欢迎来到学术参考网
当前位置:发表论文>论文发表

色差值研究论文

发布时间:2023-03-01 21:14

色差值研究论文

浅谈废旧油墨的再生处理与利用论文

废油墨中含有一定的水和一定量的有机溶剂,通过加入无水乙醇,让水和乙醇形成共沸物,见图2,在78.2℃下,加热蒸馏,水-乙醇共沸物被蒸馏出来,从而除去水分和部分有机溶剂,以利于废油墨的调配。蒸馏完毕,冷却,最后试样的质量大约为150g。水分馏出物约10g,有机溶剂馏出物约40g。通过试验,最后蒸馏出的水量约占总量的5%~6%左右,蒸馏出的有机溶剂约占20%。蒸馏完毕,取下试样冷却,此时试样质量大约为150g。制作样张后,用密度计测定油墨密度,分别用R,G,B滤色片测定,密度分别为0.39,0.94,0.95。从所测数据来看,油墨呈现中性灰偏红,而且密度不够,不能用于印刷。

由于蒸馏后的试样偏红色,且密度不足,所以需要纠正油墨的色偏及增加油墨的密度。按照补色原理[3],在试样中应加入碳黑(增加密度)及蓝紫色颜料(纠正色偏)。经过多次测试,最后加入约10g的碳黑、3g的酞青兰及2.5g射光兰膏,再加约10mL的干燥剂,在轧墨机里反复进行碾轧,最后加入调墨油调制均匀。将调制均匀的油墨制作样张,并将其与用标样黑墨制作的样张在密度方面进行对比,试样样张和标样样张的外观见图3。用密度计测定100%实地样张密度[4],与标准黑墨的密度进行对照(在同样的纸张和相同的墨层厚度的条件下测试),结果见表1。度[4],与标准黑墨的密度进行对照(在同样的纸张和相同的墨层厚度的条件下测试),结果见表1。从表1可知,通过蒸馏和补色,调试后试样的密度基本和标准黑墨的密度相近,能够满足实际印刷时黑墨实地密度的要求。

试样黑墨的.印刷性能测定

1色差测定

检测标准黑墨及试样黑墨在色彩之间的差别[5],使用X-Rite色差分析仪———色差计,测定自然光下100%实地的2种黑墨在同种纸张上印刷的标记之间的色差。可得到标准黑墨和试样黑墨的L,a,b值,分别设为L1,a1,b1和L2,a2,b2,计算相应的ΔL,Δa,Δb的值,进而得出色差ΔE。其中L代表明度,a,b代表色度,ΔL表示明度的差值,Δa,Δb代表色度的差值,ΔL为正值说明颜色偏浅,为负值说明颜色偏深;Δa为正值代表颜色偏红,为负值代表颜色偏绿;Δb为正值代表颜色偏黄,为负值代表颜色偏蓝。ΔE表示色差值,ΔE越小,色差越小,颜色越是接近,反之色差越大,颜色越偏离。根据所得结果和在印刷时色差对人眼刺激而导致的感性认识之间的关系,可以得出2种油墨在印刷过程中的适用性。色差与人眼的感觉之间的关系见表2。

2颜色检验

将试样黑墨与标样黑墨以并列刮样方法进行对比,检测试样油墨是否符合标准墨的质量标准。将试样与标样用玻璃棒调匀,然后取标样少许,滴于垫好橡皮垫并已经将上端固定好了的LDPE薄膜的左上方,再次取试样少量滴于右上方,两者相邻但不相连;用丝棒自上而下用力将墨在LDPE膜上刮成薄层;效果检视时,涂布有墨量的LDPE膜的下方需衬有150g/m2的铜版纸;检验试样与标样的面色是否一致,若试样与标样面色有明显差别,可将试样进行重复多次在相同位置刮样,直到两者颜色感觉一致,记下对试样进行刮涂的次数。

3细度的测定

油墨的细度好说明固体粒子细微,油墨中固体粒子的分别均匀。细度的检测使用刮板细度仪测定[7]。1)将刮板细度仪及刮刀擦拭干净,并使用玻璃棒将受试墨调匀。2)用玻璃棒取少量油墨,置入刮板细度仪50μm处,油墨量以能充满沟槽而略有多余为宜。3)双手持刮刀,将刮刀垂直横竖在磨光平板上端,在3s内将刮刀由沟槽深的部位向浅的部位拉,使墨样充满沟槽,而平板上不留余墨,刮刀拉过后,立即观察沟槽中颗粒集中点(不超过10个颗粒),记下读数。4)观察时视线应与沟槽成15°~30°角,并在5s之内迅速准确读出集中点数,读数时应精确到最小刻度值。5)为得到更加精确的检测结果,检测应平行进行3次,结果取2次相近读数的算术平均数,2次误差不应大于仪器的最小刻度值。

试样黑墨印刷性能的测定结果与分析

1色差的测定结果与分析

在纸张和墨层厚度相同的条件下测试,所得色差结果见表3。表3中的ΔL为正值,表明试样黑墨较标准油墨颜色浅,这可能是由于试样油墨在回收之前已被严重乳化所致,油墨乳化严重,则其分散性较差,从而导致油墨饱和度的降低。Δa为负值则说明试样黑墨经色偏校正以后,偏红现象有所缓解,2种黑墨的色差值ΔE为2.97,而由表2可知,2种黑墨分开印刷时可具有相同颜色感觉。故所配制的再生油墨完全可用于一般单黑产品的印刷。在实际的油墨处理过程中,由于收集处理的油墨不一样,颜色也不同,所以在调色处理过程中所加补色剂的种类和量的多少不一样,应按照补色基本原理,通过实际操作,调整补色剂的种类和数量,使其颜色和密度与标准色一致,以满足印刷的要求。

