又变化如下:
变式1:已知a//b , ∠1=∠2 , 求证:c//d。
变式2:已知c//d ,∠1=∠2 , 求证:a//b。
变式3:已知a//b, 问∠1=∠2吗?(展开讨论)
这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对
初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。
数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和
求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立
思考,这应成为我们以后教与学的着力点。
4、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的
想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯
定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉
和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。
结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。该篇论文的完成得到了各方面的支持,在此谨表示最真诚的感谢,谢谢!
高一数学论文范文
随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出了更高的要求。 下面是我为大家整理的 高一数学 论文 范文 ,供大家参考。
《 高中数学个性化教学探讨 》
个性化教学是指,在课堂教学中教师充分尊重学生的个性,根据每个学生不同的个性,包括兴趣、特长等,因材施教.教师授课的观念已经不是传统的传授知识,而是带动学生自主学习,把教学方式由“苦力”转化为“技术”,给学生提供充足的学习空间,培养学生的学习能力,提升教学质量和水平.这样,对学生优良的评价已经不是根据学生能够记忆多少知识,而是学生的获取信息、分析信息以及信息加工的能力.个性化教学是实现这样的教学目标的关键所在.教师由“知识的传授者”转变为“学生学习的协作者”,传授学生学习的方法,促进教育个性化发展.个性化教学需要从“多元化”“以生为本”出发,通过具体教学活动体现每个学生的个性、兴趣、特长等.
一、高中数学个性化教学存在的问题
1.学校方面.学校以及教育部门的重视程度不高,学校的管理观念落后,一味追求学生的成绩和整体的升学率,而忽视了对学生的多元化教育,将学习成绩列为评定学生优劣的唯一标准.这是不恰当的,只会逐步消磨学生的个性.
2.教师方面.教师个性化教学能力相对低下.在个性化教学中,教师需要具备数学知识、 基本素养 、心理学以及教育多元化思想结构、个性化教育方法等,但是只有少数教师能够达标,尤其是在乡镇比较落后的地区,几乎没有教师能够在多元化、个性化教学方面达到标准.
3.学生方面.由于学生长期受到“填鸭式”教学方式的影响,基本数学知识和理论的掌握理解程度不一.在这样的环境下,学生大都对学习产生功利性.比如,大多数学生的刻苦努力都是冲着应付考试、取得好名次,或者是为了评先、评优而刻苦学习的.
4.课程和教材方面.教学目标缺乏一定的层次性,教学方法简单机械,教学内容乏味无趣;教材的设置和知识点的配置很难与实际生活和应用达成一致,使学生学习教材知识点仅仅是为了考高分,从而使教学变得没有意义.
二、高中数学个性化教学策略
1.加强对高中数学个性化教学的重视.学校方面应该逐步加强对学生个性化教学的认识和重视,需要在教学理念上予以革新,在管理制度上给予重视.例如,在学校组织多种多样的个性化教学的培训和交流活动,使个性化教学的目标与过程深入到学校各个环节的教育工作者心中,使个性化教学充分展现在校园中.
2.教师提高个性化教学能力.一方面,教师应该提高自身教学素质,形成个性化教学的能力.例如,在讲“椭圆方程”时,教师可以这样开展个性化教学:从教学目标的制定方面将整个章节作为一个大的教学目标,再将大章节分散成小章节,将大问题分解成若干小问题,借助多媒体课件展示椭圆定义的实质,将整个概念浮现在学生记忆里,通过让学生自己动手,独立思考,自主探索,自己提出问题,利用各种教学资源进行观察、分析、实验、探究,找到解决问题的途径.教师可以提出问题:到两定点的距离之和为定值的点的集合一定是椭圆吗?通过课件演示和自主观察,学生得出初步结论,最后由教师进行讲解与集体验证,挖掘其内涵,使该知识点在学生记忆中留下深刻印象.这样,能够提高学生学习的积极性,从而提高教学质量.
3.引导学生适应个性化教学.在高中数学教学中,教师要创造个性化教学环境,引导学生个性化学习,大胆质疑,勇于表达,开展个性化探究活动.例如,在讲“椭圆”时,教师可以准备一根细绳和两根钉子,在给出椭圆定义之前,在黑板上任意取两个点(注意两点之间的距离要小于绳子的长度),让两个学生按照教师的要求在黑板上画椭圆,学生通过自主画椭圆的过程, 总结 出椭圆应该具备的具体特征,之后教师根据学生推测出来的椭圆的特点进行讲解,将椭圆的数学定义与学生总结出来的椭圆的特点进行对比,总结 经验 和教学.这样,每个学生脑海中都会存在椭圆的定义和椭圆的基本形态,提高学习效果.
