形状检测论文
形状检测论文
钢结构无损检测 摘要:通过对应用于建筑钢结构行业中的几种常规无损检测方法的简述,归纳了被检对象所适用的不同无 损检测方法。为广大工程技术人员和管理人员了解、学习、应用无损检测技术提供参考。 关键词:建筑钢结构;无损检测 1 前言 建筑钢结构由于其强度高、工业化程度高以及综合经济效益好等优点,自上世纪 90 年代,特别是近年来得 到了迅猛发展,广泛应用于工业和民用等领域。由于一些重点工程,建筑钢结构发生了严重的质量事故, 如郑州中原博览中心网架曾发生了崩塌事故,所以建筑钢结构的安全性和可靠性越来越受到重视。 建筑钢结构的安全性和可靠性源于设计,其自身质量则源于原材料、加工制作和现场安装等因素。评价建 筑钢结构的安全性和可靠性一般有三种方式:⑴模拟实验;⑵破坏性实验;⑶无损检测。模拟实验是按一 定比例模拟建筑钢结构的规格、材质、结构形式等,模拟在其运行环境中的工作状态,测试、评价建筑钢 结构的安全性和可靠性。模拟实验能对建筑钢结构的整体性能作出定量评价,但其成本高,周期长,工艺 复杂。破坏性实验是采用破坏的方式对抽样试件的性能指标进行测试和观察。破坏性实验具有检测结果精 确、直观、误差和争议性比较小等优点,但破坏性实验只适用于抽样,而不能对全部工件进行实验,所以 不能得出全面、综合的结论。无损检测则能对原材料和工件进行 100%检测,且经济成本相对较低。 上世纪 50 年代初,无损检测技术通过前苏联进入我国。作为工艺过程控制和产品质量控制的手段,如今在 核电、航空、航天、船舶、电力、建筑钢结构等行业中得到广泛的应用,创造了巨大的经济效益和社会效 益。无损检测技术是建立在众多学科之上的一门新兴的、综合性技术。无损检测技术是以不损伤被检对象 的结构完整性和使用性能为前提,应用物理原理和化学现象,借助先进的设备器材,对各种原材料,零部 件和结构件进行有效的检验和测试,借以评价它们的完整性、连续性、致密性、安全性、可靠性及某些物 理性能。无损检测经历了三个阶段,即无损探伤(Non-destructive Inspection,简称 NDI)、无损检测 (Non-destructive testing,简称 NDT)、无损评价(Non-destructive Evaluation,简称 NDE)、无损 探伤的含义是探测和发现缺陷。无损检测不仅仅要探测和发现缺陷,而且要发现缺陷的大小、位置、当量、 性质和状态。无损评价的含义则更广泛、更深刻, 它不仅要求发现缺陷,探测被检对象的结构、性质、状 态,还要求获得更全面、更准确的,综合的信息,从而评价被检对象的运行状态和使用寿命。应用于钢结 构行业中的常规无损检测方法有磁粉检测(Magnetic Testing 简称 MT)、渗透检测(Penetrate Testing, 简称 PT)、涡流检测(Eddy current Testing 简称 ET)、声发射检测(Acoustic Emission Testing 简称 AET)、超声波检测(Ultrasonic Testing,简称 UT)、射线检测(Radiography Testing,简称 RT)。在 建筑钢结构行业中,按检测缺陷产生的时机,无损检测方法可以按下图分类。 2 2.1 检测方法的简述 磁粉检测(MT) 原理 2.1.1 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 2.1.2 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 2.1.3 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 2.1.4 优点 经济、方便、效率高、灵敏度高、检测结果直观。 2.2 2.2.1 渗透检测(PT) 原理 在被检对象表面施加含有荧光染料或着色染料的渗透液,渗透液在毛细血管的作用下,经过一定时间 后,渗透液可以渗透到表面开口的缺陷中去。经过去除被检对象表面多余的渗透液,干燥后,再在被检对 象表面施加吸附介质(显象剂)。同样在毛细血管的作用下,显象剂吸附缺陷中的渗透液,使渗透液回渗 到显象剂中,在一定的光照下,缺陷中的渗透液被显示。从而达到检测缺陷的目的。 2.2.2 适用范围 适用于非多孔状固体表面开口缺陷。 2.2.3 局限性 仅适用于表面开口缺陷的检测,而且对被检对象的表面光洁度要求较高,涂料、铁锈、氧化皮会覆盖表面 缺陷而造成漏检。对检测人员的视力有一定要求,成本相对较高。 2.2.4 优点 设备轻便、操作简单,检测灵敏度高,结果直观、准确。 2.3 2.3.1 涡流检测(ET) 原理 金属材料在交变磁场的作用下产生了涡流,根据涡流的分布和大小可以检测出铁磁性材料和非铁磁性材料 的缺陷。 2.3.2 适用范围 适用于各种导电材料的表面和近表面的缺陷检测。 2.3.3 局限性 不适用不导电材料检测,对形状复杂的试件很难应用,比较适合钢管、钢板等形状规则的轧制型材的检测, 而且设备较贵;无法判定缺陷的性质。 2.3.4 优点 检测速度快,生产效率高,自动化程度高。 2.4 2.4.1 声发射检测(AET) 原理 材料或结构件受到内力或外力的作用产生形变或断裂时, 以弹性波的形式释放出应变能的现象称为声发射, 也称为应力波发射。声发射检测是通过受力时材料内部释放的应力波判断被检对象内部结构损伤程度的一 种新兴动态无损检测技术。 2.4.2 适用对象 适用于被检对象的动态监测,如对大型桥梁、核电设备的实时动态监测。 2.4.3 局限性 无法监测静态缺陷、干扰检测的因素较多;设备复杂、价格较贵、检测技术不太成熟。 2.4.4 优点 可以远距离监控设备的运行情况和缺陷的扩展情况,对结构的安全性和可靠性评价提供依据。 2.5 2.5.1 超声波检测(UT) 原理 超声波是指频率大于 20 千兆赫兹的机械波。根据波动传播时介质的振动方向相对于波的传播方向不同,可 将波动分为纵波、横波、表面波和板波等。用于钢结构检测的主要是纵波和横波。 超声波探伤仪激励探头产生的超声波在被检对象的介质中按一定速度传播,当遇到异面介质(如气孔、夹 渣)时,一部分超声波反射回来,经仪器处理后,放大进入示波屏,显示缺陷的回波。 2.5.2 适用对象 适用于各类焊逢、板材、管材、棒材、锻件、铸件以及复合材料的检测,特别适合厚度较大的工件。 2.5.3 局限性 检测结果可追溯性较差;定性困难,定量不精确,人为因素较多;对被检工件的材质规格,几何形状有一 定要求。 2.5.4 优点 检测成本低、速度快、周期短、效率高;仪器小、操作方便;能对缺陷进行精确定位;对面积型缺陷的检 出率较高(如裂纹、未熔合等) 2.6 射线检测(RT) 2.6.1 原理 射线是一种波长短、频率高的电磁波。 