欢迎来到学术参考网
当前位置:发表论文>论文发表

万用表毕业论文

发布时间:2023-03-02 02:14

万用表毕业论文

万用表又叫多用表、三用表、复用表,是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数(如β)。
1.万用表的结构(500型)
万用表由表头、测量电路及转换开关等三个主要部分组成。
(1)表头:它是一只高灵敏度的磁电式直流电流表,万用表的主要性能指标基本上取决于表头的性能。表头的灵敏度是指表头指针满刻度偏转时流过表头的直流电流值,这个值越小,表头的灵敏度愈高。测电压时的内阻越大,其性能就越好。表头上有四条刻度线,它们的功能如下:第一条(从上到下)标有R或Ω,指示的是电阻值,转换开关在欧姆挡时,即读此条刻度线。第二条标有∽和VA,指示的是交、直流电压和直流电流值,当转换开关在交、直流电压或直流电流挡,量程在除交流10V以外的其它位置时,即读此条刻度线。第三条标有10V,指示的是10V的交流电压值,当转换开关在交、直流电压挡,量程在交流10V时,即读此条刻度线。第四条标有dB,指示的是音频电平。
(2)测量线路
测量线路是用来把各种被测量转换到适合表头测量的微小直流电流的电路,它由电阻、半导体元件及电池组成
它能将各种不同的被测量(如电流、电压、电阻等)、不同的量程,经过一系列的处理(如整流、分流、分压等)统一变成一定量限的微小直流电流送入表头进行测量。
(3)转换开关
其作用是用来选择各种不同的测量线路,以满足不同种类和不同量程的测量要求。转换开关一般有两个,分别标有不同的档位和量程。
2.符号含义
(1)∽ 表示交直流
(2) V-2.5KV 4000Ω/V 表示对于交流电压及2.5KV的直流电压挡,其灵敏度为4000Ω/V
(3)A-V-Ω 表示可测量电流、电压及电阻
(4)45-65-1000Hz 表示使用频率范围为1000 Hz以下,标准工频范围为45-65Hz
(5)2000Ω/V DC 表示直流挡的灵敏度为2000Ω/V
钳表和摇表盘上的符号与上述符号相似(其他因为符号格式不对不能全部写上『表示磁电系整流式有机械反作用力仪表 『表示三级防外磁场『表示水平放置)))

3.万用表的使用
(1)熟悉表盘上各符号的意义及各个旋钮和选择开关的主要作用。
(2)进行机械调零。
(3)根据被测量的种类及大小,选择转换开关的挡位及量程,找出对应的刻度线。
(4)选择表笔插孔的位置。
(5)测量电压:测量电压(或电流)时要选择好量程,如果用小量程去测量大电压,则会有烧表的危险;如果用大量程去测量小电压,那么指针偏转太小,无法读数。量程的选择应尽量使指针偏转到满刻度的2/3左右。如果事先不清楚被测电压的大小时,应先选择最高量程挡,然后逐渐减小到合适的量程。
a交流电压的测量:将万用表的一个转换开关置于交、直流电压挡,另一个转换开关置于交流电压的合适量程上,万用表两表笔和被测电路或负载并联即可。
b直流电压的测量:将万用表的一个转换开关置于交、直流电压挡,另一个转换开关置于直流电压的合适量程上,且“+”表笔(红表笔)接到高电位处,“-”表笔(黑表笔)接到低电位处,即让电流从“+”表笔流入,从“-”表笔流出。若表笔接反,表头指针会反方向偏转,容易撞弯指针。
(6)测电流:测量直流电流时,将万用表的一个转换开关置于直流电流挡,另一个转换开关置于50uA到500mA的合适量程上,电流的量程选择和读数方法与电压一样。测量时必须先断开电路,然后按照电流从“+”到“-”的方向,将万用表串联到被测电路中,即电流从红表笔流入,从黑表笔流出。如果误将万用表与负载并联,则因表头的内阻很小,会造成短路烧毁仪表。其读数方法如下:
实际值=指示值×量程/满偏
(7)测电阻:用万用表测量电阻时,应按下列方法*作:
a选择合适的倍率挡。万用表欧姆挡的刻度线是不均匀的,所以倍率挡的选择应使指针停留在刻度线较稀的部分为宜,且指针越接近刻度尺的中间,读数越准确。一般情况下,应使指针指在刻度尺的1/3~2/3间。
b欧姆调零。测量电阻之前,应将2个表笔短接,同时调节“欧姆(电气)调零旋钮”,使指针刚好指在欧姆刻度线右边的零位。如果指针不能调到零位,说明电池电压不足或仪表内部有问题。并且每换一次倍率挡,都要再次进行欧姆调零,以保证测量准确。
c读数:表头的读数乘以倍率,就是所测电阻的电阻值。
(8)注意事项
a在测电流、电压时,不能带电换量程
b选择量程时,要先选大的,后选小的,尽量使被测值接近于量程
c测电阻时,不能带电测量。因为测量电阻时,万用表由内部电池供电,如果带电测量则相当于接入一个额外的电源,可能损坏表头。
d用毕,应使转换开关在交流电压最大挡位或空挡上。
4.数字万用表
现在,数字式测量仪表已成为主流,有取代模拟式仪表的趋势。与模拟式仪表相比,数字式仪表灵敏度高,准确度高,显示清晰,过载能力强,便于携带,使用更简单。下面以VC9802型数字万用表为例,简单介绍其使用方法和注意事项。
(1)使用方法
a使用前,应认真阅读有关的使用说明书,熟悉电源开关、量程开关、插孔、特殊插口的作用.
b将电源开关置于ON位置。
c交直流电压的测量:根据需要将量程开关拨至DCV(直流)或ACV(交流)的合适量程,红表笔插入V/Ω孔,黑表笔插入COM孔,并将表笔与被测线路并联,读数即显示。
d交直流电流的测量:将量程开关拨至DCA(直流)或ACA(交流)的合适量程,红表笔插入mA孔(<200mA时)或10A孔(>200mA时),黑表笔插入COM孔,并将万用表串联在被测电路中即可。测量直流量时,数字万用表能自动显示极性。
e电阻的测量:将量程开关拨至Ω的合适量程,红表笔插入V/Ω孔,黑表笔插入COM孔。如果被测电阻值超出所选择量程的最大值,万用表将显示“1”,这时应选择更高的量程。测量电阻时,红表笔为正极,黑表笔为负极,这与指针式万用表正好相反。因此,测量晶体管、电解电容器等有极性的元器件时,必须注意表笔的极性。
(2).使用注意事项
a如果无法预先估计被测电压或电流的大小,则应先拨至最高量程挡测量一次,再视情况逐渐把量程减小到合适位置。测量完毕,应将量程开关拨到最高电压挡,并关闭电源。
b满量程时,仪表仅在最高位显示数字“1”,其它位均消失,这时应选择更高的量程。
c测量电压时,应将数字万用表与被测电路并联。测电流时应与被测电路串联,测直流量时不必考虑正、负极性。
d当误用交流电压挡去测量直流电压,或者误用直流电压挡去测量交流电压时,显示屏将显示“000”,或低位上的数字出现跳动。
e禁止在测量高电压(220V以上)或大电流(0.5A以上)时换量程,以防止产生电弧,烧毁开关触点。
f当显示“ ”、“BATT”或“LOW BAT” 时,表示电池电压低于工作电压。

