mcm论文模板
mcm论文模板
全国大学生数学建模竞赛论文格式规范
甲组参赛队从A、B题中任选一题,乙组参赛队从C、D题中任选一题。
论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。
论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
本规范的解释权属于全国大学生数学建模竞赛组委会。
[注]
赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。
全国大学生数学建模竞赛组委会
2008年9月12日修订
mcm 论文排版要求
按照SCI的标准论文格式就行~3题要求相同
数学教育论文格式要求
数学教育论文格式要求
论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献、附录和致谢,那么,数学教育论文的格式有哪些要求呢?下面我为大家介绍。
1. 摘要:
勿庸置疑,摘要在整个数模论文中占有及其重要的地位,它是评委对你所写论文的第一印象,因此在这一部分的写作上一定要花大功夫,千万不能马虎。拿美国赛(mcm&icm)来说吧,摘要是你的论文是否取得好名次的决定性因素,评委们通过你的摘要就决定是否继续阅读你的论文。换句话说,就算你的论文其他方面写得再好,摘要不行,你的论文也不会得到重视。我认为在写摘要时应包括6 个方面: 问题,方法,模型,算法,结论,特色。 简而言之,摘要应该体现你用什么方法,解决了什么问题,得出了什么结论。另外,通过我阅读美国赛outstanding 的论文来看,好的摘要都包含了两个共同的特点:simple 和clear,大家可以借鉴一下。
2. 问题提出:
这一部分没有过多的说明,一般是直接copy 赛题的原文就行了,但我认为在时间充裕情况下可以适当归纳总结;在美国赛中,这一部分叫background 或者introduction,因此可以写点这个问题的一些背景知识。
3. 模型假设:
我认为假设的条件一般可以从题目中挖掘。另外假设需要值得注意的两点是:①对我们所解决问题本身没有影响(或影响比较小)但可以使模型得到简化的因素应该在假设中体现。②。不能为了简化问题而大量假设(使求解问题本身与原题意不符),因此应注意假设的’量’与’度’。
4.符号说明:
在你的论文中不可避免的会出现大量的数学符号,因此在这部分里应把这些符号做一个
简要的说明,可以从符号,类型(变量,常量),单位,含义几个方面来说明(如下表):
需要注意的是单位量纲要统一,含义解释要准确,清楚。
5.问题分析:
从题目到模型是一种从具体到抽象的思维过程,本部分即是这一过程的体现。我个人认为这部分是文章的一个亮点,建议在文字说明的同时用图形或图表列出思维过程,这会使你的思维显得很清晰,让人觉得一目了然。另外,这部分应对题目做整体分析,充分利用题目中的信息和条件,确定用什么方法建立模型。我的经验告诉我,我们可以从题目中得到问题的一些初步的判定:(比如说可以得到在极限情况下的最大产量,花费的最少时间等,在我们最后得到的方案不能超过(或低于)我们这里分析的量。),在这部分应体现我们解决原问题的雏形。总之, 问题分析在整个论文中的作用在于承上启下,也很能反应出参赛者的综合水平。
6.模型建立:
模型的建立是将原问题抽象成用数学语言的表达式,其建立方式会由于对问题的理解和着眼点不同而不同。近年来我发现我国的数学建模竞赛出题主要有两个方向:一是概率统计问题;一是运筹优化问题。因此掌握好以上两方面的知识对于建立模型来说是十分重要的。另外,我还觉得应注意对每个模型式子的解释一定要清楚到位,其中的数学符号一定要与前面的说明保持一致。
7.模型求解:
模型求解的方式很多,但一般多用软件编程求解,在这里我建议大家多用数学软件求解,三大软件(matlab,maple,mathematic)至少应熟悉一种,另外应学会一些专用软件。比如说解概率统计问题的.sas,splus,spss;解运筹优化问题的lingo,lindo 等。其次尽量用不同方法求解,这既能反应出你的思维比较开阔,也能间接地验证你所求解结果的正确性。另外应给出主要算法的一些简要步骤,处理或简化问题的方式,并适当应用表格或图像说明。最后需要提醒大家的是在必要时可以给出数学上的证明,这会使你的论文增色不少。
8.模型(结果分析):
在我们的模型假设中,忽略了一些对问题影响的次要因素,这或多或少的使问题得到了简化,但必然会产生一些误差;另外解决问题的方法是很多的,在论文中可能只用了其中的一两种方法,思维可能显得比较局限;而模型本身也会有它的优势和缺陷。因此,我们在这部分应该做的工作主要有下面三点:
a. 是否能用其他方式或方法解决。
b. 模型的优缺点分析。
c. 模型的误差分析或灵敏度分析。
做好上面的工作,既是对原问题的补充说明,更表现一种思维的严谨和逻辑的严密,使你的论文一气呵成,显得很完备。
9.模型的评价与推广:
由于文章本身的局限性,在这里可以对一些问题做更深入的探讨,这是文章又一亮点,实力比较强的队伍可以在这一块充分发挥。这部分对于整个论文的作用在于画龙点睛。另外,我们对问题的探讨与延拓方式是多种多样的:可以把假设的条件适当放宽了来考虑问题;可以对你的算法做出改进等等,我认为在这里做做定性的分析就够了,最后主要对问题的横向和纵向两方面进行发散。
10.参考文献
这里注意一下格式问题,参赛要求有明确规定:
a.书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。
b.参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
c.参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间。
美国大学生数学建模比赛(MCM) 历年优秀论文 下载
《正确写作美国大学生数学建模竞赛论文.pdf》百度网盘资源免费下载
链接:
上一篇:论文的图标查重吗
下一篇:食品论文答辩前言