射线检测,常规使用×射线机或放射性同位素作为放射源产生射线,射线穿过被检对象,经过吸收和衰减, 由于被检试件中存在厚度差的原因,不同强度的射线到达记录介质(如射线胶片),射线胶片的不同部位 吸收了数量不等的光子,经过暗室处理后,底片上便出现了不同黑度的缺陷影象,从而判定缺陷的大小和 性质。 2.6.2 适用范围 适用较薄而不是较厚(如果工件的厚度超过 80mm 就要使用特殊设备进行检测,如加速器)的工件的内部体 积型缺陷的检测。 2.6.3 局限性 检测成本高、周期长,工作效率低;不适用角焊逢、板材、管材、棒材、锻件的检测;对面状的缺陷检出 率较低;对缺陷的高度和缺陷在被检对象中的深度较难确定;影响人体健康。 2.6.4 优点 检测结果直观、定性定量准确;检测结果有记录,可以长期保存,可追溯性较强。 3 小结 综上所述,每种无损检测方法的原理和特点各不相同,且适用的检测对象也不一样。在建筑钢结构的行业 中应根据结构的整体性能,检测成本及被检对象的规格、材质、缺陷的性质、缺陷产生的位置等诸多因素 合理选择无损检测方法。一般地,选择无损检测方法及合格等级,是设计人员依据相关规范而确定的。有 的工程,业主也有无损检测方法及合格等级的要求,这就需要供需双方相互协商了。 3.1 钢结构在加工制作及安装过程中无损检测方法的选择见表 1 被检对象 原材料检验 板材 锻件及棒材 管材 螺栓 焊接检验 坡口部位 清根部位 对接焊逢 角焊逢和 T 型焊逢 3.2 UT 检测方法 UT、MT(PT) UT(RT)、MT(PT) UT、MT(PT) UT、PT(MT) PT(MT) RT(UT)、MT(PT) UT(RT)、PT(MT) 被检对象所适用的无损检测方法见表 2 内部缺陷 表面缺陷和近表面 检测方法 UT ● ○ ● ● MT ● ● ● ● PT ● ○ ○ ● ET △ △ ● × AET △ △ △ △ 发生中缺陷检 测 检测方法 RT 被检对象 试 件 分 类 锻件 铸件 压延件(管、板、型材) 焊逢 × ● × ● 分层 疏松 气孔 内部 缩孔 缺陷 未焊透 未熔合 缺陷 分类 夹渣 裂纹 白点 表面裂纹 表面 缺陷 表面气孔 折叠 断口白点 × × ● ● ● △ ● ○ × △ ○ — × ● ○ ○ ○ ● ● ○ ○ ○ △ × — × — — — — — — — — — ● △ ○ ● — — — — — — — — — ● ● ○ ● — — — — — — — — — ● △ ○ — — — — — △ △ △ △ △ △ — — — 注:●很适用;○适用;△有附加条件适用;×不适用;—不相关 参 1. 考 文 献 强天鹏 射线检测 [M] 云南科技出版社 2001 2. 3. 4. 5. 周在杞等 张俊哲等 无损检测技术及其应用 [M] 科学出版社 王小雷 锅炉压力容器无损检测相关知识 [M] 李家伟等 无损检测 冉启芳 2001 1993 [M] 机械工业出版社 2002 无损检测方法的分类及其特征的介绍 [J] 无损检测 1999 2 钢网架结构超声波检测及其质量的分 [J] 无损检测 2001 6 磁粉检测(MT) 2.1 磁粉检测(MT) 2.1.1 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 磁粉探伤的原理及概述 磁粉探伤的原理 磁粉探伤又称 MT 或者 MPT(Magnetic Particle Testing),适用于钢铁等磁性材料的表面附近进行探伤 的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将 磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成指 示图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。 磁粉探伤方法 磁粉探伤检测的顺序分为前期处理、磁化、磁粉使用、观察,以及后期处理。 前期处理→磁化→磁粉使用→观察→后期处理 以下分别说明各个步骤的概要。 (1)前期处理 探探伤面如果有油脂、涂料、锈、或其他异物附着的情况下,不仅会妨碍磁粉吸附在伤痕上,而且还会出 现磁粉吸附在伤痕之外的部分形成疑私图像的情况。因此在磁化之前,要采用物理或者化学处理,进行去 除污垢异物的步骤。 (2)磁化 将检测物适当磁化是非常重要的。通常,采用与伤痕方向与磁力线方向垂直的磁化方式。另外为了适当磁 化,根据检测物的形状可以采用多种方法。日本工业规格(JIS G 0565-1992)中规定了以下 7 种磁化方法。 ①轴通电法……在检测物轴方向直接通过电流。 ②直角通电法……在检测物垂直于轴的方向直接通过电流。 ③Prod 法……在检测物局部安置 2 个电极(称为 Prod)通过电流。 ④电流贯通法……在检测物的孔穴中穿过的导电体中通过电流。 ⑤线圈法……在检测物中放入线圈,在线圈中通过电流。 ⑥极间法……把检测物或者要检测的部位放入电磁石或永磁石的磁极间。 ⑦磁力线贯通法……对通过检测物的孔穴的强磁性物体施加交流磁力线,使感应电流通过检测物。 (3)磁粉使用磁粉探伤的原理 ① 磁粉的种类 为了让磁粉吸附在伤痕部的磁极间形成检出图像,使用的磁粉必须容易被伤痕部的微弱磁场磁化,吸附在 磁极上,也就是说需要优秀的吸附性能。另外,要求形成的磁粉图像必须有很高的识别性。 一般,磁粉探伤中使用的磁粉有在可见光下使用的白色、黑色、红色等不同磁粉,以及利用荧光发光的荧 光磁粉。另外,根据磁粉使用的场合,有粉状的干性磁粉以及在水或油中分散使用的湿性磁粉。 ② 磁粉的使用时间 磁粉使用时间分为一边通过磁化电流一边使用磁粉的连续法,以及在切断磁化电流的状态即利用检测物的 残留磁力的残留法两种。 (4)观察 为了便于观察附着在伤痕部位的磁粉图像,必须创造容易观察的环境。普通磁粉需要在尽可能明亮的环境 下观察,荧光磁粉则要使用紫外线照射灯将周围尽量变暗才容易观察。 (5)后期处理 磁粉探伤结束,检测物有可能仍作为产品或是需要送往下一个加工步骤接受机械加工等。这时就需要进行 退磁、去除磁粉、防锈处理等后期处理。 2.1.2 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 2.1.3 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 2.1.4 优点 经济、方便、效率高、灵敏度高、检测结果直观。 