输出滤波毕业论文
输出滤波毕业论文
在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:
一、从原理图到PCB的设计流程建立元件参数-输入原理网表-设计参数设置-手工布局-手工布线-验证设计-复查-CAM输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路:
(1).电源开关交流回路
(2).输出整流交流回路
(3).输入信号源电流回路
(4).输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:
·放置变压器
·设计电源开关电流回路
·设计输出整流器电流回路
·连接到交流电源电路的控制电路
·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:
(1)首先要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
(2)放置器件时要考虑以后的焊接,不要太密集.
(3)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接,去耦电容尽量靠近器件的VCC。
(4)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。
(5)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(6)布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。
(7)尽可能地减小环路面积,以抑制开关电源的辐射干扰。
四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比。长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。在地线设计中应注意以下几点:
1.正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰。在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路(中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激。做不到单点时,在共地处接两二极管或一小电阻,其实接在比较集中的一块铜箔处就可以。
2.尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。进行全局布线的时候,还须遵循以下原则:
(1).布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修(注:指在满足电路性能及整机安装与面板布局要求的前提下)。
(2).设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了。
(3).印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。因采用单面板,直插元件位于top面,表贴器件位于bottom面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠。
3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地。
五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。
六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。
七、设计输出输出光绘文件的注意事项:
a.需要输出的层有布线层(底层)、丝印层(包括顶层丝印、底层丝印)、阻焊层(底层阻焊)、钻孔层(底层),另外还要生成钻孔文件(NCDrill)
b.设置丝印层的Layer时,不要选择PartType,选择顶层(底层)和丝印层的Outline、Text、Linec.在设置每层的Layer时,将BoardOutline选上,设置丝印层的Layer时,不要选择PartType,选择顶层(底层)和丝印层的Outline、Text、Line。d.生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改。
毕业论文《IIR数字滤波器性能分析及其matlab仿真》怎么写??滤波器性能该怎么分析??谢谢
1、百度文库下载几篇本科的现成论文 你就知道了
2、仿真就秒杀吧
低通巴特沃斯模拟滤波器设计。
通带截至频率3400 Hz,通带最大衰减3dB
阻带截至频率4000 Hz,阻带最小衰减40dB
Iir2:
模拟低通滤波器转换为数字低通滤波器
,脉冲响应不变法和双线性变换法。
Iir3:
切比雪夫二型低通数字滤波器设计
通带边界频率0.2π,通带最大衰减1dB
阻带截至频率0.4π,阻带最小衰减80dB
Iir4:
椭圆带通数字滤波器设计
Iir5:
高通和带通巴特沃思数字滤波器设计
双线性变换
%低通巴特沃斯模拟滤波器设计
clear; close all
fp=3400; fs=4000; Rp=3; As=40;
[N,fc]=buttord(fp,fs,Rp,As,'s')
[B,A]=butter(N,fc,'s');
[hf,f]=freqs(B,A,1024);
plot(f,20*log10(abs(hf)/abs(hf(1))))
grid, xlabel('f/Hz'); ylabel('幅度(dB)')
axis([0,4000,-40,5]);
line([0,4000],[-3,-3]);
line([3400,3400],[-90,5])
%用脉冲响应不变法和双线性变换法将模拟滤波器离散化
clear; close all
b=1000;a=[1,1000];
