生存分析毕业论文
生存分析毕业论文
在生物医学研究中,生存分析是非常重要和常见的分析方法。本文对生存分析中的Kaplan–Meier模型、Cox比例风险模型进行简要的介绍,帮助大家更好地理解生存分析等相关概念。
生存分析经常用在癌症等疾病的研究中,例如在对某种抗癌药物做临床试验时,会首先筛选一部分癌症患者随机分为两组,一组服用该试验药物,一组服用对照药物,服药后开始统计每个患者从服药一直到死亡的生存时间,通过考察两组之间的病人在生存时间上是否有统计学差异来判断试验药物是否有效。
在这里,死亡是整个实验中重点观测的事件,即event。对于每个病人,需要记录他们发生该事件的具体时间。因此,生存分析可以抽象概述为,研究在不同条件下,特定事件发生与时间的关系是否存在差异。
这些具体事件可以是死亡,也可以是肿瘤转移、复发、病人出院、重新入院等任何可以明确识别的事件,而不同条件即为不同的分组依据,可以是年龄、性别、地域、某个基因表达量的高低、某个突变的携带与否等等。
A列是从试验开始起,持续的观测时间,星号代表在该时间有删失数据发生;
B列是指在A列对应的时间开始之前所有存活的研究对象个数,也可以叫做at risk的人数,表示当前具有死亡风险的有效人群,是排除了已经死亡和删失的数据之后剩余的人数;
C列为恰好在A列对应的时间死亡的人数;
D列是在该时间点删失的个数,即在实验过程中丢失的、失去跟踪的数据。
在引入Kaplan–Meier公式之前,大家可以先尝试自己去思考下如何计算每个时间节点的生存概率,即研究对象从试验开始直到某个特定时间点仍然存活的概率S(t)。比如在1.536年这个时间点,即表中的第五行,病人在该点的生存概率是多少呢?
很容易可以想到,要想在1.536这个时间点存活,他/她必须在1.536之前的所有时间点存活才行,也就是说在0.909、1.112、1.322、1.328这几个时间点,病人都必须存活。那么在1.536这个时间点的生存概率实际上就等于在包括1.536 在内的所有之前的时间点都不死亡的概率乘积,即:P(存活至1.536) = P(0.909时不死亡) * P(1.112时不死亡) * P(1.322时不死亡) * P(1.328时不死亡) * P(1.536时不死亡)
对于某个特定时间点不死亡的概率,可以用 1 – 死亡概率 来估算,举个例子:P(0.909时不死亡) = 1 – P(0.909时死亡) = 1 – (0.909时死亡的人数)/(0.909之前的所有人数) = 1 – 1/10 = 0.9
当我们计算出每个时间点不死亡的概率之后,我们就可以通过连续乘积算出每个时间点的生存概率,即存活至该时间点的概率。如下表所示:
该表中E列即不死亡概率,F列则表示累积的生存概率,可以看到随着时间增加,死亡人数增多,越到后期,生存概率越低。
上面这个例子的思路就是Kaplan–Meier方法的主要思路,我们也可以用数学公式来表示。一共有m个时间点,每个时间点用下标 i 来表示, i 为从 1 到 m 的整数, 生存概率 S(ti) 可以表示为:
其中,ti 表示第 i 个时间点,ni 表示在 ti 之前的有效人数,di 表示在 ti 死亡的人数,S(ti-1) 表示在上一个时间点 i-1 的生存概率。
根据这一公式,我们可以画图来展示生存率的变化情况,即Kaplan-Meier生存曲线,如下图所示:
图中横轴即时间轴,纵轴是累积存活比例,也就是生存概率,加号表示删失数据。
一般来说,生存分析是要比较不同组之间的一个生存情况,因此Kaplan-Meier生存曲线一般不止一条曲线。如果想比较整体生存时间分布是否存在统计学差异,一般我们可以采用Logrank统计方法来对生存数据进行统计分析。Logrank统计方法假设两组的生存时间分布一致,去检验是否能拒绝该假设。
除了Logrank检验之外,常用的检验包括Breslow检验,即Wilcoxon检验。该方法加入了权重因子,即每个时刻的总人数,使得试验前期的权重较大,贡献更大,所以Breslow检验对试验前期的差异更加敏感。