生产厂家: 生产厂家:济宁联永超声电子有限公司 仪器设备名称: 仪器设备名称:CDX-Ⅲ该机型磁粉探伤仪 Ⅲ 仪器概况:CDX-Ⅲ该机型磁粉探伤仪是具有多种磁化方式的磁粉探 伤仪设备。仪器采用可控硅作无触点开关,噪音小、寿命长、操作简 单、方便、适应性强、工作稳定。是最近推出新产品,它除具有便携 式机种的一切优点,还具有移动机种的某些长处,扩展了用途,简化 了操作,还具有退磁功能。 该设备有四种探头: 1、旋转探头: 型)能对各种焊缝、各种几何形状的曲面、平面、 (E 管道、锅炉、球罐等压力容器进行一次性全方位显示缺陷和伤痕。 2、电磁轭探头: 型)它配有活关节,可以对平面、曲面工件进行 (D 探伤。 3、马蹄探头: 型)它可以对各种角焊缝,大型工件的内外角进行 (A 局部探伤。 4、磁环: 型)它能满足所有能放入工件的周向裂纹的探伤,用它 (O 来检测工件的疲劳痕(疲劳裂痕均垂于轴向)及为方便,用它还可以 对工件进行远离法退磁。 总之,该仪器是多种探伤仪的给合体,功能与适用范围广,尤其应用 于不允许通电起弧破表面零件的探伤。
无损检测概论及新技术应用 无损检测概论及新技术应用 概论 摘要: 摘要:综述了无损检测的定义、方法、特点、要求等基本知识,以及无损检测在 现今社会中的应用实例,其中包括混凝土超声波无损检测技术、涡流无损检测技 术、渗透探伤技术。 关键词: 关键词:无损检测;混凝土缺陷;涡流检测;渗透探伤。 引言: 引言:随着现代工业的发展,对产品的质量和结构的安全性、使用的可靠性提出 了越来越高的要求,无损检测技术由于具有不破坏试件、检测灵敏度高等优点, 所以其应用日益广泛。无损检测是工业发展必不可少的有效工具,在一定程度上 反映了一个国家的工业发展水平,其重要性已得到公认。 1、 无损检测概论 、 无损检测 检测概论 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用 性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位 置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿 命等)的所有技术手段的总称。 常用的无损检测方法有射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和 液体渗透检测(PT) 四种。 其他无损检测方法: 涡流检测(ET)、 声发射检测 (AT) 、 (TIR) 泄漏试验 、 (LT) 交流场测量技术 、 (ACFMT) 漏磁检验 、 (MFL)、 热像/红外 远场测试检测方法(RFT)等。 基于以上方法,无损检测具有一下应用特点: 1>不损坏试件材质、结构 无损检测的最大特点就是能在不损坏试件材质、 结构的前提下进行检测, 所以实施无损检测后,产品的检查率可以达到 100%。但是,并不是所有需要测 试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验 只能采用破坏性试验, 因此, 在目前无损检测还不能代替破坏性检测。 也就是说, 对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结 果互相对比和配合,才能作出准确的评定。 2>正确选用实施无损检测的时机 在无损检测时, 必须根据无损检测的目的,正确选择无损检测的时机,从而顺利 地完成检测预定目的,正确评价产品质量。 3>正确选用最适当的无损检测方法 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备 材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、 形状、部位和取向,选择合适的无损检测方法。 4>综合应用各种无损检测方法 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应 尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无 损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质 量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只 有这样,无损检测在承压设备的应用才能达到预期目的。[1] 通过各种检测方法,最终对于无损检测的要求是:不仅要发现缺陷,探测试 件的结构、状态、性质,还要获取更全面、准确和综合的信息,辅以成象技术、 自动化技术、计算机数据分析和处理技术等,与材料力学、断裂力学等学科综合 应用,以期对试件和产品的质量和性能作出全面、准确的评价。 2、 无损检测在各领域的应用 、 无损检测基于以上优点,在现今社会受到广泛关注和应用,为实际生产工作减 少了废料成本,提供了极大的方便。其中超声波检测技术、涡流检测、渗透探伤 技术、霍尔效应无损探伤技术应用极为出色。 2.1 混凝土超声无损检测 混凝土是我国建筑结构工程最为重要的材料之一,它的质量直接关系到结构 的安全。多年来,结构混凝土质量的传统检测方法是以按规定的取样方法,制作 立方体试件,在规定的温度环境下,养护 28d 时按标准实验方法测得的试件抗压 强度来评定结构构件的混凝土强度。用试件实验测得的混凝土性能指标,往往是 与结构物中的混凝土性能有一定差别。因此,直接在结构物上检测混凝土质量的 现场检测技术,已成为混凝土质量管理的重要手段。 所谓混凝土“无损检测”技术,就是要在不破坏结构构件的情况下,利用测 试仪器获取有关混凝土质量等受力功能的物理量。 因该物理量与混凝土质量之间 有较好的相互关系,可采用获取的物理量去推定混凝土质量。[2] 混凝土超声检测是用超声波探头中的压电陶瓷或其他类型的压电晶体加载某 频率的交流电压后激发出固定频率的弹性波, 在材料或结构内部传播后再由超声 波换能器接收,通过对采集的超声波信号的声速、振幅、频率以及波形等声学参 数进行分析,以此推断混凝土结构的力学特性、内部结构及其组成情况。