2颜色检验结果与分析

通过刮样测定,可得试样与标样分别对人眼的刺激结果,见表4。由表4可知,经过一次涂布的试样黑墨与标样相比,颜色差距较大,这可能是由于油墨乳化的原因,乳化后的油墨颜料粒子的分散性较差,色彩较为浑浊,与标样的色相差别明显。随着涂布次数的增多,试样黑墨与标样黑墨之间的颜色差别逐渐减小,当试样油墨的涂布次数为4次时,与标样相比得到的结果为96,而随着涂布次数的继续增加,与标样差别不再减小。故可知,经严重乳化的油墨难以达到与标准油墨精确一致的颜色感觉。

3细度的测定结果与分析

使用刮板细度仪对油墨细度进行测定,取相近结果的平均数作为油墨的细度值。3次测定结果见表5。由表5可知,试样的细度比标样的细度稍大,这也可能是油墨被乳化的原因。油墨的细度关系到油墨的流变性、流动度及稳定性等印刷适性,油墨的细度差,颗粒粗,在印刷中会引起堆版现象,而且由于颜料的分散性不均匀,油墨颜色的强度不能得到充分发挥,影响油墨的着色力及干燥后墨膜的光亮程度。

总结

方法的关键是对试样进行共沸蒸馏时所加入无水乙醇的量,应控制在样品量的1/3,有利于蒸馏操作,温度在75°~95°左右为好。温度过高,蒸馏效果差,水分除去不完全,温度过低,蒸馏时间太长。试验证明,此方法的优点在于将剩余的废旧油墨集中回收、加工、利用,既可节约成本,又可以减少环境的污染,但小批量的处理成本过高。可进行大批量的处理,一般处理的最基本的量是50kg。通过对回收处理后的试样黑墨的印刷性能的检测,可知经严重乳化的油墨在颜色、细度及色差等方面,与标准油墨有一定的差距,但是当用于单色产品的印刷时,可以得到相同的颜色感觉。(本文作者:方 燕、朱克永、黄文均、姚瑞玲 单位:四川工商职业技术学院)

