smt论文模板
smt论文模板
电子工艺生产性实训问题及对策论文
摘要:广州铁路职业技术学院SMT生产实训车间是校内生产性实训基地。该基地的开设是探索“校企合作、工学结合”,培养高技能、实用型人才的创新之举。通过生产真实产品,培养了学生的职业技能和职业素养。在基地的运作过程中,企业生产计划与学校教学计划、学生技能训练与企业经济效益等方面存在一些问题。通过3年的探索实践,有效解决了上述问题。
关键词:SMT生产实训车间;生产性实训;问题;对策
一、前言
教育部《关于全面提高高等职业教育教学质量的若干意见》明确提出:高等职业院校要按照教育规律和市场规则,本着建设主体多元化的原则,紧密联系行业企业,不断改善实训、实习基地条件,积极探索校内生产性实训基地建设的校企组合新模式[1]。
2008年广州铁路职业技术学院(以下简称我校)建成了第一个校内生产性实训基地———SMT生产实训车间。2009年,为适应学院办学模式、人才培养模式改革的需要,SMT生产实训车间搬至花都工学结合实验园。SMT生产实训车间主要是“电子工艺与管理”、“应用电子技术”等专业,为实现人才培养目标而提供生产性实训教学条件。其主要运作模式是:半工半读,接单生产。生产实训车间的生产设备与企业的生产设备完全一样,实训的过程与企业的生产过程完全一致[2]。在生产真实产品的过程中培养学生的职业技能、职业素质、劳动意识、质量意识、责任意识。
SMT生产实训车间建成近三年来,学生在生产车间培训、实训的过程中已为多家企业加工各类电路板组件数万块。车间不但能加工各类电路板组件,还能生产U盘等各类电子产品。“电子工艺”生产线实习已实现真正意义的生产性实训,SMT生产车间已成为真正意义的生产性实训基地。学生在良好实践教学条件下接受培训和进行生产性实训,不仅掌握了专业技能,而且加深了对企业生产全过程的了解,培养了学生的职业素养,为他们毕业后进入企业实习、工作提供了宝贵的现场经验。
校内生产性实训基地在运作的过程中,也遇到了这样或那样的矛盾和问题,如企业生产计划与学校教学计划之间的矛盾、生产性实训的时间和人数安排问题等。通过不断地摸索与实践,有些已找到有效缓解矛盾的方法,有的仍需不断探讨。
二、电子工艺生产性实训面临问题与对策
(一)企业生产计划与学校教学计划的矛盾
高职教育是按照人才培养方案、教育教学计划组织实施的,具有相对稳定的模式和计划。而校内生产性实训则以企业生产任务为依托,学校在与企业合作洽谈时,希望企业能将连续几个月的生产加工计划提供给学校,便于基地整体安排一个学期的培训和生产内容,但企业方面却很难做到。因企业生产是围绕市场需求进行的,市场是千变万化的,企业生产的产品种类、规格、数量必然要跟随市场的变化而变化。因此,企业生产计划与学校实训教学计划的衔接必然会产生矛盾。
面对这一深层次矛盾,为使学生熟悉和掌握SMT生产工艺流程,学会SMT生产、检测设备的编程、调试、维护方法,提高设备的利用率,基地采用相对灵活的办法:“有单生产、无单培训”。
表面组装工艺技术需用涂敷设备、贴装设备、焊接设备、测试设备等多种组装设备,学生在车间进行生产性实训时,技术含量较高的工作主要是贴片机、AOI、ICT等设备的编程和调试,需要培训的时间也较长,但此时不能正常生产,生产只能在已编制好的程序、设定好的参数下进行。为此,无生产订单时,培训学生,使他们熟悉和掌握贴片机、AOI、ICT等设备的编程方法、检测方法;有生产订单时,安排学生进行生产性实训,让学生熟悉和掌握表面组装工艺流程、质量控制要求及SMA的返修方法。
(二)学生技能训练与企业经济效益之间的矛盾
高职教育以培养高技能人才为目标,实训重点放在技能训练,并允许实训中出现一定程度的原材料消耗。而企业生产以实现经济效益最大化为目标,不仅在时间上要求紧,还要求最大限度减少消耗。学校和企业效益目标的矛盾在生产性实训实施过程中尤为突出。
生产性实训基地的任务就是承接企业订单,为企业提供来料加工服务。面对这一突出矛盾,在订单生产过程中,基地一方面按真实产品的生产要求严格控制生产工艺,要求学生养成良好的习惯,避免物料的损失和浪费。另一方面,生产基地自购一部分元器件等物料,补充培训和生产中的原材料消耗。
对于加工时间问题,与企业进行协商,强调学生所进行的生产性实训必须体现“学做合一”,在保证产品质量的前题下,生产时间要比企业长,在与企业签订加工合同时交货时间相对长一些。
(三)学生在校内生产性实习中的心态问题
