弦振动研究论文
弦振动研究论文
骨笛遐想
——浅析小提琴发声、调音的物理原理
一.选题意义
据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……
许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。
二.相关物理知识
实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。
一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。
乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。
至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。
三.相关音乐知识
音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。
把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。
最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。
十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。
数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。
十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。
在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。
四.研究与实验
小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。
驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立:
实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:
相差一个半音的两个音高对应
相差一个全音的两个音高对应
序号n 音高音名 比下
音程差 弦长/mm 总长:320.0mm 上述k值
第一次 第二次 第三次 平均值 计算值 理论值 误差率
1
全音 243.0 243.8 243.7 243.5 1.11 1.12 1.39%
2
全音 220.0 220.9 219.2 220.0 1.13 1.12 0.25%
3
半音 195.5 196.1 195.0 195.5 1.07 1.06 1.11%
4
全音 182.5 181.9 183.1 182.5 1.12 1.12 0.18%
5
全音 162.5 162.0 162.3 162.3 1.13 1.12 0.48%
6
全音 143.8 143.8 144.2 143.9 1.11 1.12 1.00%
7
半音 130.0 129.8 128.7 129.5 1.05 1.06 0.79%
8
124.0 122.4 123.2 123.2
其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。
如上数据显示,平均误差率为0.74%,基本符合前文理论分析。
五.结论
我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:
以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。
此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:
①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。
②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。
希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。
关于方程发展史的小论文
人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。
十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。
1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。
十四世纪中叶前,中国开始应用珠算盘。
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。
1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。
1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。
1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。
1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。
1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。
1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。
1614年,英国的耐普尔制定了对数。
1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。
1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。
1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。
1638年,法国的费尔玛开始用微分法求极大、极小问题。
1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。
1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。
1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。
1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。
1654年,法国的帕斯卡、费尔玛研究了概率论的基础。
1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。
1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。
1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。
1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。
1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。
1670年,法国的费尔玛提出“费尔玛大定理”。
1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。
1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。
1686年,德国的莱布尼茨发表了关于积分法的著作。
1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。
1696年,法国的洛比达发明求不定式极限的“洛比达法则”。
1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。
1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。
1711年,英国的牛顿发表《使用级数、流数等等的分析》。
1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。
1715年,英国的布·泰勒发表《增量方法及其他》。
1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。
1733年,英国的德·勒哈佛尔发现正态概率曲线。
1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。
1736年,英国的牛顿发表《流数法和无穷级数》。
1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。
1742年,英国的麦克劳林引进了函数的幂级数展开法。
1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。
1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。
1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。
1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。
1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。
1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。
1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。
1772年,法国的拉格朗日给出三体问题最初的特解。
1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。
1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。
1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。
1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。
1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。
1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。
微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。
在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布�6�1贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。
偏微分方程
包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。
微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。不过这些著作当时没有引起多大注意。
1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。
数学应用
在数学上,初始条件和边界条件叫做定解条件。
偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。
求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。
弦振动的实验中的弦线张力T怎么算?
实 验 报 告
【实验目的】
1. 了解波在弦上的传播及驻波形成的条件 2. 测量不同弦长和不同张力情况下的共振频率 3. 测量弦线的线密度
4. 测量弦振动时波的传播速度
【实验仪器】
弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台
【实验原理】
驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。
当入射波沿着拉紧的弦传播,波动方程为
y?Acos2??ft?? ??
当波到达端点时会反射回来,波动方程为y?Acos2??ft?x
式中,A为波的振幅;f为频率;?为波长;x为弦线上质点的坐标位置,两拨叠加后的波方程为
y?y1?y2?2Acos2?
x
1/14页
?
cos2?ft
x
这就是驻波的波函数,称为驻波方程。式中,2Acos2?
?
是各点的振幅 ,它只与x有关,
即各点的振幅随着其与原点的距离x的不同而异。上式表明,
当形成驻波时,弦线上的各点作振幅为2Acos2?
x
?
、频率皆为f的简谐振动。
令2Acos2?
x
?
?0,可得波节的位置坐标为
x???2k?1?令2Acos2?
?
4
k?0,1,2?
x
?
?1,可得波腹的位置坐标为
2/14页
x??k
?
2
k?0,1,2?
相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。
在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L等于半波长的整数倍时,才能形成驻波。
n?2L 或 ?? n?0,1,2? 2n
式中,L为弦长;?为驻波波长;n为半波数(波腹数)。
既有 L?
另外,根据波动离乱,假设弦柔性很好,波在弦上的传播速度v取决于线密度和弦的张力T,其关系式为
v?
T
?
又根据波速、频率与波长的普遍关系式v?f?,可得
v?f??
可得横波传播速度
T
?
3/14页
v?f
如果已知张力和频率,由式可得线密度
2L n
?n??T??2Lf
?
如果已知线密度和频率,可得张力
??? ?
2
2
?2Lf?T????
n??nT
2L?
如果已知线密度和张力,由式可得频率
f?
【实验内容】 一、实验前准备
1. 选择一条弦,将弦的带有铜圆柱的一端固定在张力杆的U型槽中,把带孔的一端套到调
整螺旋杆上圆柱螺母上。
2. 把两块劈尖(支撑板)放在弦下相距为L的两点上(它们决定弦的长度),注意窄的一
端朝标尺,弯脚朝外;放置好驱动线圈和接收线圈,接好导线。 3. 在张力杆上挂上砝码(质量可选),然后旋动调节螺杆,使张
4/14页
力杆水平(这样才能从挂
的物块质量精确地确定弦的张力)。因为杠杆的原理,通过在不同位置悬挂质量已知的物块,从(转 载于: 写 论文 网:弦振动实验报告思考题)而获得成比例的、已知的张力,该比例是由杠杆的尺寸决定的。 二、实验内容
1. 张力、线密度一定时,测不同弦长时的共振频率,并观察驻波现象和驻波波形。
(1) 放置两个劈尖至合适的间距并记录距离,在张力杠杆上挂上一定质量的砝码记录。
量及放置位置(注意,总质量还应加上挂钩的质量)。旋动调节螺杆,使张力杠杆处于水平状态,把驱动线圈放在离劈尖大约5~10cm处,把接收线圈放在弦的中心位置。提示:为了避免接收传感器和驱动传感器之间的电磁干扰,在实验过程中应保证两者之间的距离至少有10cm。
(2) 将驱动信号的频率调至最小,以便于调节信号幅度。
(3) 慢慢升高驱动信号的频率,观察示波器接收到的波形的改变。注意:频率调节过程
不能太快,因为弦线形成驻波需要一定的能量积累时间,太快则来不及形成驻波。如果不能观察到波形,则调大信号源的输出幅度;如果弦线的振幅太大,造成弦线敲击传感器,则应减小信号源输出幅度;适当调节示波器的通道增益,以观察到合适的波形大小为准。一般一个波腹时,信号源输出为2~3V,即可观察到
5/14页
点击展开全文
研究课题 函数主线在各章节是如何体现的 论文怎么写啊
一、函数的起源(产生)
十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。
十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。
人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。
二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。
十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。
实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。
1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。
函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释
十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。
十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6)
1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。
⒉以“集合”为基础的函数概念
函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。
二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。
随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。
对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。
对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。
为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。
到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。
三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。
⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。
上一篇:科学文献检索论文
下一篇:毕业论文开始