色差的色差仪

色差仪广泛用于塑胶及印刷等行业,主要根据CIE色空间的Lab,Lch原理,测量显示出样品与被测样品的色差△E以及△Lab值。 1.1 本业界标准包括了两个不透明样本间(如烤漆板,不透明塑胶,纺织品样本等)的色宽容度和微小色差的计算。它基于采用日光光源的用仪器测量的颜色坐标系。考虑到所测样本可能是同色异谱,通过视觉相似的颜色占有不同的光谱曲线,所以业界标准D4086用于证明仪器测量结果。由这些程序测定的容差和差值根据CIE1976CIELAB对颜色空间中近似一致的颜色感觉表达,如CMC的容度单位,CIE-94的容度单位,,由DIN6167给出的DIN99色差公式,或新的CIEDE2000色差单位.基于Hunter的LH, aH ,bH相反颜色空间的色差,或Friele-MacAdam-Chickering(FMC-2)颜色空间的色差,不再推荐用于工业标准。1.2 为了产品的规范,买方和卖方应就样品和参考样之间容许的色差以及计算色宽容度的程序达成一致。每种材料和每次使用的测试条件都需要明确的色宽容度,因为其他外观因素(例如样本的相近,光泽,质地)可能影响测量色差数据之间的相关性和商业接受性。1.3 本标准没有声称包含所有安全因素,即便要,也须结合它的使用。本标准使用者有责任建立合适的安全和健康条件并注意适当的调整使用需求。 2.1 ASTM标准(略)2.2其他标准(略) 3.1在E284中的术语和定义可用于此标准.3.2本标准特有术语的定义3.2.1比色分光计n---分光计,它包含一个色散元件(例如棱镜、光栅、干涉过滤器、可调的或不连续的系列单色光源),通常可输出色度数据(如三刺激值,推导的颜色坐标或表面品质系数)。另外,比色分光计也可以根据色度数据的来源报告潜在的光谱数据。3.2.1.1 讨论----曾经,紫外解析分光光度计用于色度测量。现在,用于颜色测量的仪器有多组普通组件,而紫外解析分光光度计最适合用在色度量的解析中,这需要非常精确的光谱位置和非常窄的带宽以及适度的基线稳定性。比色分光计被设计用于视觉色度计的数据仿真或作为计算机辅助颜色匹配系统的光谱和色度信息来源.。数字比色法允许更多关于光谱等级和光谱带宽的容差,但需要更高的放射等级稳定性。3.2.2 色宽容度方程,n---由可接受性评估得到的一个数学表达式,它基于颜色空间坐标系扭曲了该颜色空间的度量,关于一个参考颜色,为了使单个光泽通过。3.2.2.1 讨论---色宽容度方程将一对样品中的一个设定为标准样计算pass/fail值。这样,在两个样本间可察觉的差异不变时,交互改变测试样与参考样将导致一个在可预见的接受水平上的色差变化,而色差方程用颜色空间裏的尺度量化那个颜色空间裏的距离,交互改变参考样与测试样既不改变可查觉的也不改变预知的色差。 5.1 原始的基于X,Y,Z三刺激值和色品坐标系x,y的CIE颜色标量并不是真正一致的.每个基于CIE值的后续颜色标量都有用于提供某种程度上的一致性的额外因素,这样在不同颜色区域裏的色差将更有可比性.另一方面,由不同颜色标量体系计算的相同样品的色差不可能一致.为避免混乱,样品的色差或相关的容差只有在它们从同一个颜色标量体系中得到时才可比较. 在所有颜色样本中,没有简单的因素可被用于从一个差值或容差单位体系到另一个体系间精确地转换色差和色宽容度.5.2 为了标准的一致,CIE在1976年推荐使用两套颜色公制.CIELAB公制以及与其关联的色差方程在涂料,塑胶,纺织物等相关工业中得到了广泛认可.同时,它没有完全取代Hunter的LH aH bH和FMC-2标准.这两个等级标准的表现相对于有经验的视觉来说,太不足了.相比最近的基于CIELAB调整优化的色宽容度方程,它们不再被推荐了. 因此,包括附件中的两个老的标准,在本标准中只有历史意义.预期将来在修改本业界标准时,附件也会被同时删除.CIELAB公制,就其本身,在本业界标准中也不被推荐去描述小的,中等的色差(差值少于5.0ΔE*ab单位).四个最新定义的方程,这里有文件证明的,高度推荐用于0到5.0ΔE*ab单位范围内的色差.5.3色宽容度方程的使用者发现,在每个体系中,总合三个色差元素向量组成一个单独的标量值,可以有效的判定样本颜色是否在一个标准指定的色宽容度内.然而,为了控制产品的颜色,可能不仅要知道偏离标准的量,而且要知道偏离的方向.可以通过例出三个由仪器决定的色差元素来得到关于少量色差偏离方向的信息.5.4在基于仪器测量值选择色宽容度时,因该小心地与关于颜色、光亮度差异的可接受性的视觉评估和用惯例D1729 得到的饱和度相关.三个这里给出的宽容度方程已被广泛的验证,验证的对象包括纺织品和塑胶,显示出与视觉评估一致并在视觉判断的实验不确定性之内.这就是说,方程本身错误分类色差的苹率不再超过最有经验的颜色匹配师.5.5当色差方程和色宽容度方程按例用于多种不同的光源时,为了产品在日光下使用,他们已被推导或最优化,或二者都有.在其他光源下的计算结果,可能不具有与视觉判断好的相关性.不在日光下应用宽容度方程将需要在体节性水平上的视觉构造如标准D4086. 6.1 CIE1931和1964的颜色空间----不透明样本的日光颜色由颜色空间中的点表示,该空间由三个互相垂直的轴表示,三个轴分别为代表光亮度的Y坐标和色品坐标x和y,其中:X,Y和Z是1931年或1964年CIE标准观察者的三刺激值,它们遵守照明标准D65或其他日光相.这些标度没有提供可感知的统一颜色空间.结果是色差很少从x,y和Y的差异中直接计算出来.6.2 1976年CIE统一颜色空间L* a* b*和色差方程.这是一个接近统一的颜色空间,它基于三刺激值的非线性扩展.它提供差异以产生三个相反的轴,这三个轴分别近似于黑色--白色,红色--绿色和黄色--蓝色的视觉感觉.