4.形成个性化教学策略.首先,教师要按照不同学生的具体水平制定不同的教学目标,再按照各个层次不同基础学生的学习状态以及学习要求选择层次分明的教学方法,有针对性地对不同阶段学生进行不同方式的教学.其次,引入综合性的教学办法.最后,对高中数学的教学内容进行拓展,培养学生的 发散思维 ,形成多元化的教学评价.总之,个性化教学关键在于教师.在“以生为主”的基础上,突出教师的主导作用,不失时机地引导学生,从学生内心完成其对教学方法的认可,帮助学生对数学知识的掌握以及知识框架的梳理.通过教学方法来指导学生的学习,通过学生的学习来完善教学方法.
《 高中数学互动教学探讨 》
教学过程是师生双边性的活动,是师生沟通交流、共同发展的互动过程。随着新课改的不断深入,高中数学课堂从表面也变得活跃起来,但数学教师并没有从本质上激发学生学习数学的兴趣,没有充分挖掘学生的数学潜能。新课程改革对高中数学教学提出了新的要求,其更加重视学生在学习中的主体性,也要求教师维持课堂活力,通过更有效的互动交流提高教学的有效性。这就要求教师要高度重视与学生的互动交流,在互动的过程中注重培养学生的独立自主性、思维创造性,引导他们真正成为学习的主人。在此,笔者对高中数学互动教学作了一定的探讨。
一、转变教师角色,师生平等参与数学教学活动
师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般人际之间的关系,又在教育情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。
二、构建教学场景,师生在融洽氛围中深刻互动
情感渲染学指出,和谐师生关系、融洽生生关系,需要外在良好教学情境和氛围的渲染和支持。师生之间深入参与,积极互动,一方面需要积极的心理情态进行“驱动”,另一方面需要适宜的场景氛围进行“渲染”。部分教师轻视情感氛围的营造,强调教师的讲解指导功效,学生的主体意识淡化,参与情感淡薄,师生互动也只是“逢场作戏”,形式主义。笔者认为,教师应注重外在环境因素的应用,利用高中数学教材的生活应用特性、趣味生动特性、历史特点等,通过适宜融洽教学环境的“外因”,催化学生主动参与互动的“内因”,促使师生之间进行深入互动。如“等比数列的前n项和”新知讲解环节,教者发现,以往的“直接讲授法”教学模式限制了高中生掌握其知识内涵的“深度”,学生只有“参与其中”,深入互动,真切交流,采用场景激励法,设置了“古代印度国王准备对 国际象棋 的发明者给予麦子奖赏,而发明者提出了在第一格放1粒麦子,第二格放2粒麦子,第三格放4粒麦子,以此类推,放到象棋盘上的最后一格,将所用到的麦子全部奖赏给他”的现实案例,并利用教学课件进行动态演示展示,为学生营造具有真实感、现实感的场景氛围,贴合高中生认知实际,带着积极情感参与师生深刻互动。
三、注重综合评价,促进高中数学互动教学
在高中数学互动教学中,教师需要注重对学生进行综合全面的评价。只有通过有效的评价,教师才能对互动教学进行总结,才能够进一步激发学生的信心,使课堂教学氛围变得更加和谐。一方面,教师要评价的是师生互动中学生的收获与表现出的不足,要通过评价指出学生的得失,使学生能够在日后的学习中有意识的改正缺点并发挥优点。另一方面,教师要评价学生的能力与具体表现,要善于发现学生的闪光点,并通过正面的评价对其进行认可与肯定,达到巩固学生学习信心的目的。例如,在函数的单调性的教学中,教师利用课堂提问的方式引导学生进行思考与学习,同时在互动中了解学生掌握知识的情况。教师发现,部分学生能够在研究函数时有意识的利用数形结合的方法将抽象的条件放入函数图像中解析,并且能够从不同的角度思考问题分析问题。此时,教师并不能只看到学生在学习中取得的收获,而应该肯定意识和能力,要对学生表现出的能力进行肯定与认可。基于此,学生才能在与教师的互动中感受到教师对自己的关注与重视,才能在日后的交流中变得更加主动,同时有意识的发扬自己的优点,使其成为个人独特的能力。
有关高一数学论文范文推荐:
1. 高中数学论文范文
2. 高中数学评职称论文范文
3. 有关高中数学论文范文
4. 浅谈高一数学相关论文
5. 数学系毕业论文范文
6. 关于高中数学论文
7. 浅谈高中数学模型论文
8. 高中数学教育教学论文
数学系毕业论文的写法