二、摇表
摇表又称兆欧表,是用来测量被测设备的绝缘电阻和高值电阻的仪表,它由一个手摇发电机、表头和三个接线柱(即L:线路端、E:接地端、G:屏蔽端)组成。
1.摇表的选用原则
(1)额定电压等级的选择。一般情况下,额定电压在500V以下的设备,应选用500V或1000V的摇表;额定电压在500V以上的设备,选用1000V~2500V的摇表。
(2)电阻量程范围的选择。摇表的表盘刻度线上有两个小黑点,小黑点之间的区域为准确测量区域。所以在选表时应使被测设备的绝缘电阻值在准确测量区域内。
2.摇表的使用
(1)校表。测量前应将摇表进行一次开路和短路试验,检查摇表是否良好。将两连接线开路,摇动手柄,指针应指在“∞”处,再把两连接线短接一下,指针应指在“0”处,符合上述条件者即良好,否则不能使用。
(2)被测设备与线路断开,对于大电容设备还要进行放电。
(3)选用电压等级符合的摇表。
(4)测量绝缘电阻时,一般只用“L”和“E”端,但在测量电缆对地的绝缘电阻或被测设备的漏电流较严重时,就要使用“G”端,并将“G”端接屏蔽层或外壳。线路接好后,可按顺时针方向转动摇把,摇动的速度应由慢而快,当转速达到每分钟120转左右时(ZC-25型),保持匀速转动,1分钟后读数,并且要边摇边读数,不能停下来读数。
(5)拆线放电。读数完毕,一边慢摇,一边拆线,然后将被测设备放电。放电方法是将测量时使用的地线从摇表上取下来与被测设备短接一下即可(不是摇表放电)。
4.注意事项
(1)禁止在雷电时或高压设备附近测绝缘电阻,只能在设备不带电,也没有感应电的情况下测量。
(2)摇测过程中,被测设备上不能有人工作。
(3)摇表线不能绞在一起,要分开。
(4)摇表未停止转动之前或被测设备未放电之前,严禁用手触及。拆线时,也不要触及引线的金属部分。
(5)测量结束时,对于大电容设备要放电。
(6)要定期校验其准确度。

三、钳表
钳表是一种用于测量正在运行的电气线路的电流大小的仪表,可在不断电的情况下测量电流。
1.结构及原理
钳表实质上是由一只电流互感器、钳形扳手和一只整流式磁电系有反作用力仪表所组成。
2.使用方法
(1)测量前要机械调零
(2)选择合适的量程,先选大,后选小量程或看铭牌值估算。
(3)当使用最小量程测量,其读数还不明显时,可将被测导线绕几匝,匝数要以钳口中央的匝数为准,则读数=指示值×量程 / 满偏×匝数
(4)测量时,应使被测导线处在钳口的中央,并使钳口闭合紧密,以减少误差。
(5)测量完毕,要将转换开关放在最在量程处。
3.注意事项
(1)被测线路的电压要低于钳表的额定电压。
(2)测高压线路的电流时,要戴绝缘手套,穿绝缘鞋,站在绝缘垫上。
(3)钳口要闭合紧密不能带电换量程。

电子信息工程毕业论文

823. 110kv变电站电气二次部分设计
824. 基于AT89C51的电话远程控制系统
825. 数字电子秤的设计
826. 基于单片机的数字电子钟设计
827. 湿度传感器在农作物生长环境参数监测仪中的应用
828. 基于单片机的数字频率计的设计
829. 简易数控直流稳压源的设计
830. 基于凌阳单片机的语音实时采集系统设计
831. 简单语音识别算法研究
832. 基于数字温度计的多点温度检测系统
833. 家用可燃气体报警器的设计
834. 基于61单片机的语音识别系统设计
835. 红外遥控密码锁的设计
836. 简易无线对讲机电路设计
837. 基于单片机的数字温度计的设计
838. 甲醛气体浓度检测与报警电路的设计
839. 基于单片机的水温控制系统设计
840. 设施环境中二氧化碳检测电路设计
841. 基于单片机的音乐合成器设计
842. 设施环境中湿度检测电路设计
843. 基于单片机的家用智能总线式开关设计
844. 篮球赛计时记分器
845. 汽车倒车防撞报警器的设计
846. 设施环境中温度测量电路设计
847. 等脉冲频率调制的原理与应用
848. 基于单片机的电加热炉温
849. 病房呼叫系统
850. 单片机打铃系统设计
851. 智能散热器控制器的设计
852. 电子体温计的设计
853. 基于FPGA音频信号处理系统的设计
854. 基于MCS-51数字温度表的设计
855. 基于SPCE061A的语音控制小车设计
856. 基于VHDL的智能交通控制系统
857. 基于VHDL语言的数字密码锁控制电路的设计
858. 基于单片机的超声波测距系统的设计
859. 基于单片机的八路抢答器设计
860. 基于单片机的安全报警器
861. 基于SPCE061A的易燃易爆气体监测仪设计
862. 基于CPLD的LCD显示设计
863. 基于单片机的电话远程控制家用电器系统设计
864. 基于单片机的交通信号灯控制电路设计
865. 单片机的数字温度计设计
866. 基于单片机的可编程多功能电子定时器
867. 基于单片机的空调温度控制器设计
868. 数字人体心率检测仪的设计
869. 基于单片机的室内一氧化碳监测及报警系统的研究
870. 基于单片机的数控稳压电源的设计
871. 原油含水率检测电路设计
872. 基于AVR单片机幅度可调的DDS信号发生器
873. 四路数字抢答器设计
874.单色显示屏的设计
875.基于CPLD直流电机控制系统的设计
876.基于DDS的频率特性测试仪设计
877.基于EDA的计算器的设计
878.基于EDA技术的数字电子钟设计
879.基于EDA技术的智力竞赛抢答器的设计
880.基于FPGA的18路智力竞赛电子抢答器设计
881.基于USB接口的数据采集系统设计与实现
882.基于单片机的简易智能小车的设计
883.基于单片机的脉象信号采集系统设计
884.一种斩控式交流电子调压器设计
885.通信用开关电源的设计
886.鸡舍灯光控制器
887.三相电机的保护控制系统的分析与研究
888.信号高精度测频方法设计
889.高精度电容电感测量系统设计
890.虚拟信号发生器设计和远程实现
891.脉冲调宽型伺服放大器的设计
892.超声波测距语音提示系统的研究
893.电表智能管理装置的设计
894.智能物业管理器的设计
895.基于虚拟仪器技术的数字滤波及频率测试
896.基于无线传输技术的室温控制系统设计----温度控制器软件设计
897.基于计算机视觉的构件表面缺陷特征提取
898.基于无线传输技术的室温控制系统设计----温度控制器硬件设计
899.基于微控制器的电容器储能放电系统设计
890.基于单片机的语音提示测温系统的研究
891.基于单片机的数字钟设计
892.基于单片机的数字电压表的设计
893.基于单片机的交流调功器设计
894.基于SPI通信方式的多道信号采集器设计
895.基于LabVIEW的虚拟频谱分析仪的设计
896.功率因数校正器的设计
897.全自动电压表的设计
898.基于Labview的虚拟数字钟设计
899.温度箱模拟控制系统
900.水塔智能水位控制系统
901.基于单片机的全自动洗衣机
902.数字流量计
903.简易无线电遥控系统
904.基于单片机的步进电机的控制
905.基于AT89S51单片机的数字电子时钟
906.基于51单片机的LED点阵显示屏系统的设计与实现
907.超声波测距仪的设计
908.简易数字电压表的设计
909.虚拟信号发生器设计及远程实现
910.智能物业管理器的设计
911.信号高精度测频方法设计
912.三相电机的保护控制系统的分析与研究
913.温度监控系统设计
914.数字式温度计的设计
915.全自动节水灌溉系统--硬件部分
916.电子时钟的设计
917.基于单片机的电阻炉温度控制系统
918.基于GSM网络的无线LED广告牌系统的设计
919.基于单片机的数字函数发生器的设计
920.基于AT89S52的无线自动车库门
921.基于单片机的自动门控系统设计
922.基于单片机的遥控灯光系统
923.基于MultiSim 8的高频电路仿真技术
924.数字式脉搏计
925.实用信号源的设计
926.无线多路遥控发射与接收
494开关电源的设计
928.数字频率计设计
929.基于单片机的电梯控制系统
930.基于单片机的产品自动计数器
931.水温控制系统的设计
932.智能音乐闹钟设计
933.防盗门密码锁的设计
934.多功能时钟打点系统设计
935.多功能倒计时显示牌
936.程控滤波器的设计
937.多功能程控电源设计
938.电子秤的设计
939.电红外线感应自动门的设计
940.单片机控制的语音录放系统的设计
941.超声波测距仪
3的设计与实现
943.±5V直流稳压电源的设计
944.用单片机进行温度的控制及LCD显示系统的设计
945.双音报警器
946.可编程动态广告牌控制系统设计
947.基于单片机的遥控灯光系统
·单片机交通灯控制系统设计--带仿真的
·压力容器液位检测装置
·电子密码锁设计
·多路智能报警器设计
·病房无线呼叫系统

