向量论文范文
向量论文范文
高中关于概率论教学探究论文
摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观随机现象的理解与认识,并激发学生自主学习和主动探索的精神.
关键词:概率论;教学;思维方法
在数学的历史发展过程中出现了3 次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.
1 将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“ 阳春白雪” ,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18 世纪,为解决天文观测误差而提出的.在17、18 世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733 年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“ 拟合” 误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844 年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A. Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000 个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ 代数[3]
这一概念:设Ω 为样本空间,若Ω 的一些子集所组成的集合? 满足下列条件:(1)Ω∈? ;(2)若A∈ ? ,则A∈ ? ;(3)若∈ n A ? ,n =1, 2,??,则∈∞=nnA ∪1? ,则我们称 ? 为Ω 的一个σ 代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ 代数.几何概型是19 世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899 年,法国学者贝特朗提出了所谓“ 贝特朗悖论” [3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1 的圆,随机取它的一条弦,问:
弦长不小于3 的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3 种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3 种答案针对的是3 种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“ 随机” 、“ 等可能”、“ 均匀分布” 等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ -代数的概念:对同一个样本空间Ω ,?1 ={?, Ω}为它的一个σ 代数;设A为Ω 的一子集,则 ?2 ={?, A, A, Ω}也为Ω 的一个σ 代数;设B 为Ω 中不同于A的另一子集,则?3 = {?, A,B, A,B, AB, AB,BA,AB,Ω}也为Ω 的一个σ 代数;Ω 的所有子集所组成的集合同样能构成Ω 的一个σ 代数.当我们考虑?2 时,就只把元素?2 的元素? , A , A , Ω 当作事件,而B 或AB 就不在考虑范围之内.由此σ 代数的定义就较易理解了.2 广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“ 玛丽莲问题” :十多年前,美国的“ 玛利亚幸运抢答”
电台公布了这样一道题:在三扇门的背后(比如说1 号、2号及3 号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1 号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?
由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17 世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992 年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].
概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“ 必然寓于偶然转自之中” 的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε ,0 <ε <1,不管ε 如何小,如果把这试验不断独立重复做任意多次,那么A 迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε )n ,前n 次A 都不出现的概率为1? (1?ε )n,当n 趋于无穷大时,此概率趋于1,这表示A迟早出现1 次的概率为1.出现A 以后,把下次试验当作第一次,重复上述推理,可见A 必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3 积极开展随机试验随机试验是指具有下面3 个特点的试验:
(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3 个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3 个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4 引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A) > 0时,P(B | A)未必等于P(B).但是一旦P(B | A) =P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B) > 0时,若P(A| B) = P(A),就称事件B的发生不影响事件A 的发生.因此若P(A) > 0 , P(B) > 0 ,且P(B | A) = P(B)与P(A| B) = P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:
定义1:设A,B 是两个随机事件,若P(A) > 0 ,P(B) > 0,我们有P(B | A) = P(B)且P(A| B) = P(A),则称事件A 与事件B 相互独立.接下来,我们可以继续引导学生仔细考察定义1 中的条件P(A) > 0 与P(B) > 0 是否为本质要求?事实上,如果P(A) > 0,P(B) > 0,我们可以得到:
P(B | A) = P(B) ? P(AB) = P(A)P(B) ? P(A| B) = P(A).但是当P(A) = 0,P(B) = 0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB ? A, AB ? B,因此P(AB) = 0 = P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A) > 0,P(B) > 0,即如下定义事件的独立性:
定义2 : 设A , B 为两随机事件, 如果等式P(AB) = P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B 相互独立.很显然,定义2 比定义1 更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5 结 束 语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.
[参 考 文 献]
[1] C·R·劳.统计与真理[M].北京:科学出版社,2004.
[2] 朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.
[3] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.
[4] 张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.
[5] 王梓坤.随机过程与今日数学[M].北京:北京师范大学出版社,2006.
[6] 邓华玲,傅丽芳,任永泰.概率论与数理统计实验课的探讨与实践[J].大学数学,2008,24(2):11–14.