一、内容要求 毕业设计报告正文要求: (一)理、工科类专业毕业设计报告正文内容应包括:问题的提出;设计的指导思想;方案的选择和比较论证;根据任务书指出的内容和指标要求写出设计过程、课题所涉及元件结构和相关参数的设计计算,有关基本原理的说明与理论分析;给出所设计课题实际运行的数据或参数,并与理论设计参数进行比较和分析,说明产生误差的原因。最后要对所设计课题实用价值做出评估说明;设计过程中存在的问题,改进意见或其它更好的方案设想及未能采纳的原因等。 (二)经济、管理类专业毕业设计报告或论文正文应包括:问题的提出、设计的指导思想;设计方案提出的依据,设计方案的选择和比较;设计过程;所运用的技术经济分析指标和方法;数学模型及其依据,数据计算方法;对设计方案的实用性和经济效益等方面做出评估;对设计实施过程中存在的问题 ( 或可能发生的问题 ) 提出合理化建议。毕业论文的基本论点、主要论据;根据国家有关方针、政策及规定联系实际展开理论分析。 (三)文科类专业毕业设计报告或论文正文应包括:问题的提出、解决问题的指导思想;解决方案提出的依据,解决方案的选择和比较,结论。 二、论文印装 毕业论文用毕业设计专用纸打印。正文用宋体小四号字,行间距为24磅;版面页边距上3cm,下、左2.5cm,右2cm。 三、论文结构、装订顺序及要求 毕业论文由以下部分组成: (一)封面。论文题目不得超过20个字,要简练、准确,可分为两行。 (二)内容。 1、毕业设计(论文)任务书。任务书由指导教师填写,经系主任、教务部审查签字后生效。 2、毕业设计(论文)开题报告; 3、毕业设计(论文)学生申请答辩表与指导教师毕业设计(论文)评审表; 4、毕业设计(论文)评阅人评审表; 5、毕业设计(论文)答辩表; 6、毕业设计(论文)成绩评定总表; 7、中英文内容摘要和关键词。 (1)摘要是论文内容的简要陈述,应尽量反映论文的主要信息,内容包括研究目的、方法、成果和结论,不含图表,不加注释,具有独立性和完整性。中文摘要一般为200-400字左右,英文摘要应与中文摘要内容完全相同。“摘要”字样位置居中。 (2)关键词是反映毕业设计(论文)主题内容的名词,是供检索使用的。主题词条应为通用技术词汇,不得自造关键词。关键词一般为3-5个,按词条外延层次(学科目录分类),由高至低顺序排列。关键词排在摘要正文部分下方。 (3)中文摘要与关键词在前,英文的在后。 8、目录。 目录按三级标题编写,要求层次清晰,且要与正文标题一致。主要包括绪论、正文主体、结论、致谢、主要参考文献及附录等。 9、正文。论文正文部分包括:绪论(或前言、序言)、论文主体及结论。 (1)绪论。综合评述前人工作,说明论文工作的选题目的和意义,国内外文献综述,以及论文所要研究的内容。 (2)论文主体。论文的主要组成部分,主要包括选题背景、方案论证、过程论述、结果分析、结论或总结等内容。要求层次清楚,文字简练、通顺,重点突出,毕业设计(论文)文字数,一般应不少于8000字(或20个页码)。外文翻译不少于3000字符,外文参考资料阅读量不少于3万字符。 中文论文撰写通行的题序层次采用以下格式: 1 1.1 1.1.1 1.1.1.1 格式是保证文章结构清晰、纲目分明的编辑手段,毕业论文所采用的格式必须符合上表规定,并前后统一,不得混杂使用。格式除题序层次外,还应包括分段、行距、字体和字号等。 第一层次(章)题序和标题居中放置,其余各层次(节、条、款)题序和标题一律沿版面左侧边线顶格安排。第一层次(章)题序和标题距下文双倍行距。段落开始后缩两个字。行与行之间,段落和层次标题以及各段落之间均为24磅行间距。 第一层次(章)题序和标题用小二号黑体字。题序和标题之间空两个字,不加标点,下同。 第二层次(节)题序和标题用小三号黑体字。 第三层次(条)题序和标题用四号黑体字。 第四层次及以下各层次题序及标题一律用小四号黑体字。 (3)结论(或结束语)。作为单独一章排列,但标题前不加“第XXX章”字样。结论是整个论文的总结,应以简练的文字说明论文所做的工作,一般不超过两页。 10、致谢。对导师和给予指导或协助完成毕业设计(论文)工作的组织和个人表示感谢。文字要简洁、实事求是,切忌浮夸和庸俗之词。 11、参考文献及引用资料目录(规范格式见附文)。 12、附录。 13、实验数据表、有关图纸(大于3#图幅时单独装订)。 (三)封底。 附:规范的参考文献格式 参考文献(即引文出处)的类型以单字母方式标识:M——专著,C——论文集,N——报纸文章,J——期刊文章,D——学位论文,R——报告,S——标准,P——专利;对于不属于上述的文献类型,采用字母“Z”标识。 参考文献一律置于文末。
上一篇:论文文献该如何
下一篇:论文期刊方向