传统的实习方式主要有传递—接受式、示范—模仿式两种。校内生产性实训引入了企业真实的工作情境和管理模式,是按照产品的工艺流程来布置实训任务的。开始几天学生由于新鲜、好奇,兴致较高,能以端正的态度对待实习。但一段时间以后,面对重复性工作,有的同学对实训失去兴趣,在实训中牢骚多、不认真,有些岗位的工作不愿做,甚至部分家长对此也不理解,传统讲授式的学习方式与真实生产任务式的学习方式矛盾突出。
面对上述问题,笔者认为,在实训中培养他们的责任心和吃苦耐劳的精神,比熟练某一个岗位技能对于他们的职业发展更加重要。因为生产性实训的目的就是在生产真实产品的过程中培养学生的职业技能、职业素质、劳动意识、质量意识、责任意识。为使学生保持良好心态进行生产性实训,必须加强对学生的思想教育,教育学生具有严肃认真的工作态度、具备吃苦耐劳的精神、严格遵守劳动纪律并具有良好的团队合作精神。
(四)生产实训基地设备利用率问题
SMT生产实训车间建有SMT(表面组装)、THT(通孔插装)两条生产线,以适应企业贴片、插件板的加工要求。由于表面组装电路板组件具有高可靠、优质量、低成本等特点,且表面组装工艺技术是电子产品实现“轻、薄、短、小”主要手段,故原采用THT工艺制作电路板组件的电子企业,很多都改为表面组装工艺技术制作电路板组件。不过SMT生产设备一次投入较大,绝大部分中、小型电子企业贴片工序一般都外包加工,插件等后线工序自己做。
这样生产性实训基地接到的插件订单越来越少,从而使得THT生产线的设备利用率下降。
对此,生产实训基地一方面与原有合作企业协商,签订混装板(既有贴片、也有插件)订单;另一方面,与进驻我校的“厂中校”企业合作,利用企业的影响力增加混装板生产订单,校企双方共同组织,进行培训和生产。不但使学生熟悉和掌握SMT、THT生产线的工艺流程,同时也大大提高了设备的利用率。
(五)生产性实训的时间和人数安排问题
表面组装技术各工序环节大多采用先进的自动化生产设备,只需少量的设备维护和质量检测人员,在企业SMT生产线一般安排四人左右。而生产性实训基地集教学、实训、生产为一体,生产时不能像企业一样只安排几个学生,但同一时间段也不适合安排太多学生,否则既不能保证学生都能参与其中,也容易造成产品不良或报废。教学计划中的生产性实训,是以班级为单位全部安排在下午。实际操作时发现两大问题,第一,整班学生全部在车间,若要进行订单生产,人数太多了。第二,生产性实训全部安排在下午,而上午生产车间没有学生,订单生产无法连续进行。
这个问题与教学计划、课程安排都有关,很难找到有效的解决方法。为保证生产的连续性和避免生产车间学生太多,目前采用的办法是:在保证每个学生都能按要求完成生产性实训课时的`前题下,充分利用学生的自习课或其它课外时间,尽可能使学生分组、分时段在生产车间进行生产性实训。
(六)学生实训的阶段性与订单生产连续性之间的矛盾
生产性实训是按专业“教学进程、课程设置与学时安排表”在某个学期、某几周或每天的某个时间段进行的。这就使得某些时间,生产基地培训或实训的学生很少或根本没有。
若有订单,它是一个连续性的生产过程,有时一个订单可能需要一、两周时间才能完成;按照电路板组件的生产工艺流程,生产线上必须有若干人同时工作。如果没有学生,无法保证订单生产正常进行。
即使没有订单,也应利用生产实训基地的设备培训更多的学生,使他们熟悉SMT生产线工艺流程,学会主要设备的编程方法,提高设备的利用率。如果教学计划无安排,也就没有了培训对象(学生)。
为了有效解决这一矛盾,使更多的学生了解现代电子产品制造技术,保证订单生产持续进行,提高设备利用率,专业老师在全院开设了“现代电子制造技术”公选课,使非电子专业的学生有机会了解和熟悉现代电子制造业的新设备、新技术、新工艺。
公选课教学计划中除理论授课外,安排一定学时的实践教学,各非电子专业学生可以利用自习课等其它课外时间,分组、分时段在生产性实训基地培训或进行生产性实训。这样既能保证各时间段都有学生,又解决了订单生产过程中因车间学生人数太多可能造成的质量问题。
结束语
教育部财政部关于进一步推进“国家示范性高等职业院校建设计划”通知中指出:探索建立“校中厂”、“厂中校”实习实训基地。
SMT生产实训基地是我校花都工学结合实验园中“校中厂”之一。经过近三年的生产性实训实践,围绕珠三角地区现代电子产品制造基地背景为学院提供的地域优势,进行校内生产性实训的探索,既紧密贴近社会实际,满足了地方经济发展对高技能人才培养的需要,推动了我校“校企深度交融、工学有机结合”人才培养模式的改革,形成了学校里面有工厂、车间里面有教室的工学结合校园格局,为区域经济的发展提供了强有力的人才支撑,也为同类高职院校的生产性实训教学提供了有益的借鉴经验,具有较好的示范和引领辐射作用[3]。
