研究导数论文
研究导数论文
函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。
1. 中值定理
微分学中有费马引理、罗尔定理和拉格朗日中值定理。
拉格朗日定理 如果函数 满足:
(ⅰ)在闭区间 , 上连续;
(ⅱ)在开区间 , 内可导,
则在 , 内至少存在一点 ,使
或
由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。
需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。
2. 用导数研究函数的性质
为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。
现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。
反过来,我们是否可以有导数的符号来判定函数的单调性呢?
一阶导数的符号
在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到
( < < )
有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。
由此我们可以归纳出函数单调性的判别法。
设 在区间 上连续且在区间 上可导,则
(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;
(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。
(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。
此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。
曲线的上下凹性
设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;
如果在某一区间内 ,那么 在该区间式递减的。
如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少,
点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。
二阶导数的符号
函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。
设 在区间 上连续且在区间 上可导,则
(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;
(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。
局部极值性
我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。
同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。
函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。
我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。
最大值与最小值
在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。
现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。
例5 求函数 在闭区间 , 上的最大值与最小值。
关于导数的论文
导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。
y=f(x)的导数有时也记作y',即 f'(x)=y'=limΔx→0[f(x+Δx)-f(x)]/Δx
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
求导数的方法 (1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量Δy=f(x0+Δx)-f(x0)
② 求平均变化率
③ 取极限,得导数。
(2)几种常见函数的导数公式:
① C'=0(C为常数函数);
② (x^n)'= nx^(n-1) (n∈Q);
③ (sinx)' = cosx;
④ (cosx)' = - sinx;
⑤ (e^x)' = e^x;
⑥ (a^x)' = a^xlna (ln为自然对数)
⑦ (Inx)' = 1/x(ln为自然对数)
⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!导数的应用
1.函数的单调性
(1)利用导数的符号判断函数的增减性
利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想.
一般地,在某个区间(a,b)内,如果>0,那么函数y=f(x)在这个区间内单调递增;如果<0,那么函数y=f(x)在这个区间内单调递减.
如果在某个区间内恒有=0,则f(x)是常函数.
注意:在某个区间内,>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在内是增函数,但.
(2)求函数单调区间的步骤
①确定f(x)的定义域;
②求导数;
③由(或)解出相应的x的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数.
2.函数的极值
(1)函数的极值的判定
①如果在两侧符号相同,则不是f(x)的极值点;
②如果在附近的左侧,右侧,那么,是极大值或极小值.
3.求函数极值的步骤
①确定函数的定义域;
②求导数;
③在定义域内求出所有的驻点,即求方程及的所有实根;
④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.
4.函数的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念.
(2)求f(x)在[a,b]上的最大值与最小值的步骤
①求f(x)在(a,b)内的极值;
②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
5.生活中的优化问题
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题.解决这些问题具有非常现实的意义.这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题.
关于导数的论文,关系到我期末考试的成败。
浅谈导数
导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野, 是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。本文拟就导数的应用,谈一点个人的感悟和体会。
1以导数概念为载体处理函数图象问题函数图象直观地反映了两个变量之间的变化规律,由于受作图的局限性,这种规律的揭示有时往往不尽人意. 导数概念的建立拓展了应用图象解题的空间。
例1:(2007浙江卷)设 是函数f(x)的导函数,将y= f(x)+f′(x)和的图象画在同一个直角坐标系中,不可能正确的是(D)
例2:(2005江西卷) 已知函数y= xf′(x)的图象如右图所示(其中f′(x))是函数 f(x)的导函数),下面四个图象中y= f(x)的图象大致是(C)
分析:由图象知,f′(1)=f′(-1) =0,所以x=±1是函数f(x)的极值点,又因为在(-1,0)上,f′(x)<0,在(0,1)上,f′(x)>0,因此在(-1,1)上,f(x)单调递减,故选C。
2以导数知识为工具研究函数单调性对函数单调性的研究,导数作为强有力的工具提供了简单、程序化的方法,具有普遍的可操作方法。
例3:已知f(x)=x3+bx2+cx+d是定义在R上的函数, 其图象交x轴于A、B、C三点, 点B的坐标为(2,0),且 f(x)在[-1,0]和[0,2]有相反的单调性. ①求C的值. ②若函数f(x)在[0,2]和[4,5]也有相反的单调性, f(x)的图象上是否存在一点M, 使得f(x)在点M的切线斜率为3b? 若存在, 求出M点的坐标. 若不存在, 说明理由.