Kaplan-Meier方法只能针对单一的变量进行分析,无法同时考察多个因素。当需要同时考察多个因素的影响时,这时我们可以使用Cox比例风险回归模型。
Cox比例风险回归模型(Cox's proportional hazards regression model),简称Cox模型,Cox来自提出者英国统计学家的名字,主要用于肿瘤和其他疾病的预后分析。这个模型是一种半参数回归模型,因为它的公式中既包含参数模型又包含非参数模型。
其中
t是生存时间,
x1, x2到xp指的是具有预测效应的多个变量,
b1,b2到bp则是每个变量对应的effect size,即效应量,可以理解为结果的影响程度。
h(t)就是不同时间t的 hazard,即风险值,例如在观测死亡事件时,指的是研究对象从试验开始到某个特定时间t之前存活,但在t时间点发生死亡的概率。
h0(t)是基准风险函数,也就是说在其他协变量x1, x2到xp都为0时,即不起作用时,衡量风险值的函数。
根据公式我们可以看到指数部分是参数模型,因为其参数个数有限,即b1,b2到bp,而基准风险函数h0(t)由于于其未确定性,可根据不同数据来使用不同的分布模型,因此是非参数模型。所以说, Cox模型是一种半参数模型。
从公式中我们可以看到,Cox模型能够把诸多可能影响生存率的因素都当作协变量引入到公式中去,在该公式中即x1, x2到xp,所以可以同时考察多个因素的影响。
我们的主要目标是通过一定方法来找到合适的h0(t),以及所有协变量的系数b1,b2到bp。实际上cox模型是需要用到极大似然估计等计算方法,首先构建特定的似然函数,通过梯度下降等方法来求解模型的参数,使得函数求解值最大,这里不对细节进行解读。
假设我们已经通过计算得到了合适的h0(t)和协变量系数,如何去解读结果呢?我们可以比较某个协变量x1 在不同值时对应的不同风险比(hazard ratio),这里 x1和x1+1,即若增加1个单位,增加前后的风险比实际上等于 exp(b1)。
假如x1指的是年龄,那么对于年龄 51岁 (x+1) 和年龄 50 岁 (x) 的人,可能死亡的风险比为 exp(b1)。如果b1>0,则 exp(b1)>1,意味着年龄+1,死亡风险增加;如果b1<0, 则 exp(b1)<1,意味着年龄+1,死亡风险降低;如果b1=0,exp(b1)=1,意味着年龄变化对死亡风险不起作用。从hazard ratio推导的结果看到,它是不包括时间t的。这是Cox模型可用的一个基本假设,即任意两人的风险比例是不随时间变化的。
研究者开发了方便进行生存分析的R包,survival和survminer。首先安装并加载这两个包:
在survival包中提供了coxph()函数可以用来计算cox模型:
method默认为 “efron”,也可以是 “breslow”和“exact” 。以示例数据为例:
从结果中看到:sex对应的系数(coef)为-0.5310,小于0表示sex增加会降低风险,风险比(hazard ratio)为exp(coef) =0.588,该数值小于1,同样表明sex增加会导致风险增加,即女性比男性预后更好。
除了关注系数外,同时需要关注的是p value,即该参数估计是否具有统计学显著性,这里给出三种方法的结果,分别是Likelihood ratio test,Wald test和Score logrank test。
分析多个因素的影响:
最后是结果的可视化:
以上是对生存分析中主要知识的一个整理,希望梳理清楚生存分析中的大多数概念,有助于大家在自己的工作中使用相关方法进行分析。
2022最新数学方向毕业论文题目
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
拟做肿瘤患者生存分析,但观察期内没有死亡事件,是不是就做不了kaplan-Meier,Long-rank及COX分析。
“肿瘤患者的生存分析”,说是这样说,实际内容是做肿瘤患者的死亡及死亡时间分析,所以一定要有死亡病例。你的病例数量太少了,并且随访时间不长,反之,