生产性实训、“校中厂”是高等职业教育中近年来出现的新事物。实践证明,此举对提高学生培养质量、提高教师实践技能、实现人才培养与市场要求无缝接轨等方面具有重要意义。当然,在具体运作中仍存在一些问题,只要高职教育工作者本着“就业导向”的人才培养思路,贴近市场需求,进一步加强生产性实训的组织,就一定能培养出更多高质量的技能型人才。
求一篇集成电路芯片封装技术论文
集成电路芯片封装技术浅谈
自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。
对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。
芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。
下面将对具体的封装形式作详细说明。
一、DIP封装
70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点:
1.适合PCB的穿孔安装;
2.比TO型封装(图1)易于对PCB布线;
3.操作方便。
DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/15.24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。
Intel公司这期间的CPU如8086、80286都采用PDIP封装。
二、芯片载体封装
80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。
以0.5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:7.8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是:
1.适合用SMT表面安装技术在PCB上安装布线;
2.封装外形尺寸小,寄生参数减小,适合高频应用;
3.操作方便;
4.可靠性高。
在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。
三、BGA封装
90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。
BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有:
1.I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率;
2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能:
3.厚度比QFP减少1/2以上,重量减轻3/4以上;
4.寄生参数减小,信号传输延迟小,使用频率大大提高;
5.组装可用共面焊接,可靠性高;
封装仍与QFP、PGA一样,占用基板面积过大;
Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。
四、面向未来的新的封装技术
BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。
Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按0.5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。
1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1.1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点:
1.满足了LSI芯片引出脚不断增加的需要;
2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;
3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。
曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有:
1.封装延迟时间缩小,易于实现组件高速化;
2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3;
3.可靠性大大提高。
随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。
随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。
急求SMT表面组装技术(Surface Mounted Technology)市场分析报告
什么是SMT:
SMT就是表面组装技术(Surface Mounted Technology的缩写),是目前电子组装行业里最流行的一种技术和工艺。
SMT有何特点:
1、组装密度高、电子产品体积小、重量轻,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用SMT之后,电子产品体积缩小40%~60%,重量
减轻60%~80%。
2、可靠性高、抗振能力强。焊点缺陷率低。
3、高频特性好。减少了电磁和射频干扰。
4、易于实现自动化,提高生产效率。降低成本达30%~50%。 节省材料、能源、设备、人力、时间等。
为什么要用SMT:
1、电子产品追求小型化,以前使用的穿孔插件元件已无法缩小
2、电子产品功能更完整,所采用的集成电路(IC)已无穿孔元件,特别是大规模、高集成IC,不得不采用表面贴片元件。
3、产品批量化,生产自动化,厂方要以低成本高产量,出产优质产品以迎合顾客需求及加强市场竞争力
4、电子元件的发展,集成电路(IC)的开发,半导体材料的多元应用
5、电子科技革命势在必行,追逐国际潮流
一、SMT工艺流程------单面组装工艺
来料检测 --> 丝印焊膏(点贴片胶)--> 贴片 --> 烘干(固化) --> 回流焊接 --> 清洗 --> 检测 --> 返修
--------------------------------------------------------------------------------
二、SMT工艺流程------单面混装工艺
来料检测 --> PCB的A面丝印焊膏(点贴片胶)--> 贴片 --> 烘干(固化)--> 回流焊接 --> 清洗 --> 插件 --> 波峰焊 --> 清洗 -->
检测 --> 返修
--------------------------------------------------------------------------------
三、SMT工艺流程------双面组装工艺
A:来料检测 --> PCB的A面丝印焊膏(点贴片胶) --> 贴片 --> 烘干(固化) --> A面回流焊接 --> 清洗 --> 翻板 --> PCB的B面丝印
焊膏(点贴片胶) --> 贴片 --> 烘干 -->回流焊接(最好仅对B面 --> 清洗 --> 检测 -->返修)
此工艺适用于在PCB两面均贴装有PLCC等较大的SMD时采用。
B:来料检测 --> PCB的A面丝印焊膏(点贴片胶) --> 贴片 --> 烘干(固化) --> A面回流焊接 --> 清洗 --> 翻板 --> PCB的B面点贴片
胶 --> 贴片 --> 固化 --> B面波峰焊 --> 清洗 --> 检测 --> 返修)
此工艺适用于在PCB的A面回流焊,B面波峰焊。在PCB的B面组装的SMD中,只有SOT或SOIC(28)引脚以下时,宜采用此工艺。
--------------------------------------------------------------------------------
四、SMT工艺流程------双面混装工艺
A:来料检测 --> PCB的B面点贴片胶 --> 贴片 --> 固化 --> 翻板 --> PCB的A面插件 --> 波峰焊 --> 清洗 --> 检测 --> 返修
先贴后插,适用于SMD元件多于分离元件的情况
B:来料检测 --> PCB的A面插件(引脚打弯) --> 翻板 --> PCB的B面点贴片胶 --> 贴片 --> 固化 --> 翻板 --> 波峰焊 --> 清洗
--> 检测 --> 返修
先插后贴,适用于分离元件多于SMD元件的情况