·太阳能热水器中央控制器的设计与实现
·汽车安全气囊应用研究
·煤气报警器的设计
·基于AT89S51单片机的出租车计价器
·红外防盗报警器的设计

·红外声控报警系统的设计
·智能家居的发展
·超声波倒车雷达设计
·直流开关变送器的研究
·基于AT89S51单片机的数字电子钟设计
·电子时钟设计 课程设计
·基于凌阳16位单片机的智能录音电话
·基于单片机的照明控制系统
·电子日历钟

·电力监控系统
·电梯控制系统的设计
·电压型三相交流变频调速系统设计
·多点温度采集系统与控制器设计
·多功能秒表系统设计

·多路开关直流稳压电源
·公交车自动报站系统的硬件设计原理
·红外线感应灯控制系统
·交通灯定时控制系统
·快速煤质监测仪的I/O单元设计

·锂电池智能充电控制器的设计
·六相异步电机缺相运行性能分析
·煤矿井下安全监控系统的设计
·数控可调稳压电源
·音乐控制系统的设计

·面向移动机器人的远程PDA控制器通信系统设计
·面向移动机器人的远程PDA控制器主控电路设计
·开关电源的设计研究
·220KV变电站电气部分设计
·直流电机PWM控制系统

·医用数显测温仪设计
·电力负荷预测技术
·串联电容补偿装置的设计研究
·充电电池容量测试电路设计
·间冷式电冰箱电气控制实验模拟台

·基于51单片机数控直流电源的设计
·基于单片机实现红外测温仪设计
·基于单片机的数字万用表设计
·基于单片机的直流同步电机调速系统研究
·基于单片机的电子秤毕业设计论文

·红外感应水龙头
·路灯的节能控制
·多功能智能信号发生器
·锅炉液位控制系统
·电气传动控制系统

·电动自行车调速系统的设计

·脉冲电镀电源的设计
·基于MSP430单片机的多路数据采集系统的设计
·水塔水位自动控制装置
·印染丝光过程的浓烧碱的在线控制
·基于单片机的自动化点焊控制系统

·100kW微机控制单晶硅加热电源设计
·防火卷帘门智能控制装置设计
·基于单片机温湿度控制系统
·出租车计费系统设计
·基于PID控制算法的恒温控制系统

·基于CAN总线的教学模拟汽车模型的设计
·基于单片机的温度测量系统设计
·智能化住宅中的防盗防火报警系统设计
·火灾自动监控报警系统设计
·旅客列车自动报站多媒体系统