超声波 检测可用于混凝土结构的测厚、探伤、混凝土的弹性模量测定以及混凝土力学强 度评定等方面. [3] 2.2 涡流无损检测 涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测 的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感 应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流 的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈 的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用 一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化, 进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或 缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能 反映试件表面或近表面处的情况。[4] 应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过 式、探头式和插入式线圈 3 种。穿过式线圈用来检测管材、棒材和线材,它的内 径略大于被检物件, 使用时使被检物体以一定的速度在线圈内通过, 可发现裂纹、 夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金 属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳 裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可 用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线 圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大 批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传 送的机械装置) 、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。[5] 优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现 自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷, 检测结果也易于受到材料本身及其他因素的干扰。 2.3 渗透探伤技术 液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透 剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经 去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作 用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光 源下 (紫外线光或白光) 缺陷处的渗透液痕迹被现实, 黄绿色荧光或鲜艳红色) , ( , 从而探测出缺陷的形貌及分布状态。[6] 渗透检测适用于具有非吸收的光洁表面的金属、非金属,特别是无法采用磁 性检测的材料,例如铝合金、镁合金、钛合金、铜合金、奥氏体钢等的制品,可 检验锻件、铸件、焊缝、陶瓷、玻璃、塑料以及机械零件等的表面开口型缺陷。 渗透检测的优点是灵敏度较高(已能达到检测开口宽度达 0.5?m 的裂缝) ,检测 成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观 验证(例如使用放大镜或显微镜观察) ,其结果也容易判断和解释,检测效率较 高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺 陷中填塞有较多杂质时将影响其检出的灵敏度。[7] 3、 结语 、 随着现代科学技术的发展,激光、红外、微波、液晶等技术都被应用于无损 检测领域,而传统的常规无损检测技术也因为现代科技的发展,大大丰富了应用 方法,如射线照相就可细分为 X 射线、γ射线、中子射线、高能 X 射线、射线 实时照相、层析照相……等多种方法。 无损检测作为一种综合性应用技术,无损检测技术经历了从无损探伤,到无 损检测,再到无损评价,并且向自动无损评价、定量无损评价发展。相信在不远 的将来, 新生的纳米材料、 微机电器件等行业的无损检测技术将会得到迅速发展。 参考文献【1】李喜孟.无损检测.机械工业出版社.2011 】 【2】父新漩. 混凝土无损检测手册.人民交通出版社.2003 】 【 3】 冯子蒙.超声波无损检测于评价的关键技术问题及其解决方案.煤矿机 】 械.2009(9) 【4】唐继强.无损检测实验.机械工业出版社.2011 】 【5】李丽茹.表面检测.机械工业出版社.2009 】 【6】国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会.机械工业 出版社.2004 【7】胡学知主编. 中国劳动社会保障出版社.2007 】
三坐标测量技术论文
三坐标测量技术广泛应用于机械制造、电子、汽车和航空工业中。下面是我为大家精心推荐的三坐标测量技术论文,希望能够对您有所帮助。
基于三坐标测量仪的精密测量技术研究
摘 要:三坐标测量仪的出现本身就是测量行业的一大革命,它不但大大提高了测量精度,而且也在智能化上有很大的进步,对于测量行业的发展有着很深的影响。为进一步提高我国齿轮行业的产品质量,提高行业竞争力,本文对三坐标测量仪的精密测量技术进行研究,探讨与其他仪器精确度方面的优缺点及发展趋势,从而保证我国齿轮产品的质量。
关键词:三坐标测量仪 测量行业 精密测量技术
中图分类号:TH721 文献标识码:A 文章编号:1672-3791(2013)06(b)-0073-01
三坐标测量仪CMM(Coordinate MeasurMahine)是20世纪60年代后期发展起来的一种高效率、新型、精密的测量设备, 它广泛应用于机械制造、电子、汽车和航空工业中。三坐标测量仪可以进行零部件尺寸、形状和相互位置检测,可以用于划线、定中心孔,尤其对连续曲面进行扫描得到曲面数据及表达。获取表面数据的采集, 是产品逆向工程实现的基础和关键技术之一。
1 三坐标测量仪对测量行业的进步作用
整个测量以及机械行业的快速进步,不断地向三坐标测量仪提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、检测微损甚至无损、遥感遥测遥控更远距、使用更方便、成本更低廉、无污染等,同时也为三坐标测量仪科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。