它在直角坐标系上绘图产生, L*,a*,b*值的计算如下:式中,三刺激值Xn,Yn,Zn定义了名义上的白目标色刺激的颜色.通常,白目标色刺激由一个CIE标准光源的光谱辐射功率给出,例如,C,D65光源或其它日光相,由良好的反射扩散体反射入观察者的眼内.在这些条件下,Xn,Yn,Zn是标准光源在Yn等于100时的三刺激值.6.2.1 根据L*,a*,b*得到的两种颜色的总色差ΔE*ab如下计算:注意,所定义的颜色空间叫CIE1976 L*a*b*颜色空间并且色差方程是CIE1976 L*a*b*色差公式.推荐使用缩写CIELAB(所有单词的首字母).6.2.2 1976年CIE公制(L*a*b*)在一个或多个X/Xn,Y/Yn,Z/Zn的比值小于0.008856时没有适当的收敛于零.在计算L*时, 如果正常公式用于Y/Yn的值大于0.008856,那麼当Y/Yn的值小于0.008856时原公式也许仍然可用.下述修正公式用于Y/Yn等于或小于0.008856时:6.2.3 在计算a*和b*时,如果X/Xn,Y/Yn,Z/Zn都小于0,008856,可用以下修正方程代替正式方程:6.2.4ΔE*ab的量没有指出差异的特性因为它没有指出关于颜色,色度和光亮度差异的相对量和方向.6.2.5 色差的方向由元素∆L*,∆a*和∆ b*的量和代数符号表示:其中,L*s,a* s,和b* s代表参考或标准. L*B,a* B,b* B代表测量样品或测量批.元素∆L*,∆a*和∆ b*的符号大致有如下意思:+∆L*=明亮的-∆L*=较暗的+∆a*=较红的(少绿的)-∆a*=较绿的(少红的)+∆ b*=较黄的(少蓝的)-∆ b*=较蓝的(少黄的)6.2.6 为了判断两种颜色色差的方向,可以计算它们的CIE1976公制颜色角hab和CIE1976公制色度C*ab,公式如下:除了非常深的颜色外,测试样品和参考样品间的颜色角hab差异可与视觉可察觉的颜色差异联系起来.同样的,色度差值ΔC*ab ([C*ab]batch-[C*ab]standard) 可与视觉可察觉的色度差异联系起来.6.2.7 为了判断两种颜色间的不同光亮度,色度和颜色对总色差的贡献,可用CIE1976公制色差来计算ΔH*ab,公式如下:其中,ΔE*ab在6.2.1中计算. ΔC*ab在6.2.6中计算;于是方程:包含的项目显示了光亮度差异ΔL*,色度差异ΔC*ab和颜色差异ΔH*ab 对总色差ΔE*ab的相对贡献.这种计算公制色差的方法没有包含关于色差符号(正或负)的信息,对于接近中性轴的一对颜色的判断可能不稳定.一个可改正这两种问题的选择性方法已被提出:6.3 CMC色宽容度方程:--The Colour Measuremant Committee of Society of Dyers and Colourists英联邦染色师与配色师颜色测量委员会在英国J&P涂装线公司承担了改进JPC79公差方程结果的任务.它是CIELAB方程和当地最优的处于标准位置的产生了FMC-I的方程的结合.它更注重光亮度,色度和颜色改变引起的直接知觉,取代了老的注重光亮度,红绿和黄蓝色的方程. 它的目的是用作单个色泽的判断方程.现在不需用感觉元素去分解原方程—CIELAB模型中的元素已经那样做了.图1显示了CIELAB的色度板(a*, b*),有大量的CMC椭球画在板上.这个图形清楚地显示了椭球区域随CIELAB公制色度L*ab的增加和改变CIELAB公差颜色角而带来的改变. CMC元 素和单个宽容度如下计算:参数(l,c)是系统偏差或参数效应如质地和样本差别的补偿.最普通的值是(2:1),用于纺织品和通过成型模仿纺织材料的塑料.这就意味著光亮度的差异占到色度和色调差异重要性的一半.值(1:1)通常代表一个仅仅能感觉到的差异,用于需要非常严格的容差或具有光泽的表面.对于不光滑的,无规粗糙的,有适度质地的,可用(1:1)到(2:1)之间的中间值.而值(1.3:1)最经常被报道.参数cf是一个商业参数,用于调整容差区域的总量,而接受或拒绝的决定也可以以色宽容度的单位量为基础.颜色依赖函数定义如下:所有的角由角度给出,但通常需要转换成弧度,以便在数字电脑上处理.6.4 CIE94色宽容度方程,这个色宽容度方程的发展是由CMC色宽容度方程的成功促进的,它主要从汽车钢板烤漆的目视观察得来.正如CMC方程,它基于CIELAB颜色公制并用CIELAB颜色空间里的标准位置推导出一系列解析函数修正标准周围区域的CIELAB颜色空间.它的额外函数比CMC中的方程要简单得多.CIE94的色宽容度计算如下:不像其它早先的色差方程,CIE94是由一系列良好定义的条件得来的,在这些条件下方程将提供最佳结果,而偏离这些条件将导致与目视评估的色差显著不同.这些测试条件由表1给出:表1 CIE94色宽容度方程的基本条件特性 要求照明D65光源样品照明度1000lx观测 正常颜色视觉背景 统一中性灰色监视模式 目标样品尺寸>4°对象视角样品分离 最小可能色差大小0到5个CIELAB单位样品结构 视觉均一参数kL ,kC ,kH是可被用于补偿质地和其它样本表达效果的参变因素,同时kv基于工业偏差调整色宽容度量的大小.参数SL,SC,SH用于表现CIELAB颜色空间的局部变形,基于那个空间中的标准样本位置.它用下述方程计算:6.5 DIN99色差方程—由Rohner和Rich发表于1996年的论文促进了德国标准协会更进一步发展和标准化一个改良的翻译作为新的色差公式,一个用CIELAB的对数坐标系而不是用CMC和CIE94的线性和双曲线函数的球状颜色空间模型.该方程由DIN6167标准推导和证明.它提供了一个经轴旋转和对数扩张的新轴去与CIE94色宽容度公式的空间相符.它不须如CIELAB颜色空间利用鉴定的样本作为变形距离的来源.