C:来料检测 --> PCB的A面丝印焊膏 --> 贴片 --> 烘干 --> 回流焊接 --> 插件,引脚打弯 --> 翻板 --> PCB的B面点贴片胶 --> 贴片
--> 固化 --> 翻板 --> 波峰焊 --> 清洗 --> 检测 --> 返修
A面混装,B面贴装。
D:来料检测 --> PCB的B面点贴片胶 --> 贴片 --> 固化 --> 翻板 --> PCB的A面丝印焊膏 --> 贴片 --> A面回流焊接 --> 插件 -->
B面波峰焊 --> 清洗 --> 检测 --> 返修
A面混装,B面贴装。先贴两面SMD,回流焊接,后插装,波峰焊
E:来料检测 --> PCB的B面丝印焊膏(点贴片胶) --> 贴片 --> 烘干(固化) --> 回流焊接 --> 翻板 --> PCB的A面丝印焊膏 --> 贴片
--> 烘干 --> 回流焊接1(可采用局部焊接) --> 插件 --> 波峰焊2(如插装元件少,可使用手工焊接) --> 清洗 --> 检测 --> 返修
SMT 基本工艺构成:
--------------------------------------------------------------------------------
基本工艺构成要素:
丝印(或点胶)--> 贴装 --> (固化) --> 回流焊接 --> 清洗 --> 检测 --> 返修
丝印:其作用是将焊膏或贴片胶漏印到PCB的焊盘上,为元器件的焊接做准备。所用设备为丝印机(丝网印刷机),位于SMT生产线的最前端。
点胶:它是将胶水滴到PCB的的固定位置上,其主要作用是将元器件固定到PCB板上。所用设备为点胶机,位于SMT生产线的最前端或检测设备的后
面。
贴装:其作用是将表面组装元器件准确安装到PCB的固定位置上。所用设备为贴片机,位于SMT生产线中丝印机的后面。
固化:其作用是将贴片胶融化,从而使表面组装元器件与PCB板牢固粘接在一起。所用设备为固化炉,位于SMT生产线中贴片机的后面。
回流焊接:其作用是将焊膏融化,使表面组装元器件与PCB板牢固粘接在一起。所用设备为回流焊炉,位于SMT生产线中贴片机的后面。
清洗:其作用是将组装好的PCB板上面的对人体有害的焊接残留物如助焊剂等除去。所用设备为清洗机,位置可以不固定,可以在线,也可不在线。
检测:其作用是对组装好的PCB板进行焊接质量和装配质量的检测。所用设备有放大镜、显微镜、在线测试仪(ICT)、飞针测试仪、自动光学检测
(AOI)、X-RAY检测系统、功能测试仪等。位置根据检测的需要,可以配置在生产线合适的地方。
返修:其作用是对检测出现故障的PCB板进行返工。所用工具为烙铁、返修工作站等。配置在生产线中任意位置。
SMT有关的技术组成
1、电子元件、集成电路的设计制造技术
2、电子产品的电路设计技术
3、电路板的制造技术
4、自动贴装设备的设计制造技术
5、电路装配制造工艺技术
6、装配制造中使用的辅助材料的开发生产技术
为什么要用表面贴装技术(SMT)?
1、电子产品追求小型化,以前使用的穿孔插件元件已无法缩小
2、电子产品功能更完整,所采用的集成电路(IC)已无穿孔元件,特别是大规模、高集成IC,不得不采用表面贴片元件
3、产品批量化,生产自动化,厂方要以低成本高产量,出产优质产品以迎合顾客需求及加强市场竞争力
4、电子元件的发展,集成电路(IC)的开发,半导体材料的多元应用
5、电子科技革命势在必行,追逐国际潮流
SMT的特点
1、组装密度高、电子产品体积小、重量轻,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用SMT之后,电子产品体积缩小40%~60%,重量
减轻60%~80%。
2、可靠性高、抗振能力强。焊点缺陷率低。
3、高频特性好。减少了电磁和射频干扰。
4、易于实现自动化,提高生产效率。降低成本达30%~50%。 节省材料、能源、设备、人力、时间等。
SMT元器件介绍
SMC:表面组装元件(Surface Mounted commponents)
主要有矩形片式元件、圆柱形片式元件、复合片式元件、异形片式元件。
SMD:表面组装器件(Surface Mounted Devices)
主要有片式晶体管和集成电路,集成电路又包括SOP、SOJ、PLCC、LCCC、QFP、BGA、CSP 、FC、MCM等。举例如下:
1、连接件(Interconnect):提供机械与电气连接/断开,由连接插头和插座组成,将电缆、支架、机箱或其它PCB与PCB连接起来;可是与板的实际
连接必须是通过表面贴装型接触。
2、有源电子元件(Active):在模拟或数字电路中,可以自己控制电压和电流,以产生增益或开关作用,即对施加信号有反应,可以改变自己的基本
特性。无源电子元件(Inactive):当施以电信号时不改变本身特性,即提供简单的、可重复的反应。
3、异型电子元件(Odd-form):其几何形状因素是奇特的,但不必是独特的。因此必须用手工贴装,其外壳(与其基本功能成对比)形状是不标准的,
例如:许多变压器、混合电路结构、风扇、机械开关块,等。
Chip片电阻, 电容等, 尺寸规格: 0201, 0402, 0603, 0805, 1206, 1210, 2010, 等。 钽电容, 尺寸规格:
TANA,TANB,TANC,TANDSOT
晶体管,SOT23, SOT143, SOT89等
melf圆柱形元件, 二极管, 电阻等
SOIC集成电路, 尺寸规格: SOIC08, 14, 16, 18, 20, 24, 28, 32
QFP 密脚距集成电路PLCC集成电路, PLCC20, 28, 32, 44, 52, 68, 84
BGA 球栅列阵包装集成电路, 列阵间距规格: 1.27, 1.00, 0.80
CSP 集成电路, 元件边长不超过里面芯片边长的1.2倍, 列阵间距<0.50的microBGA
SMT名词解释
Bridge(锡桥):把两个应该导电连接的导体连接起来的焊锡,引起短路。
Buried via(埋入的通路孔):PCB的两个或多个内层之间的导电连接(即,从外层看不见的)。
C
CAD/CAM system(计算机辅助设计与制造系统):计算机辅助设计是使用专门的软件工具来设计印刷电路结构;计算机辅助制造把这种设计转换成实际的产
品。这些系统包括用于数据处理和储存的大规模内存、用于设计创作的输入和把储存的信息转换成图形和报告的输出设备
Capillary action(毛细管作用):使熔化的焊锡,逆着重力,在相隔很近的固体表面流动的一种自然现象。
Chip on board (COB板面芯片):一种混合技术,它使用了面朝上胶着的芯片元件,传统上通过飞线专门地连接于电路板基底层。
Circuit tester(电路测试机):一种在批量生产时测试PCB的方法。包括:针床、元件引脚脚印、导向探针、内部迹线、装载板、空板、和元件测试。
Cladding(覆盖层):一个金属箔的薄层粘合在板层上形成PCB导电布线。
Coefficient of the thermal expansion(温度膨胀系数):当材料的表面温度增加时,测量到的每度温度材料膨胀百万分率(ppm)
Cold cleaning(冷清洗):一种有机溶解过程,液体接触完成焊接后的残渣清除。
Cold solder joint(冷焊锡点):一种反映湿润作用不够的焊接点,其特征是,由于加热不足或清洗不当,外表灰色、多孔。
Component density(元件密度):PCB上的元件数量除以板的面积。
Conductive epoxy(导电性环氧树脂):一种聚合材料,通过加入金属粒子,通常是银,使其通过电流。
Conductive ink(导电墨水):在厚胶片材料上使用的胶剂,形成PCB导电布线图。
Conformal coating(共形涂层):一种薄的保护性涂层,应用于顺从装配外形的PCB。
Copper foil(铜箔):一种阴质性电解材料,沉淀于电路板基底层上的一层薄的、连续的金属箔, 它作为PCB的导电体。它容易粘合于绝缘层,接受印刷保
护层,腐蚀后形成电路图样。 Copper mirror test(铜镜测试):一种助焊剂腐蚀性测试,在玻璃板上使用一种真空沉淀薄膜。
Cure(烘焙固化):材料的物理性质上的变化,通过化学反应,或有压/无压的对热反应。
Cycle rate(循环速率):一个元件贴片名词,用来计量从拿取、到板上定位和返回的机器速度,也叫测试速度。
D
Data recorder(数据记录器):以特定时间间隔,从着附于PCB的热电偶上测量、采集温度的设备。
Defect(缺陷):元件或电路单元偏离了正常接受的特征。
Delamination(分层):板层的分离和板层与导电覆盖层之间的分离。
Desoldering(卸焊):把焊接元件拆卸来修理或更换,方法包括:用吸锡带吸锡、真空(焊锡吸管)和热拔。