1.1 解决了复杂形状表面轮廓尺寸的测量
实现了对基本的几何元素的高效率、高精度测量与评定,解决了复杂形状表面轮廓尺寸的测量,例如箱体零件的孔径与孔位、叶片与齿轮、汽车与飞机等的外廓尺寸检测。
1.2 提高了测量精度
提高了三维测量的测量精度,目前高精度的坐标测量机的单轴精度,每米长度内可达1 um以内,三维空间精度可达1~2 um。对于车间检测用的三坐标测量仪,每米测量精度单轴也达3~4 um。由于三坐标测量仪可与数控机床和加工中心配套组成生产加工线或柔性制造系统,从而促进了自动生产线的发展。
1.3 提高了测量效率
随着三坐标测量仪的精度不断提高,自动化程序不断发展,促进了三维测量技术的进步,大大地提高了测量效率。尤其是电子计算机的引入,不但便于数据处理,而且可以完成CNC的控制功能,可缩短测量时间达95%以上。
1.4 降低用户测量成本
随着激光扫描技术的不断成熟,同时满足了高精度测量(质量检测)和激光扫描(逆向工程)多功能复合型的三坐标测量仪的发展更好地满足了用户需求,大大降低用户测量成本,提高工作效率。
2 坐标测量仪与其他仪器的比较
2.1 影像测量仪
作为最初的精密测量仪器,影像测量仪是一个见证了整个行业开始,它提供了发展的产业平台的基础。然而,由于影像测量仪测量技术略显粗糙,因此,二次元影像仪成为行业发展的时代的产物,它是精密测量技术和功能方面,产业的发展提供技术支持。但是,即便如此,二次元影像测量仪还没有完全满足客户的需求检测,它不能提供一个解决方案的立体检查,在这种情况下,开发和生产出三坐标测量仪。当然,在此过程中制造商中过渡阶段的2.5元/m3的出现提供了帮助。这是一个从开始到目前的整个发展阶段的精密测量仪器。
2.2 三坐标测量仪
三坐标测量仪采用花岗石仪座,提高了基准平面的精度,缩小了仪器自身的精度误差。活动表座可在仪座的任何位置进行测量。仪座不生锈,使用保管方便。
三坐标测量仪的测量精度是非常高的,三坐标测量仪器和其他测量仪器相比,这点占据一个很大的优势。例如:制造精密量具,总体上是好的,用游标卡尺水平测量工具,测量精度可达+/-0.1级。但是,一般水平的三坐标测量仪,测量精度就可以高达+/-0.05。
通过上述分析,我们从二次元和三坐标的功能应用上可以看出,相较于二次元影像测量仪,三坐标测量仪可说是更加的功能全面,因为它除了测量工件的长宽参数,还可以检测工件的高,这是影像测量仪所无法达到的。
3 三坐标测量仪测量技术的发展趋势
3.1 品种更加灵活多样
在我国,人们已经越来越认识到测量检测和适当的测量装置的重要性,不仅可以帮助用户轻松地提高产品质量,也将提高生产效率,因此获得制造先进的测量设备,可以为用户提供先进的测量解决方案而得到高投资回报率。中国模具未来发展将是更大规模的、高精确度的,要求也会越来越多,多功能复合模具已成为一个热点。提高塑料模具,模具的比例及适应高压气体辅助注射成型过程的模具也将随之发展。物种多样性的变化将更加迅速,这就要求除了精确测量精度高,测量设备也更灵活,更需要轻松的测量环境随时随地方便改造,这样才能跟上发展的步伐。
3.2 逐渐向新的应用领域开发
“以市场为导向,以客户为导向”这一趋势使得三坐标测量设备技术现已广泛使用在工业应用领域的大型机器及零部件的精确测量,测量范围大,精度高,而且非常耐用,非常适合工厂环境。世界范围内获得了广泛的认可和肯定,作为行业首选三坐标测量仪器技术,将继续开发新的应用领域的测量。
4 结论
综上所述,随着生产规模日益扩大,加工精度不断提高,除了需要高精度三坐标测量仪的计量室检测外,为了便于直接检测工件,测量往往需要在加工车间进行,或将测量机直接串连到生产线上。检验的零件数量加大,科学化管理程度加强,因而需要各种精度的坐标测量机,以满足生产的需要。随着市场的不断发展壮大,三次元的产品技术也在不断的提高,三坐标测量技术也在不断进步。
参考文献
[1] 刘贵云.大批量定制生产的产品族设计技术综述[J].机械设计,2012(8):1-4.
[2] 龚先新.大批量定制技术及其应用[M].北京:机械工业出版,2003.
[3] 丁俊健,谈士力,宋晓峰.等.基于BP神经网络的ETO产品配置设计方法[J].工程设计学报,2010,14(3):199-203.
[4] 刘大有.一个面向大批量定制的重用配置方法[J].电子学报,2011,2:383-388.
[5] 孟静.变型零件NC程序主模板设计[J].中国机械工程,2011,17(18):1871-1875.
点击下页还有更多>>>三坐标测量技术论文
[ECCV2020]论文翻译:Character Region Attention For Text Spotting
场景文本检测器由文本检测和识别模块组成。已经进行了许多研究,以将这些模块统一为端到端的可训练模型,以实现更好的性能。典型的结构将检测和识别模块放置在单独的分支中,并且RoI pooling通常用于让分支共享视觉特征。然而,当采用识别器时,仍然有机会在模块之间建立更互补的连接,该识别器使用基于注意力的解码器和检测器来表示字符区域的空间信息。这是可能的,因为两个模块共享一个共同的子任务,该任务将查找字符区域的位置。基于这些见解,我们构建了紧密耦合的单管道模型。通过使用检测输出作为识别器输入,并在检测阶段传播识别损失来形成此结构。字符得分图的使用有助于识别器更好地关注字符中心点,并且识别损失传播到检测器模块会增强字符区域的定位。此外,增强的共享阶段允许对任意形状的文本区域进行特征校正和边界定位。大量实验证明了公开提供的直线和曲线基准数据集的最新性能。
场景文本定位,包括文本检测和识别,由于在即时翻译,图像检索和场景解析中的各种应用,最近引起了广泛的关注。尽管现有的文本检测器和识别器在水平文本上很有效,但是在场景图像中发现弯曲的文本实例时,仍然是一个挑战。
为了在图像中发现弯曲的文本,一种经典的方法是将现有的检测和识别模型进行级联,以管理每一侧的文本实例。检测器[32、31、2]尝试通过应用复杂的后处理技术来捕获弯曲文本的几何属性,而识别器则应用多向编码[6]或采用修正模块[37、46、11]来增强弯曲文本上识别器的准确性。
随着深度学习的发展,已经进行了将检测器和识别器组合成可共同训练的端到端网络的研究[14,29]。拥有统一的模型不仅可以提高模型的尺寸效率和速度,还可以帮助模型学习共享功能,从而提高整体性能。为了从该属性中受益,还尝试使用端到端模型[32、34、10、44]处理弯曲文本实例。但是,大多数现有的工作仅采用RoI pooling 在检测和识别分支之间共享底层特征。在训练阶段,不是训练整个网络,而是使用检测和识别损失来训练共享特征层。