分析:①f′(x)=3x2+2bx+c,
∵f(x)在[-1,0]和[0,2]有相反的单调性.
∴ x=0是f(x)的一个极值点, 故f′(0)=0. ∴c=0.
②令f′(x)=0得3x2+2bx=0,x1=0,x2=
因为f(x)在[0,2]和[4,5] 有相反的单调性,
∴f′(x)在[0,2]和[4,5] 有相反的符号.
故2≤-2b3≤4,-6≤b≤-3.
假设存在点M(x0,y0)使得f(x)在点M的切线斜率为3b,则f′(x0)=3b.
即3x02+2bx0-3b=0.∵△=4b2-4·3·(-3b)=4b(b+9),而f′(x0)=3b.
∴△<0.
故不存在点M(x0,y0)使得f(x)在点M的切线斜率为3b.
3证明不等式彰显导数方法运用的灵活性把要证明的一元不等式通过构造函数转化为f(x)>0(<0)再通过求f(x)的最值,实现对不等式证明,导数应用为解决此类问题开辟了新的路子,使过去不等式的证明方法从特殊技巧变为通法,彰显导数方法运用的灵活性、普适性。
例4:(1)求证:当a≥1时,不等式对于n∈R恒成立.
(2)对于在(0,1)中的任一个常a ,问是否存在x0>0使得ex0-x0-1>a·x022 ex0成立?如果存在,求出符合条件的一个x0;否则说明理由。
分析:(1)证明:(Ⅰ)在x≥0时,要使(ex-x-1)≤ax2e|x|2成立。
只需证: ex≤a2x2ex+x+1即需证:1≤a2x2+x+1ex①
令y(x)=a2x2+x+1ex,求导数y′(x) =ax+1·ex-(x+1)ex(ex)2=ax+-xex
∴y′(x)=x(a-1ex),又a≥1,求x≥0,故y′(x) ≥0
∴f(x)为增函数,故f(x)≥y(0)=1,从而①式得证
(Ⅱ)在时x≤0时,要使ex-x-1≤ax2e|x|2 成立。
只需证:ex≤a2x2ex+x+1,即需证:1≤ax22e-2x+(x+1)e-x②
令m(x)=ax22e-2x+(x+1)e-x,求导数得m′(x)=-xe-2x[ex+a(x-1)]
而φ(x)=ex+a(x-1)在x≤0时为增函数
故φ(x)≤φ(0)=1-a≤0,从而m(x) ≤0
∴m(x)在x≤0时为减函数,则m(x)≥m(0)=1,从而②式得证
由于①②讨论可知,原不等式ex-x-1≤ax2e|x|2在a≥1时,恒成立
(2)解:ex0-x0-1≤a·x02|x|2ex0将 变形为ax022+x0+1ex0-1<0 ③
要找一个x0>0,使③式成立,只需找到函t(x)=ax22+x+1ex-1 的最小值,
满足t(x)min<0即可,对t(x)求导数t′(x)=x(a-1ex)
令t′(x)=0得ex =1a,则x= -lna,取X0= -lna
在0<x<-lna时,t′(x) <0,在x > -lna时,t′(x) >0
t(x)在x=-lna时,取得最小值t(x0)=a2(lna) 2+a( -lna+1)-1
下面只需证明:a2(lna) 2-alna+a-1<0,在0<a<1时成立即可
又令p(a) =a2(lna) 2-alna+a-1,对p(a)关于a求导数
则p′(a) =12(lna) 2≥0,从而p(a)为增函数
则p(a)<p(1)=0,从而a2(lna) 2-alna+a-1<0得证
于是t(x)的最小值t(-lna)<0
因此可找到一个常数x0=-lna(0<a<1),使得③式成立
最值证明在不等式中的应用,一般转化不等式(转化的思想)构造一个函数,(函数的思想方法)然后求这个函数的极(最)值,应用恒成立关系就可以证明,对于应用导数解决实践问题,关键是建立恰当的数学模型。
4求曲线y=f(x)在点(x0,y0)处的切线的斜率,运用导数的几何意义函数在某点的导数,其几何意义是曲线在该点处切线的斜率,利用导数可以十分便捷地分析处理解析几何中的有关切线问题。
例5:已知函数f(x)=ln x,g(x)=12x2-a(a为常数),若直线l与y=f(x)和y=g(x)的图象都相切,且l与y=f(x)的图象相切于定点P(1,f(1)).
(1)求直线l的方程及a 的值;
(2)当k∈R时,讨论关于x的方程f(x2+1)-g(x)=k的实数解的个数.