自然就有死亡事件发生了。
浅谈职业教育产业的生存与发展论文
浅谈职业教育产业的生存与发展论文
[摘要] 职业教育目前形势令人喜忧参半,在取得了一定的成绩的同时,由于职业教育的管理和经营理念上存在一定的误区,制约了职业教育的发展。本文通过分析我国职业教育的现状,提出了职业教育生存与发展的思路。
[关键词] 职业教育 就业指导 生存与发展
随着科学技术的迅猛发展,我国要在日趋激烈的国际竞争中求生存求发展,要试图通过学习别国技术和经验,赶上或超过发达国家的发展水平,其难度可想而知。为此需要我们通过发展教育特别是职业教育,培养出大量拥有持续创新能力的高素质劳动者,以使国家具备发展知识经济的巨大潜力。知识经济的崛起既给职业教育的发展提供了良好的机遇,又使我国职业教育面临巨大挑战。因此,面对当今知识经济的发展,掌握知识经济理论,把握知识经济的发展规律,研究职业教育的改革与发展,具有重要的现实意义。
但长期以来社会上甚至教育界存在着鄙视职业教育的思想与意识,我国职业教育一直处于低于普通教育的不利地位。
通观我国职教现状,我们不难发现,就业问题严重影响着职业教育的良性发展。因而在职业教育中如何努力构建就业指导的良性机制,显得尤为重要,是近年来在就业市场化的前提下校企双方加强合作共同开发职教人力资源,实现互利、发展的一种具有双赢的战略性措施。同时也是职业学校主动适应市场需求,积极探索实践性教学途径,提升实用性人才培养规格,拓展毕业生就业渠道和多元办学之路所进行的有益尝试和探索。职业教育如何提升就业率,在市场经济的大潮下生存并且发展,笔者提出了自己的思路如下。
一、面向市场,实现就业观念更新
全新的就业观念,其核心不仅为了就业,而是促使学校和企业对职业学校这一层面上人力资源更好地关注和开发。在市场经济条件下,毕业生不能仅仅被看作是学校的“产品”,更重要的是应该成为联系学校和企业这两个社会子系统的纽带和桥梁。以人为本的互利成为校企合作最大的互利。在就业指导机制中,“实习——就业”模式就是最为有效的产学结合形式之一。职校的学生通过在企业的上岗实习,进而同步实现就业,避免了教育与生产中间环节的资源浪费。所以对职业人力资源的关注和开发,必须成为校企共同关注的对象,也是学校就业指导的根本立足点。
其次,要努力适应市场经济需求,培育竞争意识和创新观念。学生“实习——就业”这一就业指导一体化模式实践过程,虽然是校企双方互利的体现和共同愿望,但双方行为是由市场机制调节的,校企双方能否成为良好、稳定的合作伙伴,不单单取决于愿望,更重要的是取决于相互的实力和条件。一方面学校只有提高教育的质量,提高办学水准,用过硬的毕业生素质适应企业的岗位要求,才能赢得企业的青睐;另一方面,企业必须具有良好的社会信誉,较好的工作环境,显著的经济效益和科学的用人机制,才能取信于学校,才有可能接受大批学生实习和工作。
同时我们必须认识到,就业指导不仅是少数人的工作,而是全体师生员工应该人人参与,就业指导工作不仅与毕业生有关,它应该贯穿于职业教育的全过程,因为,尽管就业指导的成功在于校企的有效合作,但成功的关键在于学校面向市场苦练内功,深化教育改革全面提高教育质量。
二、在就业指导机制构建上,必须以学生为主体,做到规范、诚信
就业的主体是学生,学校在开展就业指导工作时,不能简单地做一个职业介绍工作,应在职业指导和创业教育上下工夫。“授人以鱼,不如授人以渔”。在指导中,应让学生了解社会,了解职业,了解自我。要教育学生树立“先就业、再择业、后创业”的思想,形成新型的以人为本的就为观念。
严格规范毕业生“优生优荐,差生缓推荐”的原则,在毕业生推荐过程中,学校班主任和政教处结毕业生认真综合考评,以考核优秀的毕业生和学生干部优先推荐,尽可能优先安排到适合他们特点的`工作单位。
同时,应当积极鼓励学生家长和毕业生在规定时间内自主择业,因为鼓励学生自主择业与创业,宽容他们所经历的挫折,也是以学生为主体的具体表现。就业工作量大,它是一项全校性的工作,涉及到社会各部门,联系着千家万户,学校社会、家庭,各方面都有责任参与和支持。而学校应充当组织者,发动学生家庭与相应社会关系,动员企业等方面的力量,促使多方的共同努力,形成有利于职教学生就业的社会环境。只有广大学生积极主动的参与和努力,学校才能充分发挥就业的主渠道作用。