如图1所示,我们提出了一种新颖的端到端字符区域注意文本定位模型,称为CRAFTS。而不是将检测和识别模块隔离在两个单独的分支中,我们通过在模块之间建立互补连接来建立一个单一的pipline。我们观察到,使用基于注意力的解码器的识别器[1]和封装字符空间信息的检测器[2]共享一个公用的子任务,该子任务用于定位字符区域。通过将两个模块紧密集成,检测级的输出可帮助识别器更好地识别字符中心点,并且从识别器传播到检测器级的损失会增强字符区域的定位。而且,网络能够使在公共子任务中使用的特征表示的质量最大化。据我们所知,这是构建紧密耦合损失的首个端到端工作。 我们的贡献总结如下: (1)我们提出了一种可以检测和识别任意形状的文本的端到端网络。 (2)通过利用来自修正和识别模块上检测器的空间字符信息,我们在模块之间构造互补关系。 (3)通过在整个网络的所有特征中传播识别损失来建立单个pipline。 (4)我们在包含大量水平,弯曲和多语言文本的IC13,IC15,IC19-MLT和TotalText [20、19、33、7]数据集中实现了最先进的性能。
文本检测和识别方法 检测网络使用基于回归的[16、24、25、48]或基于分割的[9、31、43、45]方法来生成文本边界框。诸如[17,26,47]之类的一些最新方法将Mask-RCNN [13]作为基础网络,并通过采用多任务学习从回归和分割方法中获得了优势。就文本检测的单元而言,所有方法还可以依赖单词级别或字符级别[16,2]预测的使用进行子分类。
文本识别器通常采用基于CNN的特征提取器和基于RNN的序列生成器,并按其序列生成器进行分类。连接主义的时间分类(CTC)[35]和基于注意力的顺序解码器[21、36]。 检测模型提供了文本区域的信息,但是对于识别器而言,要提取任意形状的文本中的有用信息仍然是一个挑战。 为了帮助识别网络处理不规则文本,一些研究[36、28、37]利用 空间变换器网络(STN) [18]。而且,论文[11,46]通过迭代执行修正方法进一步扩展了STN的使用。这些研究表明,递归运行STN有助于识别器提取极端弯曲文本中的有用特征。在[27]中,提出了循环RoIWarp层, 在识别单个字符之前对其进行裁剪。这项工作证明,找到字符区域的任务与基于注意力的解码器中使用的注意力机制密切相关。
构造文本定位模型的一种方法是依次放置检测和识别网络。众所周知的两阶段结构将TextBox ++ [24]检测器和CRNN [35]识别器耦合在一起。简单来说,该方法取得了良好的效果。
端到端的使用基于RNN的识别器 EAA [14]和FOTS [29]是基于EAST检测器[49]的端到端模型。这两个网络之间的区别在于识别器。 FOTS模型使用CTC解码器[35],而EAA模型使用注意力解码器[36]。两项工作都实现了仿射变换层来合并共享功能。提出的仿射变换在水平文本上效果很好,但在处理任意形状的文本时显示出局限性。 TextNet [42]提出了一种在特征池化层中具有透视RoI变换的空间感知文本识别器, 网络保留RNN层以识别2D特征图中的文本序列,但是由于缺乏表现力的四边形,在检测弯曲文本时,网络仍然显示出局限性。
Qin等[34]提出了一种基于Mask-RCNN [13]的端到端网络。给定box proposals,从共享层合并特征,并使用ROI遮罩层过滤掉背景杂波。提出的方法通过确保注意力仅在文本区域中来提高其性能。Busta等提出了Deep TextSpotter [3]网络,并在E2E-MLT [4]中扩展了他们的工作。该网络由基于FPN的检测器和基于CTC的识别器组成。该模型以端到端的方式预测多种语言。
端到端的使用基于CNN的识别器 在处理任意形状的文本时,大多数基于CNN的模型在识别字符级文本都具有优势。 MaskTextSpotter [32]是使用分割方法识别文本的模型。尽管它在检测和识别单个字符方面具有优势, 但由于通常不会在公共数据集中提供字符级别的注释,因此很难训练网络。 CharNet [44]是另一种基于分割的方法,可以进行字符级预测。该模型以弱监督的方式进行训练,以克服缺乏字符级注释的问题。在训练期间,该方法执行迭代字符检测以创建伪ground-truths。
尽管基于分割的识别器已经取得了巨大的成功,但是当目标字符的数量增加时,该方法会受到影响。随着字符集数量的增加,基于分割的模型需要更多的输出通道,这增加了内存需求。journal版本的MaskTextSpotter [23]扩展了字符集以处理多种语言,但是作者添加了基于RNN的解码器,而不是使用他们最初提出的基于CNN的识别器。 基于分割的识别器的另一个限制是识别分支中缺少上下文信息。 由于缺少像RNN这样的顺序建模,在嘈杂的图像下,模型的准确性下降。
TextDragon [10]是另一种基于分割的方法,用于定位和识别文本实例。但是, 不能保证预测的字符段会覆盖单个字符区域。为了解决该问题,该模型合并了CTC来删除重叠字符。 该网络显示出良好的检测性能,但是由于缺少顺序建模而在识别器中显示出局限性。
由于CRAFT检测器[2]具有表示字符区域语义信息的能力,因此被选作基础网络。 CRAFT网络的输出表示字符区域以及它们之间的连接的中心概率。由于两个模块的目标是定位字符的中心位置,我们设想此字符居中信息可用于支持识别器中的注意模块。 在这项工作中,我们对原始的CRAFT模型进行了三处更改;骨干替换,连接表示和方向估计。
骨干置换 最近的研究表明,使用ResNet50可以捕获检测器和识别器定义的明确的特征表示[30,1]。因此,我们将骨干网络由VGG-16 [40]换成ResNet50 [15]。
连接表示 垂直文本在拉丁文本中并不常见,但是在东亚语言(例如中文,日语和韩语)中经常出现。在这项工作中,使用二进制中心线连接顺序字符区域。进行此改变的原因是,在垂直文本上使用原始的亲和力图经常会产生不适定的透视变换,从而生成无效的框坐标。为了生成 ground truth连接图,在相邻字符之间绘制一条粗细为t的线段。这里,t = max((d 1 + d 2)/ 2 *α,1),其中d 1和d 2是相邻字符盒的对角线长度,α是缩放系数。使用该方程式可使中心线的宽度与字符的大小成比例。我们在实现中将α设置为0.1。
方向估计 重要的是获取文本框的正确方向,因为识别阶段需要定义明确的框坐标才能正确识别文本。为此,我们在检测阶段增加了两个通道的输出,通道用于预测字符沿x轴和y轴的角度。为了生成定向图的 ground truth.