分析:(1)∵f′(x)=,∴f′(1)=1 ∴k1=1,又切点为P(1,f(1)),即(1,0)
∴l的解析式为y=x-1,
∵l与y=g(x)相切,由y=x-1
y=12x2+a,消去y得x2-2x+2a+2=0
∴△=(-2)2-4(2a+2)=0,得a=- 12
(2)令h(x)= f(x2+1)-g(x)=ln(x2+1)-12x2+12
∵h′(x) =2x1+x2-x=-x(x-1)(x+1)1+x2,则h′(x) >0,h(x) 为增函数,-1<x<0或x>1时,h′(x) <0,h(x) 为减函数。
故x=±1时,h(x)取极大值ln2,x=0时,h(x)取极小值12。
因此当 k∈(ln2,+∞),原方程无解;当k=ln2时,原方程有两解;当12<k<ln2时,原方程有四解;当k=12时,原方程有三解;当k<12时,原方程有两解。
5利用导数求函数极(最)值解答这类问题的方法是:①根据求导法则对函数求出导数。②令导数等于0,解出导函数的零点。③分区间讨论,得出函数的单调区间。④判断极值点,求出极值。⑤求出区间端点值与极值进行比较,求出最值。
例6:设x1、x2是函数f(x)=ax3+bx2-a2x (a>0)的两个极值点.
(1)若x1=-1,x2=2,求函数f(x)的解析式;
(2)若|x1|+|x2|=22,求f(x)的最大值;
分析:(1)∵f(x)=ax3+bx2-a2x (a>0),∴f′(x)=ax3+bx2-a2x (a>0)
依题意有f′(-1)=0
f′(2)=0,∴ 3a-2b-a2=0
12a+4b-a2=0
解得a=6
b=-9,∴f(x)=6x2+9x2-36x.
(2)∵f′(x)=3ax2+2bx-a2(a>0),
依题意,x1,x2是方程f′(x)=0的两个根,且|x1|+|x2|=22,
∴(x1+x2)2-2x1x2+|x1+x2|=8.
∴(-2b3a)2·(-a3)+2|-a3|=8,∴b2=3a2(6-a).
∵b2≥0,∴0<a≤6.
设p(a)=3a2(6-a),则p′(a)=-9a2+36a.
由p′(a) >0得0<a<4,由p′(a) >0得a>4.
即:函数p(a) 在区间(0,4]上是增函数,在区间[4,6]上是减函数,
∴当a=4时,p(a)有极大值为96,∴p(a)在(0,6]上的最大值是96,
∴b的最大值为46.
导数的广泛应用,为我们解决函数问题提供了有力的工具,用导数可以解决函数中的最值问题,不等式问题,还可以解析几何相联系,可以在知识的网络交汇处设计问题。因此,在教学中,要突出导数的应用。
-
大学数学专业论文范文3000字
数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅析小学数学学习特点对教学的影响
小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性
1.抽象性和形象性的特点
教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响
教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性
1.渐进性和系统性的特点
教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。
2.渐进性和系统性特点对小学数学学习的影响
根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。
三、学习方式的接受性和探索性
1.接受性和探索性在小学数学学习活动中的体现
小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。
在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。
2.接受性和探索性特点对小学数学教学的影响
接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。
四、结语
小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。
浅析新课改下高中数学导数教学的发展
最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。
一.现阶段高中数学导数教学的现状
(1)教学模式单一,对学生 学习方法 引导不够
在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。
(2)应试教育观念导致的教学僵化
一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。
二、新课改下提高数学导数教学质量的 措施
(1)帮助不同的学生制定不同的 学习计划
总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。
(2)借助案例帮助学生加深对导数的理解
导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。
(3)加强导数技巧性和应用训练
在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。
三、结语
综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。
浅谈初中生数学问题意识的培养
一、初中生问题意识培养的意义
问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。
二、初中生问题意识培养策略
如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。
1、改变评价方式,鼓励提问
造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。
2、夯实学习基础,让学生能问
教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.
3、营造轻松学习氛围,使学生敢问
数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。
数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。
4、教师示范引领,诱导学生善问
如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。
案例2.三角形三边关系教学
(1)让生拿出课前准备好的三根长度不一样的塑料吸管。
(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。
(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?
在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。
5、利用现代媒体技术,促学生提问
《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。
现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。
三、结语
总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.
上一篇:游戏主题活动论文
下一篇:知网硕博论文字数