·锂电池智能充电器设计
·医疗呼叫系统设计
·基于单片机的饮水机温度控制系统设计
·基于脉宽调制技术的D类音频放大器
·双技术玻璃破碎探测器

其中这些有开题报告

1. 用单片机进行温度的控制及LCD显示系统的设计
2. 基于MultiSim 8的高频电路仿真技术
3. 简易数字电压表的设计
4. 虚拟信号发生器设计及远程实现
5. 智能物业管理器的设计
6. 信号高精度测频方法设计
7. 三相电机的保护控制系统的分析与研究
8. 温度监控系统设计
9. 数字式温度计的设计
10. 全自动节水灌溉系统--硬件部分
11. 电子时钟的设计
12. 全自动电压表的设计
13. 脉冲调宽型伺服放大器的设计
14. 基于虚拟仪器技术的数字滤波及频率测试
15. 基于无线传输技术的室温控制系统设计——温度控制器硬件设计
16. 温度箱模拟控制系统
17. 基于无线传输技术的室温控制系统设计——温度控制器软件设计
18. 基于微控制器的电容器储能放电系统设计
19. 基于机器视觉的构件表面缺陷特征提取
20. 基于单片机的语音提示测温系统的研究
21. 基于单片机的步进电机的控制
22. 单片机的数字钟设计
23. 基于单片机的数字电压表的设计
24. 基于单片机的交流调功器设计
25. 基于SPI通信方式的多通道信号采集器设计
26. 基于LabVIEW虚拟频谱分析仪的设计
27. 功率因数校正器的设计
28. 高精度电容电感测量系统设计
29. 电表智能管理装置的设计
30. 基于Labview的虚拟数字钟设计
31. 超声波测距语音提示系统的研究
32. 斩控式交流电子调压器设计
33. 基于单片机的脉象信号采集系统设计
34. 基于单片机的简易智能小车设计
35. 基于FPGA的18路智力竞赛电子抢答器设计
36. 基于EDA技术的智力竞赛抢答器的设计
37. 基于EDA技术的数字电子钟设计
38. 基于EDA的计算器的设计
39. 基于DDS的频率特性测试仪设计
40. 基于CPLD直流电机控制系统的设计
41. 单色显示屏的设计
42. 扩音电话机的设计
43. 基于单片机的低频信号发生器设计
44. 35KV变电所及配电线路的设计
45. 10kV变电所及低压配电系统的设计
46. 6Kv变电所及低压配电系统的设计
47. 多功能充电器的硬件开发
48. 镍镉电池智能充电器的设计
49. 基于MCS-51单片机的变色灯控制系统设计与实现
50. 智能住宅的功能设计与实现原理研究
51. 用IC卡实现门禁管理系统
52. 变电站综合自动化系统研究
53. 单片机步进电机转速控制器的设计
54. 无刷直流电机数字控制系统的研究与设计
55. 液位控制系统研究与设计
56. 智能红外遥控暖风机设计
57. 基于单片机的多点无线温度监控系统
58. 蔬菜公司恒温库微机监控系统
59. 数字触发提升机控制系统
60. 仓储用多点温湿度测量系统
61. 矿井提升机装置的设计
62. 中频电源的设计
63. 数字PWM直流调速系统的设计
64. 基于ARM的嵌入式温度控制系统的设计
65. 锅炉控制系统的研究与设计
66. 动力电池充电系统设计
67. 多电量采集系统的设计与实现
68. PWM及单片机在按摩机中的应用
69. IC卡预付费煤气表的设计
70. 基于单片机的电子音乐门铃的设计
71. 新型出租车计价器控制电路的设计
72. 单片机太阳能热水器测控仪的设计
73. LED点阵显示屏-软件设计
74. 双容液位串级控制系统的设计与研究
75. 三电平Buck直流变换器主电路的研究
76. 基于PROTEUS软件的实验板仿真
77. 基于16位单片机的串口数据采集
78. 电机学课程CAI课件开发
79. 单片机教学实验板——软件设计
80. 63A三极交流接触器设计
81. 总线式智能PID控制仪
82. 自动售报机的设计
83. 断路器的设计
84. 基于MATLAB的水轮发电机调速系统仿真
85. 数控缠绕机树脂含量自控系统的设计
86. 软胶囊的单片机温度控制(硬件设计)
87. 空调温度控制单元的设计
88. 基于人工神经网络对谐波鉴幅
89. 基于单片机的鱼用投饵机自动控制系统的设计
90. 锅炉汽包水位控制系统
91. 基于单片机的玻璃管加热控制系统设计
92. 基于AT89C51单片机的号音自动播放器设计
93. 基于单片机的普通铣床数控化设计
94. 基于AT89C51单片机的电源切换控制器的设计
95. 基于51单片机的液晶显示器设计
96. 超声波测距仪的设计及其在倒车技术上的应用
97. 智能多路数据采集系统设计
98. 公交车报站系统的设计
99. 基于RS485总线的远程双向数据通信系统的设计
100. 宾馆客房环境检测系统
101. 智能充电器的设计与制作
102. 基于单片机的户式中央空调器温度测控系统设计
103. 基于单片机的乳粉包装称重控制系统设计
104. 基于单片机的定量物料自动配比系统
105. 基于单片机的液位检测
106. 基于单片机的水位控制系统设计
107. 基于VDMOS调速实验系统主电路模板的设计与开发
108. 基于IGBT-IPM的调速实验系统驱动模板的设计与开发
109. HEF4752为核心的交流调速系统控制电路模板的设计与开发
110. 基于87C196MC交流调速实验系统软件的设计与开发
111. 87C196MC单片机最小系统单板电路模板的设计与开发
112. 电子密码锁控制电路设计
113. 基于单片机的数字式温度计设计
114. 列车测速报警系统
115. 基于单片机的步进电机控制系统
116. 语音控制小汽车控制系统设计
117. 智能型客车超载检测系统的设计
118. 直流机组电动机设计
119. 单片机控制交通灯设计
120. 中型电弧炉单片机控制系统设计
121. 中频淬火电气控制系统设计
122. 新型洗浴器设计
123. 新型电磁开水炉设计
124. 基于电流型逆变器的中频冶炼电气设计
125. 6KW电磁采暖炉电气设计
126. 基于CD4017电平显示器
127. 多路智力抢答器设计
128. 智能型充电器的电源和显示的设计
129. 基于单片机的温度测量系统的设计
130. 龙门刨床的可逆直流调速系统的设计
131. 音频信号分析仪
132. 基于单片机的机械通风控制器设计
133. 论电气设计中低压交流接触器的使用
134. 论人工智能的现状与发展方向
135. 浅论配电系统的保护与选择
136. 浅论扬州帝一电器的供电系统
137. 浅谈光纤光缆和通信电缆
138. 浅谈数据通信及其应用前景
139. 浅谈塑料光纤传光原理
140. 浅析数字信号的载波传输
141. 浅析通信原理中的增量控制
142. 太阳能热水器水温水位测控仪分析
143. 电气设备的漏电保护及接地
144. 论“人工智能”中的知识获取技术
145. 论PLC应用及使用中应注意的问题
146. 论传感器使用中的抗干扰技术
147. 论电测技术中的抗干扰问题
148. 论高频电路的频谱线性搬移
149. 论高频反馈控制电路
150. 论工厂导线和电缆截面的选择
151. 论工厂供电系统的运行及管理
152. 论供电系统的防雷、接地保护及电气安全
153. 论交流变频调速系统
154. 论人工智能中的知识表示技术
155. 论双闭环无静差调速系统
156. 论特殊应用类型的传感器
157. 论无损探伤的特点
158. 论在线检测
159. 论专家系统
160. 论自动测试系统设计的几个问题
161. 浅析时分复用的基本原理
162. 试论配电系统设计方案的比较
163. 试论特殊条件下交流接触器的选用
164. 自动选台立体声调频收音机
165. 基于立体声调频收音机的研究
166. 基于环绕立体声转接器的设计
167. 基于红外线报警系统的研究
168. 多种变化彩灯
169. 单片机音乐演奏控制器设计
170. 单目视觉车道偏离报警系统
171. 基于单片机的波形发生器设计
172. 智能毫伏表的设计
173. 微机型高压电网继电保护系统的设计
174. 基于单片机mega16L的煤气报警器的设计
175. 串行显示的步进电机单片机控制系统
176. 编码发射与接收报警系统设计:看护机
177. 编码发射接收报警设计:爱情鸟
178. 红外快速检测人体温度装置的设计与研制
179. 用单片机控制的多功能门铃
180. 电气控制线路的设计原则
181. 电气设备的选择与校验
182. 浅论10KV供电系统的继电保护的设计方案
183. 智能编码电控锁设计
184. 自行车里程,速度计的设计
185. 等精度频率计的设计
186. 基于嵌入式系统的原油含水分析仪的硬件与人机界面设计
187. 数字电子钟的设计与制作
188. 温度报警器的电路设计与制作
189. 数字电子钟的电路设计
190. 鸡舍电子智能补光器的设计
191. 电子密码锁的电路设计与制作
192. 单片机控制电梯系统的设计
193. 常用电器维修方法综述
194. 控制式智能计热表的设计
195. 无线射频识别系统发射接收硬件电路的设计
196. 基于单片机PIC16F877的环境监测系统的设计
197. 基于ADE7758的电能监测系统的设计
198. 基于单片机的水温控制系统
199. 基于单片机的鸡雏恒温孵化器的设计
200. 自动存包柜的设计
201. 空调器微电脑控制系统
202. 全自动洗衣机控制器
203. 小功率不间断电源(UPS)中变换器的原理与设计
204. 智能温度巡检仪的研制
205. 保险箱遥控密码锁
206. 基于蓝牙技术的心电动态监护系统的研究
207. 低成本智能住宅监控系统的设计
208. 大型发电厂的继电保护配置
209. 直流操作电源监控系统的研究
210. 悬挂运动控制系统
211. 气体泄漏超声检测系统的设计
212. FC-TCR型无功补偿装置控制器的设计
213. 150MHz频段窄带调频无线接收机
214. 数字显示式电子体温计
215. 基于单片机的病床呼叫控制系统
216. 基于单片微型计算机的多路室内火灾报警器
217. 基于单片微型计算机的语音播出的作息时间控制器
218. 交通信号灯控制电路的设计
219. 单片机控制的全自动洗衣机毕业设计论文
220. 单片机脉搏测量仪
221. 红外报警器设计与实现