建立数学创造性意识的学习氛围论文
论文关键词:创造性思维;培养;协同培养 论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造……
剖析高中平面向量授课方式研究论文
【摘要】本文通过对高中第五章平面向量的研究,从运算的角度,教学内容、要求、重难点,本章的特点三个方面进行了总结,得出了五个方面的教学体会。 【关键词】平面向量;数形结合;向量法;教学体会……
培养学生数学时刻使用意识研究论文
[摘要]培养数学应用意识,促进知识内化,达到发展学生智慧的目的,是当前小学数学教学中人们关注的一个热点问题。本文从培养学生数学应用意识的理论依据及探索实践这两个方面对如何发展学生智慧问题进行探讨。……
高中关于概率论教学探究论文
摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观……
教育专业论文答辩自述
教育专业论文答辩自述范文
毕业论文答辩是答辩老师和撰写毕业论文的学员面对面的,由答辩老师就论文提出有关问题,让学生当面回答的活动。下面是我为您搜集整理的教育专业论文答辩自述范文,希望能对您有所帮助。
各位老师、同学:
大家好!我的论文题目是《高中立体几何空间向量教学实践探索》,本篇论文是在xx教授的指导下完成的。
在此,我十分感谢他长期以来对我的精心指导和大力帮助,同时也感谢各位评审老师对我这篇论文的审阅并出席本次答辩。
一、选题缘由、目的
向量进入中学数学教材,是近几十年来国内外教学改革的一个主要特征。空间向量引入立体几何是数学课程改革的重点之一,它是一个具有几何和代数双重身份的概念,具有特别广泛的教育价值。用它来解决部分立体几何问题,可以大大降低难度,激发学生的学习兴趣,有利于学生在学习中获得成功的体验。我们的教师在空间向量这一部分的教学中的难点和焦点在于:空间向量在立体几何中如何运用?空间向量在立体几何教材中怎样安排?如何在立体几何的教学中,正确处理好空间向量和传统方法的关系?怎样设计这部分知识的教学才能帮助学生更好地理解本部分的内容?为此我进行了高中立体几何空间向量教学实践探索。
二、资料收集准备工作
自选定题目后,本人结合自身教学实践,阅读资料,拟定提纲,问卷调查与分析,写开题报告初稿、定稿,硕士论文初稿、修改等一系列程序,于3月正式定稿。
三、论文的结构
本文从空间向量引入高中数学的必要性入手,研究了空间向量的基础知识和空间向量在高中立体几何中的应用,对高中教材中的立体几何空间向量进行了教学分析。本研究主要采用文献分析法、问卷调查法和行动研究法,对泸县二中数学教师和高二年级的二十七个班级的学生样本进行调查,集中研究空间向量对立体几何教与学产生的影响。
全文总共分为七个部分,约四万七千多字:
第一部分是绪论
阐述本研究的时代背景和现实背景;通过文献查阅研究,了解国内外空间向量引入立体几何的教学研究前沿的状况;从而界定核心概念、择取研究视野与方法、确立本研究设计与核心观点。
第二部分是空间向量进入高中立体几何教学的必要性
基于两点:高中立体几何引入空间向量的现实意义和深远影响
第三部分是空间向量的基础知识和空间向量在高中立体几何中的应用
回顾高中立体几何教材中的空间向量的基础知识:包括向量的起源和发展、空间向量的相关概念及表示、空间向量的基本定理和空间直角坐标系的建立。
阐述了空间向量在高中立体几何中的主要应用:确立空间位置关系、解决角和距离问题,体现空间向量是处理立体几何问题的强有力工具,相比于传统方法更具优越性。
第四部分是研究教材:高中教材中的立体几何空间向量教学分析
首先对高中立体几何新旧两种教材进行对比,分析 “空间向量”这部分内容在立体几何这一章中的安排,进而研究高中立体几何空间向量教材教学方法。
第五部分是对高中立体几何空间向量教与学的调查与分析
我于今年2月对我校高二年级进行了问卷调查--学生学习空间向量和教师对空间向量教学的调查。
调查的目的:了解普通高中立体几何空间向量教与学的现状,发现:高中生在运用空间向量来解决立体几何问题时所犯的主要错误。
有:(1)建系不合理;(2)求错点坐标;(3)不会求法向量;(4)思路不清晰;(5)计算错误,等。因此,他们在建系、求点坐标以及利用向量求空间角和空间距离等方面存在着不同程度的困难。此外,由于受到“向量解题简单”思想的误导,在什么情况下选用向量法解决立体几何问题,也是学生遇到的困难之一。
同时,存在着部分教师对空间向量持回避态度。
总之教学中要注意以下几点:
(1)空间向量方法在解决立体几何问题时要发挥其优越性的前提是要求学生有足够的向量知识储备。
(2)在教学中,教者不能有意无意地给学生传递这么一个错误信息--空间向量解决立体几何问题是万能的。
(3)在教学中,除了要教给学生必要的'数学知识,更为重要的是要传授给他们关于数学学习的能力方面的东西。
第六部分是高中立体几何空间向量教学设计与教学实施及实践效果分析