共享阶段包括两个模块:文本纠正模块和字符区域注意力( character region attention: CRA)模块。为了纠正任意形状的文本区域,使用了薄板样条(thin-plate spline:TPS)[37]转换。受[46]的启发,我们的纠正模块结合了迭代式TPS,以更好地表示文本区域。通过有吸引力地更新控制点,可以改善图像中文本的弯曲几何形状。 通过实证研究,我们发现三个TPS迭代足以校正。
典型的TPS模块将单词图像作为输入,但是我们提供了字符区域图和连接图,因为它们封装了文本区域的几何信息。我们使用二十个控制点来紧密覆盖弯曲的文本区域。为了将这些控制点用作检测结果,将它们转换为原始输入图像坐标。我们可以选择执行2D多项式拟合以平滑边界多边形。迭代TPS和最终平滑多边形输出的示例如图4所示。
识别阶段的模块是根据[1]中报告的结果形成的。 识别阶段包含三个组件:特征提取,序列建模和预测。 由于特征提取模块采用高级语义特征作为输入,因此它比单独的识别器更轻便。
表1中显示了特征提取模块的详细架构。提取特征后,将双向LSTM应用于序列建模,然后基于注意力的解码器进行最终文本预测。
在每个时间步,基于注意力的识别器都会通过屏蔽对特征的注意力输出来解码文本信息。 尽管注意力模块在大多数情况下都能很好地工作,但是当注意点未对齐或消失时,它无法预测字符[5,14]。 图5显示了使用CRA模块的效果。 适当放置的注意点可以进行可靠的文本预测。
用于训练的最终损失L由检测损失和识别损失组成,取L = Ldet + Lreg。 识别损失的总体流程如图6所示。损失在识别阶段流经权重,并通过字符区域注意模块传播到检测阶段。 另一方面,检测损失被用作中间损失,因此使用检测和识别损失来更新检测阶段之前的权重。
English datasets IC13 [20]数据集由高分辨率图像组成,229张图像用于训练和233张图像用于测试。 矩形框用于注释单词级文本实例。 IC15 [20]包含1000个训练图像和500个测试图像。 四边形框用于注释单词级文本实例。 TotalText [7] 拥有1255个训练图像和300张测试图像。与IC13和IC15数据集不同,它包含弯曲的文本实例,并使用多边形点进行注释。
Multi-language dataset IC19 [33]数据集包含10,000个训练和10,000个测试图像。 数据集包含7种不同语言的文本,并使用四边形点进行注释。
我们联合训练CRAFTS模型中的检测器和识别器。为了训练检测阶段,我们遵循[2]中描述的弱监督训练方法。通过在每个图像中进行批随机采样的裁剪单词特征来计算识别损失。每个图像的最大单词数设置为16,以防止出现内存不足错误。检测器中的数据增强应用了诸如裁剪,旋转和颜色变化之类的技术。对于识别器来说,ground truth框的角点在框的较短长度的0%到10%之间的范围内受到干扰。
该模型首先在SynthText数据集[12]上进行了50k迭代训练,然后我们进一步在目标数据集上训练了网络。使用Adam优化器,并应用在线困难样本挖掘On-line Hard Negative Mining(OHEM) [39]来在检测损失中强制使用正负像素的1:3比例。微调模型时,SynthText数据集以1:5的比例混合。我们采用94个字符来覆盖字母,数字和特殊字符,对于多语言数据集则采用4267个字符。
水平数据集(IC13,IC15) 为了达到IC13基准,我们采用在SynthText数据集上训练的模型,并在IC13和IC19数据集进行微调。在;推理过程中,我们将输入的较长边调整为1280。 结果表明,与以前的最新技术相比,性能显着提高。
然后在IC15数据集上对在IC13数据集上训练的模型进行微调。在评估过程中,模型的输入大小设置为2560x1440。请注意,我们在没有通用词汇集的情况下执行通用评估。表2中列出了IC13和IC15数据集的定量结果。
使用热图来说明字符区域图和连接图,并且在HSV颜色空间中可视化了加权的像素角度值。 如图所示,网络成功定位了多边形区域并识别了弯曲文本区域中的字符。左上角的两个图显示成功识别了完全旋转和高度弯曲的文本实例。
由字符区域注意辅助的注意力 在本节中,我们将通过训练没有CRA的单独网络来研究字符区域注意(CRA)如何影响识别器的性能。
表5显示了在基准数据集上使用CRA的效果。没有CRA,我们观察到在所有数据集上性能均下降。特别是在远景数据集(IC15)和弯曲数据集(TotalText)上,我们观察到与水平数据集(IC13)相比,差距更大。这意味着在处理不规则文本时,送入字符注意力信息可以提高识别器的性能。(?表格中的实验数据是对远景文本更有效,不知道这个结论如何得出来的?)
方向估计的重要性 方向估计很重要,因为场景文本图像中有许多多方向文本。我们的逐像素平均方案对于识别器接收定义良好的特征非常有用。当不使用方向信息时,我们比较模型的结果。在IC15数据集上,性能从74.9%下降到74.1%(-0.8%),在TotalText数据集上,h-mean值从78.7%下降到77.5%(-1.2%)。 结果表明,使用正确的角度信息可以提高旋转文本的性能。
推理速度 由于推理速度随输入图像大小而变化,因此我们在不同的输入分辨率下测量FPS,每个分辨率的较长边分别为960、1280、1600和2560。测试结果得出的FPS分别为9.9、8.3、6.8和5.4。对于所有实验,我们使用Nvidia P40 GPU和Intel®Xeon®CPU。与基于VGG的CRAFT检测器的8.6 FPS [2]相比,基于ResNet的CRAFTS网络在相同大小的输入上可获得更高的FPS。而且,直接使用来自修正模块的控制点可以减轻对多边形生成进行后期处理的需要。
粒度差异问题 我们假设 ground-truth与预测框之间的粒度差异导致IC15数据集的检测性能相对较低。 字符级分割方法倾向于基于空间和颜色提示来概括字符连接性,而不是捕获单词实例的全部特征。 因此,输出不遵循基准测试要求的框的注释样式。图9显示了IC15数据集中的失败案例,这证明了当我们观察到可接受的定性结果时,检测结果被标记为不正确。
在本文中,我们提出了一种将检测和识别模块紧密耦合的端到端可训练单管道模型。 共享阶段中的字符区域注意力充分利用了字符区域图,以帮助识别器纠正和更好地参与文本区域。 此外,我们设计了识别损失通过在检测阶段传播并增强了检测器的字符定位能力。 此外,共享阶段的修正模块可以对弯曲的文本进行精细定位,并且无需开发手工后期处理。 实验结果验证了CRAFTS在各种数据集上的最新性能。