w=[0:1000*2*pi];
[hf,w]=freqs(b,a,w);
subplot(2,3,1); plot(w/2/pi,abs(hf)); grid;
xlabel('f(Hz)'); ylabel('幅度'); title('模拟滤波器频响特性')
Fs0=[1000,500];
for m=1:2
Fs=Fs0(m)
[d,c]=impinvar(b,a,Fs)
[f,e]=bilinear(b,a,Fs)
wd=[0:512]*pi/512;
hw1=freqz(d,c,wd);
hw2=freqz(f,e,wd);
subplot(2,3,2); plot(wd/pi,abs(hw1)/abs(hw1(1))); grid on; hold on
title('脉冲响应不变法')
subplot(2,3,3); plot(wd/pi,abs(hw2)/abs(hw2(1))); grid on; hold on
title('双线性变换法')
end
%切比雪夫Ⅱ型低通数字滤波器设计
clear; close all
wp=0.2; ws=0.4; Rp=1; Rs=80;
[N,wc]=cheb2ord(wp,ws,Rp,Rs)
[B,A]=cheby2(N,Rs,wc)
freqz(B,A)
%直接设计带通数字椭圆滤波器
clear; close all
Wp=[0.25,0.45]; Ws=[0.15,0.55];
Rp=0.1; Rs=60;
[N,wc]=ellipord(Wp,Ws,Rp,Rs)
[b,a]=ellip(N,Rp,Rs,wc)
[hw,w]=freqz(b,a);
subplot(2,1,1); plot(w/pi,20*log10(abs(hw))); grid
axis([0,1,-80,5]); xlabel('w/π'); ylabel('幅度(dB)')
subplot(2,1,2); plot(w/pi,angle(hw)); grid
axis([0,1,-pi,pi]); xlabel('w/π'); ylabel('相位(rad)')
%用双线性变换法设计数字高通和带通滤波器
clear; close all
T=1; wch=pi/2;
wlc=0.35*pi; wuc=0.65*pi;
B=1; A=[1,2.6131,3.4142,2.6131,1];
[h,w]=freqz(B,A,512);
subplot(2,2,1); plot(w,20*log10(abs(h))); grid
%axis([0,10,-90,0]); xlabel('w/π'); title('模拟低通幅度(dB)')
%高通
omegach=2*tan(wch/2)/T;
[Bhs,Ahs]=lp2hp(B,A,omegach);
[Bhz,Ahz]=bilinear(Bhs,Ahs,1/T);
[h,w]=freqz(Bhz,Ahz,512);
subplot(2,2,3); plot(w/pi,20*log10(abs(h))); grid
axis([0,1,-150,0]); xlabel('w/π'); title('数字高通幅度(dB)')
%带通
omegalc=2*tan(wlc/2)/T;
omegauc=2*tan(wuc/2)/T;
wo=sqrt(omegalc*omegauc); Bw=omegauc-omegalc;
[Bbs,Abs]=lp2bp(B,A,wo,Bw);
[Bbz,Abz]=bilinear(Bbs,Abs,1/T);
[h,w]=freqz(Bbz,Abz,512);
subplot(2,2,4); plot(w/pi,20*log10(abs(h))); grid
axis([0,1,-150,0]); xlabel('w/π'); title('数字带通幅度(dB)')
跪求毕业论文 基于FPGA 的FIR滤波器 要求有详细的步骤 以及专业知识出处(最好是说明 出自哪个书的知识点
这类论文很多,一般到万方就可下载到。PS:我没有知网论文库的号,去了淘宝的 翰林书店 下载的,还可以。
————————————————————————
裸跪求 :基于单片机MSP430带通数字滤波生成代码,采样频率为300HZ
基于MSP430的温度采集报警系统的毕业论文.doc
文档名称:基于MSP430的温度采集报警系统的毕业论文.doc
格式:doc 大小:3.28MB 总页数:57
展开↓

更多功能
免费预览本文档(全文)
下载敬告:
本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔... 展开↓
文档介绍:
XXXXXXXXXX 本科生毕业设计(论文)
学 院:XXXXXXXXXXXXXXX
专 业: 自动化
学 生: XXX
指导教师: XXXXXXXX
完成日期:XXXXXXXXXXXXXXX
基于MSP430单片机温度测量系统设计
总计 毕业设计(论文) 47 页 表格 6 个
插图 19 幅摘 要
温度控制仪表具有广泛的应用前景,在各种行业中都占有重要的位置,越来越多的领域应用到以单片机为控制核心,用液晶显示作为显示终端的数字化控制设备,通过单片机对被控对象进行智能控制。
本设计是从降低开发成本、扩大适用范围、系统运行的稳定性、可靠性的设计目的出发,采用MSP430F149单片机为控制核心、以单线数字温度传感器DS18B20来完成温度信号的采集、温度以数宇的方式显示在LCD1602液晶上,最终实现温度的采集、显示。并重点阐述了系统的硬件构成和软件编程的设计过程。其中硬件构成有六部分:电源及复位模块、采集模块、报警模块、键盘输入模块和显示模块。
MSP430F149是一种16位内含FLASH型芯片的单片机,具有高速运算、开发设备简便、可现场编程等特点,这给控制系统的设计带来了极大的便利性。各个模块的电路原理图都由protel来完成。
关键词:MSP430F14
上一篇:论文评改模板
下一篇:影视素材论文