还有,当轴L*,C*和h*ab与光亮度,色度颜色的感觉相联系时,即不是X,Y,Z的三刺激值也不是CIELAB轴a*,b*是感觉可变的,它似乎适合于随wcbbw- fechner的感觉规律去标度颜色空间的差异和距离.这产生了一个相对易用和对CMC或CIE94有相同表现的公式.它也消除了讨厌的基于CIELAB 变形的参考色.这样计算的色差只基于在DIN99空间的欧氏距离. 计算DIN99公式的程序如下:其中,下标S指产品标准,下标B指现在的产品批或测试样.默认参数是: KE=KCH=1, KE(1:KCH).对纺织品应遵如下平衡关系,为获得相对于CMC(l=2,c=1)差异的等价计算差异,可用参数:2(1:0.5),就是说KE =2, KCH =0.5.6.6 CIEDE2000色差方程------这个色差方程的发展是由研究CMC和CIE94哪个色差方程表现更好而引发的.在研究过程中,研究者得到的结论是没有公式是真正最优的.所以CIE建立了一个新的技术委员会,TC 1-47, 颜色&光泽度依赖修正工业色差方程,去推荐一个新方程改进这两个色宽容度方程的缺点.色宽容度方程的一个主要缺点是用CIELAB颜色空间里的参考颜色去计算CIELAB颜色空间的局部变形.当验证的两个样本颠倒过来(将原始测量样为参考样而原来的参考样为测量样),计算的结果是不同的.这与所观察的是矛盾的.明显的,两个样品只是通过互换角色不应该有量的差别.通过应用两个样本间的算术平均色去计算CIELAB颜色空间的局部变形,两个样品的角色可以随意互换而不影响计算色差的量,完全符合目视评估.CIE TC1-47的报告显示, 经过大批样品,CIEDE2000比CMC和CIE94都做得好.CIEDE2000的色差由下式计算:样本或工业依赖参数是KL,KC,KH并且颜色空间依赖参数是SL,SL,SH和RT.三个S项在,假定为直角的,CIELAB坐标系中.并且RT项用于计算CIELAB图中蓝色和紫蓝区域的旋转色差量.四个颜色空间量计算如下:在本式中并不明显,所有展示的角都以角度出,包括Δθ都必须转换成弧度,为了在数字计算机上进行三角解析.6.6.1 用参考和测试样CIELAB颜色坐标系的算术平均值计算CIELAB颜色空间的局部变形产生了一个新问题.现在的基于CIELAB变形空间的标准位置色宽容度差异方程允许使用者预设按受量.这对于一定的依织品资料排架应用和成图品质控制图很方便.这样的设定对于CIEDE2000是不可能的.根据修整的空间坐标系L*a’b*绘出一组颜色即不可能也不合理,因为a’是由每对颜色独立地决定.这样,该方程只适合于在成对产品,标准产品和产出测试样,之间进行比较.但不可用于统计制程控制. :7.1 本业界标准没有包含样品制备技术.除了其他指定的或同意的,准备样品应与适当的测试方法和标准一致. 8.1 按标准E805选择合适的颜色测量几何条件.8.2 按手册指南和标准E1164所给程序操作仪器.8.3 如果用分光比色计,依次,在足够数量的波长间隔内获得参考样和测试样的反射值,精确计算CIE三刺激值.详见标准E308.8.4 每样表面至少测量三个部位去获得数据统一的方向.记录每次测量的位置. 9.1计算色标值L*,a*,b*和局部宽容度系数(SL,SC,SH),如果不是自动得到.9.2计算色差ΔE*ab, ΔECMC和它们的元素,或ΔE94 ,ΔE99,或ΔE00,如果不是自动得到,如6.2-6.6所述计算. 10.1报告以下信息:10.1.1总色差ΔECMC,ΔE94,ΔE99,或ΔE00,每样依其参考.10.1.2对城CIELAB色差, L*,a*,b*是参考样的,ΔL*,Δa*,Δb*如果需要还有Δhab,Δc*ab和ΔH*ab对每样.10.1.3 对其他色宽容度或色差尺度,只有CIELAB的相关值可被作为局部变形报告出来,不需要提供连续的,视觉修正参数.10.1.4对不均一样品,色差值属城样品的不同区域.10.1.5描述或说明制备样品的方法.10.1.6按操作者姓名和仪器号以及使用的色标体系鉴定仪器. 11.1 测试方法的精度和偏差不能同测试的样品和材料分开来.由城本业界标准没有强调与样品的制备和表达有关的话题,无法最终明确可达到的精度和偏差.下一步,可用商业合作测试项目的数据说明一种材料的精度.因为很多三角函数包括在颜色空间的计算中,所以所有的计算应在IEEE浮点格式中计算机体系可提供的最大量的精度范围内,即通常所说的双精度格式.11.2 协作测试服务,颜色和色差合作参数项目,已经调查了颜色的精度和色差测量法,并且从1971年开始每季度公布多对涂装片以展示微小色差.在一个最近的典型的调查裏,包含了118个仪器.表2给出了在相互比较中分开考虑的不同仪器组的平均色差和它们的标准偏离,以及解析和测量条件.11.2.1可再生性----基城实验室间的标准偏离,由不同实验室里的操作员测量有刻度的白纸原料上不透明、无光粗糙的烤漆层得到的两个色差结果,其差值不应大城表2中R*栏列出的值.11.3精度----基城实验室内的标准偏差,色差精度的测量,总结在表2里.与文章(14,15)中报道的颜色测量精度值相等,所以可以代表所有样品材料的精度. 12.1颜色,色差,颜色尺度,颜色空间,色宽容度.表2 由不同的测试和解析条件决定的计算色差偏离测量条件几何 光源 观察者 △E方程仪器数平均值△E标准偏差R*A45°/0° D65 1964 CIELAB 54 1.05 0.07 0.2145°/0° D65 1964 CMC(2:1) 54 0.55 0.03 0.09SphereB D65 1964 CIELAB 282 1.00 0.06 0.18SphereB D65 1964 CMC(2:1) 282 0.53 0.03 0.09用仪器测定颜色一致性的方法计算色差