指针万用表电路设计毕业论文

万用电表的表头仅不过是一个50na左右的电流表头,你用电阻的串并联来实现测量各种电压、电流、电阻来实况。

机械系数控专业毕业论文怎么写

数控专业的毕业论文 进行bsp;的提高加工效率。!"$叶片五轴联动加工刀位轨迹的生成 针对大型混流式叶片各曲面的特点,进行合理的刀位轨迹规划和计算,是使所生成的刀位轨迹无干涉、无碰撞、稳定性好、编程效率高的关键。由于五轴加工的刀具位置和刀具轴线方向是变化的,因此五轴加工的是由工件坐标系中的刀位点位置矢量和刀具轴线方向矢量 组成,刀轴可通过前倾角和倾斜角来控制,于是我们可 根据曲面在切削点处的局部坐标计算出刀位矢量和刀轴 矢量。从加工效率、表面质量和切削工 艺性能来看,选择 沿叶片造型的参数线作为铣削加工的方向分多次粗铣和一次精铣,然后划分加工区域,定义与机床有关的参数,根据以上所选叶片的加工部位、装夹 图,混流式叶片的刀轨生成定 位方式、机床、 刀具及切削参数和余量分布情况将叶片分为多个组合面分别进行加工。通过对曲面曲率的分布情况的分析对于 不同的区域采用不同的面铣刀。粗加工给出每次加工的 余量,精加工采用同一直径的铣刀,根据粗糙度要求给 定残余高度,根据具体情况选择切削类型、切削参数、 刀轴方向、进退刀方式等参数,生成的刀位轨迹如图, 所示。但是对于像叶片这样的曲率变化很大而又不均匀 的雕塑曲面零件我们还要根据情况作大量的刀位编辑, 并且必须进一步通过切削仿真做干涉和碰撞检查修改和编辑刀轨。!"#叶片五轴联动数控加工仿真数控加工仿真通过软件模拟加工环境、刀具路与材料切除过程来检验并优化加工程序。在计算机上仿真验证多轴联动加工的刀具轨迹,辅助进行加工刀具干涉检查和机床与叶片的碰撞检查,取代试切削或试加工过程,可大大地降低制造成本,并缩短研制周期,避免加工设备与叶片和夹具等的碰撞,保证加工过程的安全。加工零件的"!代码在投入实际的加工之前通常需要进行试切,水轮机叶片是非常复杂的雕塑曲面体,开发利用数控加工仿真技术是其成功采用五轴联动数控加工的关键。在此,我们首先进电子商务资料库&*$.2(84/*;21::行工艺系统分析,明确机床!"!系统型号、机床结构形式和尺寸、机床运动原理和机床坐标系统。用三维!,-软件建立机床运动部件和固定部件的实体几何模型,并转换成仿真软件可用的格式,然后建立刀具库,在仿真软件中新建用户文件,设置所用!"!系统,并建立机床运动模型,即部件树,添加各部件的几何模型,并准确定位,最后设置机床参数。 接下来将叶片模型变换到加工位置计算出刀具轨迹,再以此轨迹进行叶片切削过程、刀位轨迹和机床运动的三维动态仿真。这样就可以清楚的监控到叶片加工过程中的过切与欠切、刀杆和联接系统与叶片、机床各运动部件与叶片和夹具间的干涉碰撞,从而保证了数控编程的质量,减少了试切的工作量和劳动强度,提高了编程的一次成功率,缩短了产品设计和加工周期,大大提高生产效率。如在数控加工行业进行推广,可产生巨大的经济和社会效益。 混流式叶片的机床加工仿真 叶片刀位轨迹的后置处理后置处理是数控编程的一个重要内容,它将我们前面生成的刀位数据转换成适合具体机床的数据。后处理最基本的两个要素就是刀轨数据和后处理器。我们应首先了解龙门移动式五坐标数控铣镗床的结构、机床配备的附属设备、机床具备的功能及功能实现的方式和机床配备的数控系统,熟悉该系统的"!编程包括功能代码的组成、含义。然后应用通用后置处理器导向模板,根据以上掌握的知识,开发定制专用后置处理器。然后将我们已得刀位源文件进行输入转换成可控制机床加工的代码。 结束语 复杂曲面的多轴联动数控编程是一涉及到众多领域 知识的复杂流程,是数字化仿真及优化的过程。本文介 绍的大型水轮机叶片的多轴联动编程技术,已用于工程 实际大型叶片的数控编程中,实现了大型转轮叶片的五 轴联动数控加工的刀位轨迹计算和加工仿真,保证了后 续数控加工的质量和效率,已作为大型水轮机叶片五轴 联动数控加工的编程工具用于实际生产中。
希望采纳

求一篇汽车专业毕业论文8000字以上

现代的轿车发动机大多是电子控制燃油喷射型的汽油发动机,自动熄火的原因很多,首先要分析自动熄火的症状。汽车发动机经过长期的使用后或者人为的原因导致发动机自动熄火,那是什么原因导致发动机自动熄火呢?那就要我们带着问题来探研问题的所在,从中认我们知道发动机为什么自动熄火,这样我们才可以以后避免发动机自动熄火后带给我们的麻烦,防范于未然。

  关键词: 发动机 自动熄火 诊断分析 检测 维修 熄火故障原因

  绪论
  在汽车技术日新月异的今天,电脑控制技术已经应用到汽车的各个系统,各种新结构、新技术的不断涌现,使汽车维修人员面临着更加大的挑战。现代汽车维修技术的特征表现为“七分诊断,三分修理” ,发动机常见故障现象、故障原因、诊断方法和思路、诊断与排除等发生了很大的改观,因此,我通过长时间的在校学习,并参考了大量的维修资料写下了该文。

  一 发动机的概述
  1.1发动机的简介
  发动机机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。

  1.2发动机的工作原理(配图)
  发动机是一种能量转换机构,它将燃料燃烧产生的热能转变成机械能。要完成这个能转换必须经过进气,把可燃混合气(或新鲜空气)引入气缸;然后将进入气缸的可燃混合气(或新鲜空气)压缩,压缩接近终点时点燃可燃混合气(或将柴油高压喷入气缸内形成可燃混合气并引燃);可燃混合气着火燃烧,膨胀推动活塞下行实现对外作功;最后排出燃烧后的废气。即进气、压缩、作功、排气四个过程。把这四个过程叫做发动机的一个工作循环,工作循环不断地重复,就实现了能量转换,使发动机能够连续运转。把完成一个工作循环,曲轴转两圈(720°),活塞上下往复运动四次,称为四行程发动机。而把完成一个工作循环,曲轴转一圈(360°),活塞上下往复运动两次,称为二行程发动机。

  1.3常见发动机的结构(图)
  发动机的结构主要由以下的两大机构和五大系统组成。

  曲柄连杆机构:包括活塞、连杆、曲轴、飞轮、活塞环及活塞销等;

  配气机构: 包括凸轮轴、进排气门、正时齿轮、气门弹簧及气门座等部份;

  燃油供给系:包括汽油箱、汽油泵、汽油滤清器、燃油喷射系统、空气滤清器、进排气管及消声器等部份;

  冷却系:包括水泵、散热器、风扇、节温器及水管等部份;

  润滑系:包括机油泵、机油滤清器、机油集滤器及油道等部份;

  点火系:包括蓄电池、发电机、点火线圈、火花塞及高压线等部份;

  起动系:包括起动机及其附属装置。其中气缸盖、气缸体、进气歧管由铝合金制成,而气缸套及凸轮轴则由铸铁制成;并采用平衡轴的方式平平衡因曲柄连杆机构产生的旋转惯性力和往复惯性力,以降低发动机的振动。

  二 发动机的检修
  2.1发动机的拆卸(步骤)
  拆下蓄电池的负极接线,把发动机室机盖提起到垂直位置,再卸下空气滤清器。放掉冷却液,然后拆下散热器。对装有空调的发动机,卸下空调压缩机的动皮带,然后拆下压缩机,并在不拆软管的情况下把它移到一边。松开动力泵储液罐的注液盖,然后用注射器抽净罐中的液压油,再拧上储液罐盖。拆下油门拉线,拆下液压制动助力器的固定螺栓或在进气歧管上的固定螺母,撒下安装接头用的两个密封垫圈。从缸盖后面的支架上松开真空助力器软管。拆下水泵上的散热器上软管和节温器壳上的储液罐软管。拆下水泵出水口右侧的暖风水箱软管和缸盖后面的左侧的软管。对装有液压气动悬架的车辆,从缸盖的右侧卸开液压泵。拆下燃油分配器和燃油压力调节器上的软管,然后用干净的抹布在装配螺栓处堵住油管以防燃油外泄。拆除全部影响发动机拆卸的导线和软管以及与此有关的例如冷启动阀、电磁压力调节器、空气流量传感器、节气门壳、辅助空气装置、冷却液温度传感器和缸盖温度开关、油底壳油位传感器、交流发电机、起动机和点火线圈等零部件、元器件和总成。拆下点火系统电子开关装置的两个电气连接器。然后拆下诊断插座与翼子板的固定螺栓,从插座的后面拆下电气导线连接器。拆下进气歧管上的机油滤清器导线护罩支撑与安装支架的固定螺栓。从各个连接件和电缆夹上松开导线和电缆并把拆下的导线和电缆与发动机分离开来。提升车辆并把它可靠地支承在支撑台架上。对装有发动机下托架的车辆,卸下前支撑、螺栓、后凸缘螺母和螺栓,然后拆下下托架。对于早期的车辆,松开座架并拆下发动机前减震垫。拆下凸缘螺母或螺栓,然后把排气管与歧管分离开来。松开软管夹,拆下螺母以松开发动机右侧连接件上的动力转向软管,并用干净抹布堵住软管和金属管。拆下发动机搭铁线的固定螺栓和螺母,然后取下搭铁线。拆卸下传动轴,拆下发动机支架与托架的固定螺栓。用提升装置把发动机连同变速器一起从发动机室中提。