煤矿机械轴类超声检测技术应用论文
煤矿机械轴类超声检测技术应用论文
1超声检测(UT)
超声检测是无损检测技术的一种,是通过超声波进入物体遇到缺陷时,一部分声波会产生反射,接收器接收反射波,并对反射波进行分析,精确地测出缺陷,并能确定缺陷位置和大小的一种检测技术。超声检测适用于探测被检物内部的面积型缺陷。超声检测的优点是穿透力强、设备轻便、检测成本低、检测效率高,能即时得到检测结果,又能实现自动化检测,在缺陷检测中对危害性较大的裂纹类缺陷特别敏感等。
2煤矿机械运行现况
煤矿采用的大部分机械设备都在粉尘、潮湿、有害气体等恶劣的环境中运行,时常会受到巨大冲击载荷,且长期处于高强度运转状态。高速运行、重载的工作环境所产生的交变载荷,非常容易使材料的内部缺陷或主轴加工过程中因加工工艺产生的缺陷扩大,形成危险性裂纹。还有司机操作不当、设计安装、主轴锻造等带来的缺陷,主轴本身在运行过程中材质强度和刚度发生变化等产生疲劳裂纹,如果这些危险性裂纹不能及时被发现,就有可能导致机械主轴突然断裂,引发重大安全事故,将给矿方带来不必要的损失。
3煤矿需要检测机械主轴
需要检测的主要主轴有:主通风机主轴、提升机滚筒主轴、天轮主轴、输送带机滚筒主轴、罐笼或箕斗提升主轴、架空乘人装置驱动轮与迂回轮主轴等。上述主轴由于受到组装在轴上的结构件约束或覆盖,这些部件所在轴上的部位正是应力集中、易产生表面或内部裂纹的区域,如采用其他无损检测方法检测,需把这些组装部件全部从主轴上分解拆卸下来,这样做不但浪费大量的人力物力财力,而且直接影响煤矿正常生产。为解决这一难题,更好地为煤矿机械设备运行提供条件,采用超声检测对主轴进行不解体检测,效果会更好些。
4机械主轴超声检测技术
4.1准备工作
4.1.1掌握被检机械主轴现实状况检测人员到达检测现场后,首先与矿方沟通,索要有关机械主轴的基本资料,根据提供的资料掌握主轴采用的材质、热处理状态、几何形状、尺寸、组装件结构及数量、受力状态,现场检测条件及环境等现实状况,为超声检测提供条件。其次,根据掌握的资料情况,与矿方制定检测计划。
4.1.2超声检测部位的选择根据主轴的传动结构,受力状况,应力集中的程度选择主轴的联轴器变径部位、滚筒与主轴连接部位,主轴与电机固定端的变径部位、键槽的根部等作为重点超声检测部位。
4.1.3超声检测面清理在选定的检测部位用棉纱清理污染物、用砂纸打磨锈蚀处等。
4.1.4探头和标准试块选择超声检测时,根据被检主轴的材质晶粒度状态选择探头,一般超声波检测选用2.5MHz的探头即可。标准试块根据被检主轴的形状、长度选用CS-I、CS-2C、CSK-ⅢA、CSK-ⅡA、RB-2等型号标准试块作为超声检测灵敏度校验。
4.1.5仪器灵敏度调节检测仪器灵敏度通过调节超声波探伤仪上的[增益]、[衰减器]、[发射强度]等旋钮来实现。径向检测时采用直探头检测方法,直探头灵敏度调节有工件底波调节法和对比试块法。当径向主轴长度S≤3N(近场区)时采用试块对比法,S>3N(近场区)的主轴采用大平底底波调整法调整检测灵敏度。斜探头检测灵敏度调整是利用CSK-IIA或者RB-2试块将检测系统灵敏度调整为2或3水平。
4.1.6耦合剂的选择超声波检测中常采用机油、变压器油、甘油、水、水玻璃作为耦合剂。
4.2主轴超声检测方法
主轴超声检测采用直探头和斜探头两种探头,直探头主要检测主轴的裸露部位,斜探头主要检测主轴的联轴器变径部位、滚筒与主轴连接部位,主轴与电机固定端的变径部位、主轴与风机扇叶连接部位、键槽的根部等。
4.2.1直探头扫查
1)径向扫查:让矿方用扳手打开主轴端盖,在主轴端部涂上耦合剂,将纵波直探头放置主轴端面以压力为0.5~1kg、20~50mm/s速度做100%扫查,扫查过程中要用探头呈“W”型重叠扫查。探头扫查的同时,应随时观察仪器屏幕的波形变化并对有关显示的信息逐一判断。
2)周向扫查:在主轴裸露部位涂上耦合剂,用直探头以同样的压力和速度做100%扫查周向的全方位扫查。直探头扫查的同时,并随时观察仪器屏幕的波形变化,对有关显示的信息逐一判断。
4.2.2斜探头扫查主轴的联轴器变径部位、滚筒与主轴连接部位,主轴与电机固定端的变径部位、键槽的根部等未裸露部位采用横波斜探头检测技术,以0.5~1kg的压力、20~50mm/s的速度沿主轴径向100%扫查。
5缺陷定位、定量、评定
5.1缺陷定位
缺陷定位就是根据探伤仪器示波屏上缺陷回波的水平刻度值与扫描速度来对缺陷进行定位。直探头纵波检测时,仪器时基线扫描线按照1︰n的比例调整好以后,从仪器水平刻度上缺陷波的位置,可以直接得到缺陷离探测面的距离。例如:时基线按声程的1︰2比例调节,主轴底波应在10格出现,当在6格处出现缺陷波时,那么该缺陷离开探测面距离为:2×60=120mm。横波斜探头检测主轴时,缺陷位置可由折射角(β)和声程x来确定(极坐标系),也可由缺陷的水平距离L和深度来确定(直角坐标系)。
5.2缺陷的'定量
缺陷的定量是指在检测中测定的缺陷大小、数量、长短、面积等。缺陷定量的准确与否,直接关系到测试成败。只有准确确定缺陷大小才能让矿方及时采取更换或维修等措施,避免出现重大事故及时消除潜在隐患。目前主轴缺陷的定量法当量法和测长法。主轴横向疲劳裂纹深度的测定采用当量法,对裂纹长度的测定采用测长法。当量法在主轴探伤中常用当量试块比较法和底波高度(dB)相对对比法。
5.3缺陷的评定
检测完成后,根据缺陷波长短、数量、波形特征,按照GB/T6402-2008《钢锻件超声检测方法》、JB/T1581-2014《汽轮机、汽轮发电机转子和主轴锻件超声波探伤方法》等标准要求给出缺陷准确的评定,矿方才能依据缺陷性质,决定是否需要采取措施来解决存在的缺陷,也可以决定在使用过程中密切关注的缺陷发展程度。总之,超声检测技术可以在不破坏构件的条件下,检测机械主轴结构件的内部缺陷,不但可以进行定性评价,还可以对缺陷的大小和位置等进行定量,并给出评价结果,为煤矿机械设备的正常运行提供可靠的保证,也为煤矿企业的安全生产提供了可靠的保障。
图像识别技术论文
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
2.1 指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
2.3 文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K ation Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
上一篇:文献论文常用句型
下一篇:东方论文范文