色差怎麽表示

色差,即chromaticAberration,CA。

用白光进行成像时,除了每种单色光仍会产生五种单色像差外,还会因不同色光有不同折射率造成的色散,而使不同的色光有不同的传播光路,从而呈现出因不同色光的光路差别而引起的像差,称之为色像差(简称色差)。

色像差因性质不同而分为位置色差和倍率色差两种。

扩展资料

ΔE的公式为:ΔE=√(ΔL²+Δa²+Δb²)

Lab颜色标尺按如下标识:

L(亮度)轴表示黑白,0为黑,100为白;

A(红绿)轴正值为红,负值为绿,0为中性色;

B(黄蓝)轴正值为黄,负值为蓝,0为中性色。

所有的颜色都可以通过任何一种Lab标尺被感知并测量。这些标尺也可以用来表示标样同式样的色差,并通常有Δ为标识符。

如果ΔL为正,说明试样比标样浅,如果ΔL为负,说明试样比标样深。

如果Δa为正,说明试样比标样红(或者少绿),如果为负,说明试样绿(或者少红)。

如果Δb为正,说明试样比标样黄(或者少蓝),如果为负,说明试样蓝(或这少黄)。

L,a,b颜色差异还可以通过一个单独的色差符号ΔE来表示出来,ΔE被定义为样品的总色差,但不能表示出样品的色差的偏移方向,ΔE数值越大,说明色差越大。

参考资料来源:百度百科--色象差

周波的科研论文

近年发表的主要科研论文如下:1.周 波,黄瑞华,刘红林,王林云. SLA-DQB和DRB的生物信息学分析. 生物信息学,已接受,in press2.黄瑞华,周 波,曲 亮,等. 淮猪杂交育肥及胴体性能测定. 畜牧与兽医,已接受,in press3.周 波,黄瑞华,曲 亮,李开桢,王林云,任同苏,姜建兵,吴建海. 用色差仪和肉眼评分评定猪肉肉色的研究. 江苏农业科学,2007,2:121-1244.周 波,于传军,王林云等.新淮猪瘦肉系生长与胴体性状分析. 畜牧与兽医,2006,38(2):28-305.周 波,谈永松,刘红林,王林云.五指山、二花脸和皮特兰猪的SLA-DQB基因外显子2 PCR-RFLP多态性分析.上海农业学报,2005,21(4):1-46.于传军,周 波,王林云等.新淮猪瘦肉系杂交育肥及胴体性能测定.畜牧与兽医,2005,37(6):27-287.谈永松,周 波,王林云.五指山、二花脸和皮特兰猪的SLA-DRB基因外显子2 PCR-RFLP及PCR-SSCP多态性分析.遗传学报,2005,32(2):163-1698.周 波,王林云,谈永松等.猪白细胞II类抗原基因多态性研究进展.遗传.2003,22(5): 611-6149.谈永松,胡志刚,王林云,徐银学,高勤学,周 波.申农Ⅰ号二世代猪肥育及胴体性能试验.江苏农业科学.2002, (5):47-4910.王林云,曾勇庆,高勤学,谈永松,周 波,刘 梅,黄瑞华. 对我国地方猪种若干特性的分子生物学研究[J]. 猪业科学,2006,(1):88-89

速求染整专业毕业论文!

##职业技术学院

毕业论文

题目:散棉纤维活性染料染色



院系:轻工分院
专业:现代纺织
姓名: # # #
指导教师:张惠莉

二零一二年五月

摘 要

经过本人实习在石河子华孚纤维有限公司,工艺调色岗位的半年学习里,在华孚基层领导及工艺师傅们的帮助与指导下,本人对染整工艺有一个细致的了解和总结,本文结合自己在华孚工艺调色岗位半年的学习,主要介绍了棉花的性能与品质,活性染料性能,以及散棉的染色原理,经过活性染料的性能与散棉的结合如何达到合格的半成品,为了进一步满足品种的多样化和色泽鲜艳度以及各种牢度的需求,需要对散棉进行前处理、染色、后处理、固色上油等工序,活性染料具有染色方便,色泽鲜艳,色谱齐全,匀染性能好,湿处理牢度稳定等优势,华孚公司采用的是散棉先染色后纺纱,公司领导介绍说,对散棉先进行染色后纺成纱线,即达到环保要求,把排污量降到最低,又可对市场所需流行的颜色有很好主动性,能够根据市场需要,及时对纱线的纤维色比组合以及颜色的色系调整,这样方能得势市场和满足消费者需求的多样化!

关键词:散棉纤维、染色、活性染料、质量。

目录
第一章.散棉纤维、活性染料性能与散棉纤维的染色原理
1.1散棉纤维的性能
1.2活性染料的性能和散棉纤维的染色原理
1.3散棉纤维的染色原理
第二章.散棉纤维染色工艺
2.1染色工艺流程
2.2染色工艺
第三章.散棉纤维染色出现的质量问题分析
3.1染色中产生的色花、色差、缸差的原因
3.2对染色中产生色花、色差、缸差所采取的措施
结束语
致谢

第一章.散棉纤维、活性染料性能与散棉纤维的染色原理
1.1散棉纤维的性能
棉纤维是属于一种天然纤维素纤维,它具有手感柔软、吸湿性好的优良特点也是市场主导纤维之一,棉花的常规质量指标主要有:长度、棉细度、强度、成熟度、含水、含杂、色泽,轧工质量等。散棉染色或漂白时,需要根据棉花的品质性能,来决定所用的染化料助剂配方用量,和跟棉花及所用染料相对应的染色工艺曲线。棉花的成熟度、色泽、轧工质量分为7个品级,即1~7级,3级为品级标准级,用于散棉染色的棉花最好优于3级以内,也就是华孚染色用棉时常分的3个A、B、C棉细度,A细度棉染色效果最佳。染色用棉时应选择马克隆值(成熟度和细度)适中的棉花,其纤维的成熟度较高,天然扭曲多,有助于纤维间的抱合,强度和弹性好,染色上色率一致,匀染性好,相对后续成纱质量也较好。马克隆值过低的棉花成熟度比较差,染色性很差,染色时上染率很低,上色不均匀,容易产生色花。
1.2活性染料的性能
活性染料的性能主要包括有,溶解性、直接性、扩散性与反应活跃性四大要素。
(1) 溶解性:
品质好的活性染料应有良好的水溶性,染料的溶解度和配置的染液浓度,与选用的浴比大小,加入的助剂量,化料时的温度等因素有关。
(2) 直接性
直接性是指活性染料在染色过程中,被纤维的吸收能力和上染率,染液是通过浸染,以染色助剂辅助转移到纤维之上。
(3) 扩散性:
扩散性是指染料向纤维内部的移动能力,温度与时间有利于染料分子的扩散,染色过程中扩散系数越大,反应速率和固色率也越高,匀染性和透染程度也越好。
(4) 反应活跃性:
是指在染色过程中,染料和纤维间产生的反应与结合。染料的反应活跃性也取决于棉花的品质和染色时的温度、时间与PH值等因素。
1.3散棉纤维染色原理
散棉纤维染色原理,是通过不同纤维的性能与纤维的品质,染料与助剂,设备与工艺几大要素相结合。石河子华孚采用的是染液浸染泵力穿透循环式染色。染色前需对纤维的品质性能进行检验,根据纤维的品质,来调出工艺配方以及制定工艺曲线,对纤维的检验,主要也就包括棉纤维的长度、棉细度、强度、成熟度、含杂率、色泽度等指标。进行染色时,所用染料与助剂,是指根据所需要染的颜色与棉花的品质指标,来决定染色时的配方以及助剂的用量。设备是指染色采用的染色机,散棉染色设备一般采用的是敞口式染缸,由主缸、副缸,染笼组成。设备原理是染液通过泵力对棉花的穿透循环。工艺是指染色生产时所用的工艺,所用工艺是根据棉花的品质,染料的性能,所要染的颜色,所用的染化料助剂,所需要的温度曲线等,制定出的整个染色工艺要求。