我针对高中立体几何空间向量作了教学设想,进行了教学方式探索,以启发式和探究式学习的教学方式作出立体几何空间向量部分的教学过程设计,以《空间向量的夹角》为例作了教学设计案例,最后进行了教学实践效果分析。
从中数据分析可以得出,笔者对立体几何空间向量的教学设想、教学方式和教学设计的教学实践效果是比较好的,能在空间向量教学这一知识板块的研究上,能给予同行以帮助或是提供参考,这也是本研究的主要目的所在。
第七部分是关于立体几何空间向量教学的基本结论和建议
(一)研究的基本结论
1.空间向量引入立体几何很有必要,还需要加大普及。教学上基于以下两点:
(1)空间向量的引入降低了学生学习的难度。
(2)空间向量的引入降低了对学生空间想象能力训练的要求。
2.用空间向量方法在立体几何题的教学实用性上明显优于传统方法,但不能完全摒弃传统方法,正确处理传统方法与空间向量法之间的关系,二者有机结合、相得益彰。
(二)教学建议
1.注重以新的理念指导教学
2.注重向量概念的教学
3.注重空间向量运算的教学
4.注重空间向量法与传统方法的对比
5.注重向量应用的教学
经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人能力有限,在许多内容表述、论证上存在着不当之处,请各位老师多多指教,我将虚心接受,进一步深入学习研究和教学实践,既使该论文得到完善和提高,也提高教学实践水平。
以上是我对自己的论文简单介绍,请各位老师提问,谢谢。
课题 :向量及向量符号的由来 写一篇论文
数量的定义
数学中,把只有大小但没有方向的量叫做数量(或纯量),物理中常称为标量。
向量的定义
既有大小又有方向的量叫做向量(亦称矢量)。
注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。
("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。
[编辑本段]向量的表示
1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。
2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。)
3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
[编辑本段]向量的模和向量的数量
向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。
注:
1、向量的模是非负实数,是可以比较大小的。
2、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。例如,“向量AB>向量CD”是没有意义的。
[编辑本段]特殊的向量
单位向量
长度为单位1的向量,叫做单位向量.与向量a同向且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。
零向量
长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。
相等向量
长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.
规定:所有的零向量都相等.
当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。
自由向量
始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。
在自由向量的意义下,相等的向量都看作是同一个向量。
数学中只研究自由向量。
滑动向量
沿着直线作用的向量称为滑动向量。
固定向量
作用于一点的向量称为固定向量(亦称胶着向量)。
位置向量
对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。
[编辑本段]相反向量
与a长度相等、方向相反的向量叫做a的相反向量,记作-a。有 -(-a)=a;
零向量的相反向量仍是零向量。
平行向量
方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b.
零向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定:零向量与任一向量平行.
平行于同一直线的一组向量是共线向量。
共面向量
平行于同一平面的三个(或多于三个)向量叫做共面向量。
空间中的向量有且只有一下两种位置关系:⑴共面;⑵不共面。
只有三个或三个以上向量才谈共面不共面。
[编辑本段]向量的运算
设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
上一篇:入学论文答辩
下一篇:论文查重诗文