三、在就业指导目标上,努力创造公平竞争的外部就业环境
就业指导的目标决不能仅仅停留在解决多少个就业岗位,而应该创造一个公平竞争的就业环境。一方面要加强对所在地的经济格局、人才需要的预测,了解一定时期内用人单位对人才层次、专业、规格的要求,征求他们对毕业生的需求意向;另一方面要广泛向社会宣传职校培养人才的专业、规格技能优势,办学条件,以及教育业绩,逐步建立起市场有监测、走势有分析、单位有联系、状态有跟踪的网络体系,从而使毕业生能够积极参与外部就业环境,通过公平竞争和“双向选择”走上就业岗位。加强对毕业生定向实习的跟踪管理,同样是实现学校就业指导主体的关键。该项工作主要从以下五个方面着手:
(1)综合定向实习,强化对毕业生正确的职业观和劳动观念教育。
(2)通过实习,帮助学生了解工厂生产、分工、市场经济的特点、以及现代化企业岗位群对工人的要求;
(3)在实习管理中,即要增强学生的动手能力,又要发展学生的职业适应能力,逐步进行“宽专业实习”,为实习生毕业后创业和发展奠定基础;
(4)协助用人单位从思想品质、职业道德、专业技能等方面对学生进行反馈与评估,以便量才录用;
(5)通过校外实习,反馈学校在教育、教学诸方面存在的问题,逐步改进、完善学校工作,进而提高毕业生的毕业水准,增强毕业生参与公平竞争的能力。
随着我国加入WTO,企业对人才需求的质量、要求及人才结构都将有新的变化,职业教育工作者必须审时度势,及时研究市场需求的新形势,进一步做好就业指导工作,满足社会经济发展的需求,使职业教育在新的机遇中赢得新的发展。
生存分析法的相关问题
生存分析(Survival analysis)是指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析。
生存分析涉及有关疾病的愈合、死亡,或者器官的生长发育等时效性指标。
某些研究虽然与生存无关,但由于研究中随访资料常因失访等原因造成某些数据观察不完全,要用专门方法进行统计处理,这类方法起源于对寿命资料的统计分析,故也称为生存分析。
关于生存函数(survival function): S(t)=Pr(T > t) t 表示某个时间,T表示生存的时间(寿命),Pr表示表示概率。生存函数就是寿命T大于t的概率。举例来说,人群中寿命超过50(t)岁的人在所有人中的概率是多少,就是生存函数要描述的。假定t=0时,也就是寿命超过0的概率为1;t趋近于无穷大,生存概率为0,没有人有永恒的生命。如果不符合这些前提假定,则不适应Survival analysis,而使用其他的方法。 由上可以推导:生存函数是一个单调非增函数。t越大,S(t) 值 越小。
衍生函数: Lifetime distribution function F(t) = 1-S(t) = Pr(T <= t)
概率密度函数: f(t) = d(F(t))/dt 又叫event density,单位时间事件event(可以是死亡或者机器失效)的概率,是生存函数的导数。
f(t) 的性质: f(t) 总是非负的(没有人可以再生)。函数曲线下方面积(从0到无穷大积分)为1。 s(t) = d(S(t))/dt = -f(t)
危险函数Hazard function λ (t) = f(t)/S(t) 危险函数引入分母S(t)。其物理意义是,如果t= 50岁, λ (t)就是事件概率(死亡)除以50岁时的生存函数。因为年龄t越大,分母生存函数S(t) 越小,假定死亡概率密度f(t)对任何年龄一样(这个不是survival analysis 的假设),那么危险函数λ (t)值越大,预期存活时间短。综合很多因素,卖人身保险的对年龄大的收费越来越高。婴儿的死亡概率密度相对高一些,虽然分母生存函数S(t) 大,λ (t)值还是略微偏高,交的人身保险费也略偏高。
上一篇:催收论文文献
下一篇:动漫配音毕业论文