第二章.散棉纤维染色工艺
2.1染色工艺流程
生产车间根据每日排单计划安排,将所要投染的纤维均匀的装入染笼内,调入染色机中,通过漂白或染色处理,将原棉纤维加工为漂白棉或色棉,具体生产工艺工序流程依次为:配棉→装缸→入染(包括染色过程中的后处理,固色上油)→脱水→烘干→打包→品质检验。
2.2染色工艺
散棉染色工艺依次工序为:精炼前处理(煮棉)→染色→后处理(水洗、PH中和、皂洗、热洗水洗)→固色上油。
(1) 精炼前处理:
天然散棉纤维中存在有较多的油脂蜡质,果胶等杂质,纤维较黄,渗透性也差,为了使棉花有较好的吸水性,以利于在染色中,染料的吸附、扩散,需要对棉花进行煮棉处理,以去除纤维表面的油脂蜡质,果胶等杂质,对棉花的煮练是根据所要投染的颜色,所使用的精炼剂,或者其他煮棉助剂,选择最佳温度和时间进行煮练。精炼后棉花纤维表面较为洁净,吸水性好,且在后续染色中,染液能迅速均匀的渗透其纤维内部,达到和提高染色质量的目的

散棉煮练工艺:
1℅ 煮棉剂 70℃×25′

排水

(2) 染色:
把前处理好的棉花,对将要染的纤维重量和颜色,进行配染色所用的各种染化料助剂,根据染化料助剂的性能和所要染的色系,来制定染色的温度与时间。首先把配好的染料,在副缸放水进行搅拌溶解,溶解充分后加入主缸染棉中,染料在染棉中循环10~20分钟后,每10分钟一次分3次,依次加入1/7,2/7,4/7的元明粉。元明粉加完根据所染颜色进行升温,温度的高低标准是根据所染颜色和所用的染料来定的,活性染料通常有60度,80度,85度,95度等染色温度。在达到染色温度要求后,每10分钟一次分3次,依次加入1/7,2/7,4/7的碱。碱加完后,根据颜色的要求来决定所需保温运行时间。保温运行时间结束后,染色也随着排染液而结束进行下到工序。

散纤维染色工艺曲线 : 1∕7 2∕7 4∕7
60℃ ↓ ↓ ↓ 60′
染料 1∕7 2∕7 4∕7 1′×1℃ 每10分钟加一次碱
35℃↓ ↓ ↓ ↓ 排染液
每10分钟加一次元明粉

(3) 后处理:
染色后有大量染液浮色,盐碱等物质沾附于纤维表面,需要通过充分水洗,过酸中和,加入皂洗剂皂洗,热洗,水洗,来去除纤维表面浮色与盐碱等物质。水洗次数,中和与皂洗的温度、时间,酸和皂洗剂的用量,是根据酸和皂洗剂的浓度和性能,所染颜色,所用的盐碱用量来定的,其后处理目的,就是为了达到染色所需颜色的各项牢度质量指标。

散纤维后处理工艺曲线:

一次水洗 二次水洗 三次水洗 50℃×15′
1.5﹪酸中和

95℃×15′ 水洗 95℃×10 ′ 80℃×10′
1.5﹪皂洗剂 热洗 热洗

一次水洗 二次水洗 三次水洗

水洗次数和使用的温度与时间根据颜色深浅而定,以上是深色使用曲线

(4) 固色上油:
中和、皂洗、清洗工艺结束后,纤维表面仍有浮色很难洗除,所以需要通过固色剂来加以改善,把上染的颜色牢牢固住,使其不掉色。固色剂多为高分子螯合物,它能在纤维表面形成保护膜,使染料和纤维紧密结合,达到各项牢度指标要求,它的牢度指标要求包括有:水洗牢度,干、湿摩擦牢度,日晒牢度,汗渍牢度,沾色牢度等等。因为此前经过煮棉、染色、皂洗,纤维表面的蜡质被破坏,造成手感很硬,固好色后,同时需要上油剂柔软、抗静电处理,来加以改善纤维的手感和后续纺纱的可纺性。固色剂,柔软油剂,抗静电剂的用量,与使用的温度和时间,是根据颜色的深浅而定。

散纤维固色工艺曲线
1.5﹪柔软剂
1℅抗静电剂
50℃×10′ 5′ 10′
2﹪固色剂
排水

双氧水漂白工艺曲线:

水洗一次 1﹪片碱 8﹪双氧水 95℃×60 ′ 水洗一次 50℃×10′ 50℃×10′ 水洗一次
1﹪酸中和 0.2﹪保险粉

以上是本人在华孚工艺调色岗位,半年学习期间用到的染色工艺曲线
第三章.散棉纤维染色出现的质量问题分析
3.1染色中产生的色花、色差、缸差的原因
(1)染色中产生的色花主要问题有:
装笼时,棉花的装笼不均匀,所投入棉笼里的棉块时大时小,或者是装笼重量超负荷使棉饼的密度太大,导致煮棉或染色时染液不易渗透。煮棉时,加入的助剂用量不够,或者是煮棉温度与时间没到位,产生棉煮不透或煮不均匀。染色时,化染料的时间或温度没到位,导致染料未得到充分溶解就加入染缸进行染色。主缸染液浴比太少或泵力压力太小穿透循环不均匀。加入的元明粉和碱的用量未按时按量,使上染不稳定或上染不均匀。过酸时中和时间或温度没到位,导致中和不均匀。皂洗时,所加入的皂洗助剂不匀,或温度升温过快,导致纤维与温度的结合反应过大,固色上油时,加入的固色剂不均匀,使棉与固色剂接触不匀,或者是浮色为洗干净就进行固色,一般固色时出现的色花表现在棉饼的中心,也就所谓的笼芯,以上每个环节都是染色时产生色花的致命因素。
(2)染色中产生的色差,缸差的主要问题有:
缸与缸所用的染料有出入,一般染料的出入误差,出现称料员或者称料所用的电子秤,称染料重量不一致或者是称料的电子秤计量失真,导致染出色棉出现缸差,染料重量不一致的缸差,最终是导致色棉缸与缸之间的深浅不一致。装笼工在装棉饼时,缸与缸的重量装的不一致,重量有多装或少装,导致深浅上的色差和缸差,煮棉时的温度和时间缸与缸的偏差,染色时的所用染液浴比大小,缸与缸的不一致,所加入的染色助剂或元明粉和碱时间不一致,保温运行时的温度与时间不一致,中和,皂洗时,加入的用量不一致或温度与时间不一致等等。以上每个环节,不管是人为的因素或设备的误差,均可导致出缸色棉的色差和缸差。
3.2对染色中产生色花、色差、缸差所采取的措施
(1)对染色中产生的色花所要采取的措施主要有:
在装笼时,装笼棉花要均匀,投入棉块大小要一致,对装笼的密度进行合理调节。煮棉时,加入的煮棉精炼剂用量,温度与时间要到位。染色时,化染料要充分溶解,主缸染液浴不能太少,染缸主泵的泵力不能过小,加入的盐碱用量要按时按量不可随意性,过酸中和时间和温度要到位充分,皂洗时的温度要控制好,不能升温过快,避免升温过快导致棉与温度的结合反应过大,固色上油时,对固色剂要充分稀释均匀的加入。以上每个环节在染色过程中都是控制色花的重要点。
(2)对染色中产生的色差、缸差所要采取的措施主要有:
对缸与缸所用的染料重量误差要减到最小,浅色重量误差不得超过2克,深色用量不得超过10克,需经常对计量电子秤进行标准砝码校正,控制好装笼的重量误差,缸与缸的重量误差不得超过5公斤。煮棉时的温度与时间缸与缸要一致。染色时的染液浴比大小要保持一致,染色时所用到的染色助剂,或元明粉和碱的用量要一致,按时按量的加入。保温运行时的温度与时间要一致。中和,皂洗时加入的用量,温度和时间缸与缸要确保一致。以上的这几个环,如果控制把握得当,均能减少色差和缸差的出现。

结束语:
三年的大专生活一转眼就这样已走入了尾声,我的校园生活同时也就要划上句号,而我的人生却只是一个逗号,从这里走出,我心无比的不舍和眷恋,不过随着校园生活的结束,对我的人生来说,恰恰只是我踏上社会的第一步,也是我人生道路一个新征程的开始。我要把所学到的知识应用到实际工作中去,这样才不会辜负老师们的教诲和父母的期望,同时也是去实现我人生价值的一个体现。
回首这三年,生活和学习中有快乐也有艰辛。感谢老师这三年来,孜孜不倦的教诲和对我成长的关心与爱护。
三年了仿佛就在昨天,学友情深,情同姐妹。这三年校园的风风雨雨,我们一同走过,充满着关爱和欢乐,只是今后大家各奔前程,很难有机会像以前一样一起学习,一起打闹了。希望大家都能在这社会上活出自己的精彩,活自己的价值。这三年的相处,将给我留下太多值得珍藏的最美好的记忆。
经过在石河子华孚纤维有限公司,调色工艺岗位的半年学习和工作中,通过我对工作的认真和刻苦学习,我终于完成了我的《实习论文》,里面记录的都是我这半年所学到所了解的染整知识,虽然我的实习论文写得不是很华丽或者还有很多不足之处,但我可以很自豪的说,这里面所记录的都是我从离开学校到工厂实习半年的汗水和劳动。

致谢:
在这里我首先感谢我的父母,在我的十几年求学历程里,离不开父母的鼓励和支持,是他们辛勤的劳作,无私的付出,为我创造良好的学习条件,才能顺利完成我的学业,感激他们一直以来对我的抚养和培育,今后我会更加努力的学习和工作,不辜负父母对我的殷殷期望!我一定会好好孝敬和报答他们。
我衷心感谢校方各级领导,你们的严谨、细致,认真的态度,以及一丝不苟的作风,是我今后人生和工作中学习的榜样,同时也特别要感谢张惠莉老师,感谢她这三年来的教导和爱护,我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。是她在我毕业和在工厂实习的最后关头,给了我们巨大的帮助与鼓励,在此表示衷心的感激。老师们认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅,这三年的成长将是我以后工作和学习的一笔无形财富。
同时也感谢石河子华孚纤维有限公司,给了我结束学业前实习的一个平台,感谢公司的领导和对我帮助与指导的师傅们,在工作中和生活中是你们对我认真的指导与爱护,让我能够顺利完成的我实习论文。

上一篇:论文文献间标

下一篇:日语文献论文