  2.2发动机的安装
  发动机组装程序与要求如下:(步骤)

  在组装发动机时要全部使用新垫和新油封,并且保证全部零件都涂有适量的机油以及在缸筒中和曲轴箱内不残留金属多余物。在安装活塞与连杆组件时,要翻转缸体使之右侧面朝上,然后把连杆伸进缸筒中,再用活塞环夹紧器夹紧活塞环并把活塞引进到缸筒中,再用木锤把或类似的硬木棒把活塞与连杆组件顶到位。

  用规定的力矩拧紧连杆轴承盖螺母和主轴承盖螺栓,然后用手转动曲轴以确定其转动阻力适度。对于拉伸螺栓的连杆,不要使用扭力扳手拧紧,而要用转角器拧紧,而且要确保拉伸段的直径大于8.89-0.076mm、被连杆轴承盖挡住部分的直径应不小于7.87mm。出于标准化上的原因,对于全部连接用螺栓相对于转角器的拧紧转角为90°+10°,也就是在以29.83N·m-33.9N·m的扭矩拧紧后再拧转90°;请注意对于190E款型,在第三个主轴承盖处装有曲轴止推垫。此止推垫的两个凸耳放在主轴盖的凹槽中以防止其转动,在安装时应使止推垫带有槽的一面面向曲轴的止推面。分解机油泵并检查齿轮的齿隙,然后检查泵盖安装面的翘曲量,若超过规定,则用机械加工的方式使其平整,若泵盖的内表面磨损严重,则予以更换。安装上机油泵。再安装上油底壳、下曲轴箱,并按规定的力矩拧紧固定螺栓,然后把缸体的上表面转动向上,装上缸垫和缸盖,按规定顺序和力矩拧紧缸盖固定螺栓。安装上气门室盖,并按规定的力矩拧紧固定螺栓,最后把余下的全部零部件安装到发动机上。利用吊装设备把发动机装入发动机室中。

  2.3发动机的磨合
  发动机总成装配后,一般要求经过冷磨合与热试后才能投入使用,通过冷磨与热试对提高零件配合质量,保证正确的间隙(如气门间隙和准确的正时),从而提高发动机的动力性,经济性,工作可靠性和使用寿命.

  2.3.1 发动机的冷磨合
  发动机的冷磨合是指以发动机或其他动力带动发动机运转磨合的过程.其功用是使相对配合的零件之间进行自然磨合.由于冷磨合后,还必须对发动机进行拆检与清洗,所以冷磨时可不安装燃油供给系统和点火系统各附件,如果已安装上,则应拆下汽油机活塞,以减小冷磨合汽缸内的压力,减小发动机零件的机械负荷.

  2.3.2 发动机的热试
  将装配好的发动机,以其本身产生的动力进行运转试验的过程,热试可将发动机安装到车上后进行.热试时,发动机工作温度达到正常后,应使发动机在不同的转速下运转.此外,还应该检查有无漏水,气及油现象,检查调整气门间隙,点火正时,怠速转速等,观察电流表,冷却液温度表,机油压力表指示灯是否正常,听该发动机工作是否有异响,检查发动机汽缸是否符合规定标准,热试的时间为1.5-2.0小时。

  三 发动机自动熄火的故障维修
  3.1故障现象
  故障现象 发动机运转或汽车行驶过程中自动熄火,而再起动并没有多大困难的现象。

  3.2常见故障原因
  进气管路真空泄漏;怠速调整不当、节气们体过脏、怠速系统控制不良等造成的怠速不稳;燃油压力不稳定,例如电动燃油泵电刷过度磨损或接触不良,或燃油泵滤网堵塞等;废气再循环阀门阻塞或底部泄漏;燃油泵电路、喷油器驱动电路等电路有接触不良等故障;燃油泵继电器、EFI继电器、点火继电器不良等;点火系工作不良。例如高压火弱,火花塞使用时间过久,点火正时不对,点火线圈接触不良或热态时存在匝路导致没有高压火花或高压火花弱,低压线路接触不良,绝缘胶损坏间歇搭铁等;节气门位置传感器不良;空气流量计或进气压力传感器有故障;冷却液温度传感器、氧传感器有故障;曲轴位置传感器有故障,如无转速信号(插头末插好、曲轴位置传感器信号线断、传感器定位螺钉松动、间隙失调、传感器损坏等);曲轴位置传感器信号齿圈断齿,会引起加速时熄火,曲轴位置传感器内电子元件温度稳定性能差,会导致信号不正常,会引发间歇性熄火故障;ECU有故障。

  3.3故障诊断的一般步骤(步骤次序)
  先进行故障自诊断,检查有无故障码出现。如有,则按所显示的故障码查找故障原因。要特别注意会影响点火、喷油、怠速、配气相位变化的传感器和执行器(如发动机转速及曲轴位置传感器、凸轮轴位置传感器、冷却液温度传感器、节气门位置传感器、怠速控制阀等)有无故障。

  如发动机自动熄火发生在怠速工况,且熄火后可立即起动可按怠速不稳易熄火进行检查。

  采用故障模拟征兆法振动熔丝盒,各线束接头,看故障能否出现。然后进一步检查各线事业接头有无接触不良,各搭铁线有无搭救铁不良,目视检查线事业绝缘层有无损坏和间歇搭铁现象。

  采用故障模拟征兆法改变ECU、点火器等工作环境温度,重现故障,进而诊断故障原因。

  试更换点火线圈、火花塞等。

  在不断试车过程中,有多通道示波器同时监测发动机转速及曲轴位置传感器、空气流量计、电脑的5V参考电压等信号。

  如果在熄火前有喘振、加速不良的现象再慢慢熄火的话,故障可能发生在供油不畅上。可接上燃油压力表,最好能将压力表用透明胶固定于前挡风玻璃上,再试车确定。如存在熄火时油压力过低的现象,则应检查油箱、电动燃油泵、燃油滤清器、油压调节器及燃油泵控制电路。

  试车时接上专用诊断仪,读取故障出现前后的数据,进行对比分析,从而找出故障。

  按故障逐个检查排除。

  3.4故障诊断的相关要点(分点讲出来)
  在对电控系统引出的故障诊断时,千万不要忘记先进行基本检查。例如:在试图诊断电控单元控制的燃油喷射系统故障之前,一定要确保进气管路无泄漏,配气正时、点火正时。如果存在这些不良现象,发动机的抗负荷交变能力就差,在工作状况突变的情况下可能熄火,如加速熄火、制动熄火、开空调熄火、挂档熄火等。

  有些汽车的间歇性故障是难于诊断的,除非是检查汽车时正好显示故障。因此,当进行诊断测试时,故障症状不出现,故障就难以诊断。解决方法是放车到维修站,由技师驾车在可能出现出问题的状态下行驶,直到故障出现。这种方法就不凑巧了,因为这样故障短时间不出现,就得无休止地驾车。还在一种方法就是故障出现就打电话给维修站,这一方法对长时间熄火无法起动很受用。一般就来这种现象只会越来越严重,如一时无法确诊,也可待故障明显后再作检查。

  检查不定时的怠速熄火故障时,有时换火花塞是必要的。

  当怀疑空气流量计不良(如空气流量计热线过脏;内部电路连接焊点脱落、接触不良等)时,可用示波器检查空气流量计信号电压波形。

  当怀疑进气压力传感器不良时,应先检查传感器真空胶管,看是否破裂,弯折,是否有时漏气,有时不漏气,使进气压力传感器信号时而正常,时而不正常,造成发动机收加速踏板时熄火。还应检查对喷油量影响较大的传感器。冷却液温度传感器不仅对喷油量有影响,也对修正点火提前角的信号之一,应要重视。有时某些车型的氧传感器信号电压无变化,容易造成发动机加速时熄火。

  如果在较高速行驶中先出现加速不良而造成的熄火,要重点检查油路;如果较高速过程中突然熄火则重点检查电路方面,高压火花是否过弱是必要检查项目之一。突然熄火、间歇熄火还应该对控制点火的主要传感器发动机转速用曲轴位置传感器进行检查。故障模拟试验方法。在故障诊断中最困难的情形是有故障,但没有明显的故障征兆。在这种情况下必须进行彻底的故障分析,然后模拟与用户车辆出现故障时相同的条件和环境,进行就车诊断。这样有助于故障处理。

  四 故障实例
  4.1道奇车自动熄火故障
  故障现象

  一辆三星道奇乘用车,在行使了一段路程后其发动机突然自动熄火,再起动时发动机不能着火,但过了大约15min后起到发动机时又能正常起到,且怠速平稳,加速性能良好。

  故障分析

  在冷机状态下测量燃油系统压力,压力正常;在发动机自动熄火后测量燃油系统压力,该系统的压力明显低于正常值;进一步检查时发现在冷机时燃油泵输出的燃油压力正常,在热机时燃油泵输出的燃油压力偏低,因此燃油泵本身油问题。
  排除方法

  更换该燃油泵。

  4.2康明斯发动机自动熄火故障
  Cummins康明斯发动机-自动熄火-的故障原因分析与处理方法

  1:燃油用完或燃油关断阀切断油路处理:检查燃油关断阀,看它是否开启。如系关闭,应予打开。检查油箱中有否燃油。如果油箱无油,则加油原因。

  2:燃油质量低劣处理:检查更换燃油原因。

  3:燃油输油管道漏气处理:检查连接件有无松动,管道有无破裂,滤清器是否未上紧等,并一一校正原因。

  4:内输油路或外输油路漏油处理:对所有滤清器、密封垫、管道和连接件作外油路漏油检查。用加压办法作内油路漏油检查。修理或更换原因。

  5:燃油泵驱动轴断裂处理:检查齿轮泵驱动轴是否断裂。重新调校或更换原因。

  6:节气门传动杆调整不当或磨损处理:检查磨损情况,更换并调整传动杆原因。

  7:怠速弹簧装配不对处理:重新装配调整原因。

  8:限速器离心锤装配不当处理:重新调校原因。

  9:燃油中有水分或蜡质处理:更换燃油,更换所有滤清器,装设燃油加热器原因。

  10:燃油泵校准不正确处理:重新调校燃油泵原因。

  11:密封垫漏气处理:进行压力检查,找出漏气的气缸,更换并修理。

  4.3奔驰轿车自动熄火故障
  故障现象

  一款1996年产奔驰豪华型W140 S320轿车。该车在行驶中突然熄火,再次着车,ABS、ASR、驻车制动报警灯和制动蹄片报警灯都同时点亮,并且着车几分钟后,车辆再次熄火。

  故障原因及分析

  接车后,打开发动机舱盖,发动机及线束一切都十分整齐,看来此车保养得非常好,车主说此车从来没出现过大毛病,所以不必考虑发动机有什么问题。打开点火开关,仪表灯微亮,将点火开关旋至起动挡,起动机“哒哒”作响不运转,好像蓄电池严重亏电。用万用表测起动时电压,只有9V,利用强起动蓄电池着车后,ABS、ASR、驻车制动灯及制动蹄片报警灯都常亮不灭,取下起动蓄电池,不一会儿发动机又熄火。

  再次强起动,测发电机的电压为蓄电池电压,说明发电机不发电。测量发电机D+端子,有+14V电压输出,证明发电机良好。为什么发电机良好却不发电,而且发电机充电指示灯也不亮。于是拆下组合仪表,取出充电指示灯灯泡,没有烧坏,线路也没有问题。无奈之下,只有人为强行让发电机发电。这样做有一定的危险,但为了进一步验证发电机是否真是好的,只好采取此办法。方法是:取一个点火开关处火线,接在一个二极管的正极上,二极管负极接在发电机D+端子上,人为给一个激励信号;利用这种办法着车,测发电机电压果然能达到13.9—14.3V,加油时也正常,说明发电机是好的。

  虽然发电机电压正常了,但4个故障灯仍然常亮不灭,利用奔驰专用电脑STAR2000专用诊断仪准备进入ABS系统,发现通信错误,根本无法进入。取下ABS电脑盒,按资料电路图,找到电脑端子的火线和地线,发现ABS电脑缺少一个常电源。从蓄电池上取一常电源接入后,ABS、ASR灯熄灭,诊断仪也能进入且无故障,但驻车制动及制动蹄片报警灯仍然亮。逐个进行检查,驻车制动制动开关正常,制动蹄片及制动油液位都正常,再次从ABS电脑端子常火入手查看电路图。此常火是从基本电脑内部输出供给,检查基本电脑上的4个10A熔丝,结果3号10A熔丝烧断,取一个10A熔丝插上后又被烧断。仔细检查,发现3号熔丝上被人接了一根线,顺线找到一个防盗报警喇叭。此喇叭是后加装的,取下此线,再接一个10A熔丝,没有再烧断,原来防盗喇叭负载电流过大,只要一工作就会烧断10A熔丝。

  再测ABS电脑端子电源线,恢复正常,着车观察,驻车制动报警灯及制动蹄片报警灯也不亮了,一切正常。难道不发电也是此熔丝造成的吗?于是把发电机线恢复成原车线,测量发电机发电机电压13.8V正常,至此故障全部排除。

  一个小小的熔丝竟然惹出这么大的麻烦,使维修走了不少弯路。基本电脑是给其他电脑模块及仪表供电的一个中转站,所有模块的电源供给都从基本电脑输出,所以基本电脑上的4个熔丝十分重要。在此提醒维修界人士,千万不要胡乱改动原车线路,给维修带来困难,此例故障就是因加装防盗器的那个修理工,没有找到常电源,(奔驰车蓄电池在行李舱)就从电脑处取一个电源,但此10A熔丝无法带动防盗器喇叭,故防盗器喇叭一工作就把10A熔丝烧了,所以提醒朋友们检修车辆一定要找到根源,才能根治故障。

  4.4阳光车发动机自动熄火
  故障现象

  一辆东风日产阳光乘用车,在行驶3.3万km时到专营店进行正常维护,但两天后出现怠速转速较低,当车速达到100km/h—120km/h的条件下紧急制动时发动机会自然熄火,而且该现象出现的频率越来越高,每天达到五次以上,根据以上故障现象得出下列分析。

  故障原因分析

  利用CONSULT-Ⅱ故障检测仪进行故障检测,检测到“CMP SEN/ CIR-B1[P0340]”,即曲轴位置传感器及其故障线路故障。清除线路代码后,重新调取故障代码,该故障代码不再出现,但仍有紧急制动时熄火的现象。检查曲轴位置传感器(位于分电器内)及其线路,未见异常。利用替换法更换了分电器总成,故障未能排除。后经进一步检查发现,该车没有冷机提速功能,在发动机温度为37℃时,其怠速转速只有450r/min,但发动机运转平稳;当发动机达到正常工作温度后,在接通前照灯、空调等负荷的情况下行驶紧急制动,才会出现熄火现象,在熄火前发动机转速先将到400r/min以下,然后再慢慢熄火,不是立即熄火。熄火后发动机可立即起动。

  根据以上故障特征,判断故障发生在发动机的燃油系统或进气系统上,因为如果点火系统出现了故障,导致发动机熄火,其熄火具有突然性,并且熄火后发动机不易重新起动。为找到故障的原因,又做了以下检测:1、测量燃油系统压力。在发动机熄火时,燃油系统的油压始终保持在250kpa,说明燃油系统正常;2、检测发动机的基本怠速状况。热机后拔掉节气门位置传感器(TPS)线束侧连接器,发动机怠速在788r/min左右,说明发动机基本怠速正常;3、利用检测仪测试发动机加速后迅速松开加速踏板时的转速特性曲线,发现该车发动机在怠速补偿方面不良,就重点检查怠速控制系统。利用检测仪读取乘用车的数据流,并与其正常值进行比较。通过比较发现,该车在37℃时发动机转速只有450r/min,但发动机ECU向怠速电动机却已经下达了转动54步的指令;而在正常情况下,怠速电动机只要转动15步,发动机转速就能达到513r/min。由此断定怠速电动机或其控制线路可能存在故障。利用检测仪对怠速电动机进行执行测试。正常情况下,热机后当怠速电动机达到100步时,发动机转速可达到2000r/min左右,但该车在改变怠速电动机转动的步数时,发动机转速没有改变。从而进一步确认怠速电动机或其控制线路存在故障。

  更换怠速电动机,该故障无法排除。拔下怠速电动机线束侧连接器,接通点火开关,检查怠速电动机线束侧连接器的电源端子,其电压正常。(注意:必须用测试灯进行测量,这样可以排除电源线路接触不良或虚接电阻过大的现象,如果用万用表检测,容易忽视这方面的故障。)

  经测量发现怠速电动机线束侧连接器上各端子与ECU线束侧连接器上相应端子的导通性良好,怠速电动机控制线路中没有塔铁现象;进一步检查发现,在ECU线束侧连接器上有一个端子脱出,将其重新装复到原位,用检测仪测试乘用车在加速后迅速松开加速踏板时特性曲线,发现该曲线恢复正常,对怠速电动机进行执行测试,也正常,路试过程中没有出现发动机自动熄火的现象。该故障排除。

  4.5捷达王突然熄火故障原因
  故障原因

  行驶中突然慢慢熄火,再启动后发动机工作不稳,接着很快又熄火。
  诊断与排除

  发动机慢慢熄火与燃油系统有关,但经检查燃油系统工作正常。拔下中央高压线做跳火试验,发现火花很强,说明点火系统正常。再检查点火正时,发现分电器固定螺栓松动,上下活动分电器,分电器可上下窜动。将分电器固定好后,发动机能顺利启动。但发动机工作不稳定,加速时排气管放炮。从新出现的故障现象分析,该车可能是点火错乱。检查分电器盖、分火头,均无故障。检查正时皮带,松紧合适,不可能发生跳齿现象。这时想起分电器固定螺栓曾松动过,会不会发生分电器齿轮折断现象呢?由于分电器固定螺栓松动,造成分电器向上窜动,齿轮不规则折断,同时螺栓松动使分电器左右转动,造成发动机熄火。重新启动发动机时,由于分电器齿轮断齿,使点火正时错乱,发动机工作不稳,加速不良。这时,再怎么调分电器,也调不出正确的点火正时。折下分电器,结果发现分电器齿轮有不规则断齿现象。更换分电器后,故障排除。

  4.6时代超人发动机自动熄火故障的诊断与排除
  故障现象

  一辆桑塔纳2000时代超人,发动后不能正常运行,运转几分钟后就自行熄火,并且熄火后短时间内无法再启动着车;停放十几分钟后又能正常启动了,但过几分钟后又自动熄火。故障如此反复,无法正常使用。
  故障诊断与排除

  接修此车后,首先试启动发动机,发动机启动成功,运转较为平稳;原地加速试验,感到发动机很闷,响应不够灵敏,加速性能较差;运转大约3min左右,发动机怠速出现不稳且抖动了几次就自行熄火了;立刻再次启动发动机,没有任何着车的迹象。
  接上VAG1552诊断仪,读取发动机故障码,没有故障代码。随后又对汽油压力、高压线、火花塞进行了检查,未发现异常。检查配气正时的情况,也未发现问题。经过以上几项检查,时间大约已用了十几分钟,而后再次试启动发动机,发动机居然又能正常启动运转了。趁着发动机尚能运转的时机,立刻读取了该车的数据流,也未发现明显的异常。大约3min后,发动机再次自行熄火,仍旧是当时无法立即启动着车。这个故障确实很奇怪!各项检查和数据都显示该车没有任何能造成发动机不着车的问题,那么问题究竟出在哪里呢?仔细回想一下之前的一系列检查过程,再结合加速性能较差的现象,最后把问题的焦点集中在了排气系统上。笔者让一名员工启动发动机,自己到车尾观察消声器的排气情况,发现在启动过程中,消声器处竟然一丝的尾气也未排出,由此可以断定问题的确出在排气系统上。将车辆架起,断开排气管与三元催化器的接口,再启动发动机,发动机顺利着车,怠速运转较长时间,也未出现自行熄火的现象。拆下三元催化器检查,发现三元催化器的内芯已经被严重堵塞。由此断定,这个怪病的根源就在这个堵死的三元催化器上。更换新的三元催化器后,试车,运转平稳,加速有力,故障彻底排除。

  当三元催化器完全堵死后,发动机运转时的废气无法正常排出;当排气侧的废气压力增大到和作功压力相近的时候,发动机就自动熄火;熄火后排气管内的压力无法马上消除,所以在熄火后立刻启动时,无法再次着车。当排气管内的废气通过三元催化器内芯上残存的微小缝隙逐渐缓慢的卸压后,又能再次启动着车,这就出现熄火后等待十几分钟又能启动的现象。通过这个故障让我们认识到,对于一个故障的诊断,要全方位地去分析和思考,不能只局限于依靠仪器诊断的数据来判断。

  结论: 发动机是汽车的动力装置,其作用是将燃烧产生的热能转变为机械能来驱使汽车行驶的.它是汽车的唯一动力输出源,发动机自动熄火的诊断分析是对汽车发动机维修的一种技术要求,由于发动机维修复杂、涉及面广,对我们的诊断与维修造成一定困难。因此对汽车维修人员需要更高的要求。但在我们许多的维修人员中,对发动机的理论知识、各系统的工作原理不够了解,在分析问题时考虑不全面,同时在自动熄火的诊断分析问题的过程中条理不清晰,不能对症下药,常带一种漫无目的碰运气的心理进行维修,往往花了大钱、更换了许多零件却仍不能解决问题。本文对发动机自动熄火诊断分析进行了全面的分析,优化了维修工艺的程序。更进一步提高了维修人员的维修技能。

上一篇:论文查重55

下一篇:影视艺术论文范文