Dewetting(去湿):熔化的焊锡先覆盖、后收回的过程,留下不规则的残渣。
DFM(为制造着想的设计):以最有效的方式生产产品的方法,将时间、成本和可用资源考虑在内。
Dispersant(分散剂):一种化学品,加入水中增加其去颗粒的能力。
Documentation(文件编制):关于装配的资料,解释基本的设计概念、元件和材料的类型与数量、专门的制造指示和最新版本。使用三种类型:原型机和少数
量运行、标准生产线和/或生产数量、以及那些指定实际图形的政府合约。
Downtime(停机时间):设备由于维护或失效而不生产产品的时间。
Durometer(硬度计):测量刮板刀片的橡胶或塑料硬度。
E
Environmental test(环境测试):一个或一系列的测试,用于决定外部对于给定的元件包装或装配的结构、机械和功能完整性的总影响。
Eutectic solders(共晶焊锡):两种或更多的金属合金,具有最低的熔化点,当加热时,共晶合金直接从固态变到液态,而不经过塑性阶段。
F
Fabrication():设计之后装配之前的空板制造工艺,单独的工艺包括叠层、金属加成/减去、钻孔、电镀、布线和清洁。
Fiducial(基准点):和电路布线图合成一体的专用标记,用于机器视觉,以找出布线图的方向和位置。
Fillet(焊角):在焊盘与元件引脚之间由焊锡形成的连接。即焊点。
Fine-pitch technology (FPT密脚距技术):表面贴片元件包装的引脚中心间隔距离为 0.025"(0.635mm)或更少。
Fixture(夹具):连接PCB到处理机器中心的装置。
Flip chip(倒装芯片):一种无引脚结构,一般含有电路单元。 设计用于通过适当数量的位于其面上的锡球(导电性粘合剂所覆盖),在电气上和机械上连
接于电路。
Full liquidus temperature(完全液化温度):焊锡达到最大液体状态的温度水平,最适合于良好湿润。
Functional test(功能测试):模拟其预期的操作环境,对整个装配的电器测试。
G
Golden boy(金样):一个元件或电路装配,已经测试并知道功能达到技术规格,用来通过比较测试其它单元。
H
Halides(卤化物):含有氟、氯、溴、碘或砹的化合物。是助焊剂中催化剂部分,由于其腐蚀性,必须清除。
Hard water(硬水):水中含有碳酸钙和其它离子,可能聚集在干净设备的内表面并引起阻塞。
Hardener(硬化剂):加入树脂中的化学品,使得提前固化,即固化剂。
I
In-circuit test(在线测试):一种逐个元件的测试,以检验元件的放置位置和方向。
J
Just-in-time (JIT刚好准时):通过直接在投入生产前供应材料和元件到生产线,以把库存降到最少。
L
Lead configuration(引脚外形):从元件延伸出的导体,起机械与电气两种连接点的作用。
Line certification(生产线确认):确认生产线顺序受控,可以按照要求生产出可靠的PCB。
M
Machine vision(机器视觉):一个或多个相机,用来帮助找元件中心或提高系统的元件贴装精度。
Mean time between failure (MTBF平均故障间隔时间):预料可能的运转单元失效的平均统计时间间隔,通常以每小时计算,结果应该表明实际的、预
计的或计算的。
N
Nonwetting(不熔湿的):焊锡不粘附金属表面的一种情况。由于待焊表面的污染,不熔湿的特征是可见基底金属的裸露。
O
Omegameter(奥米加表):一种仪表,用来测量PCB表面离子残留量,通过把装配浸入已知高电阻率的酒精和水的混合物,其后,测得和记录由于离子残留而引
起的电阻率下降。Open(开路):两个电气连接的点(引脚和焊盘)变成分开,原因要不是焊锡不足,要不是连接点引脚共面性差。
Organic activated (OA有机活性的):有机酸作为活性剂的一种助焊系统,水溶性的。
P
Packaging density(装配密度):PCB上放置元件(有源/无源元件、连接器等)的数量;表达为低、中或高。
Photoploter(相片绘图仪):基本的布线图处理设备,用于在照相底片上生产原版PCB布线图(通常为实际尺寸)。
Pick-and-place(拾取-贴装设备):一种可编程机器,有一个机械手臂,从自动供料器拾取元件,移动到PCB上的一个定点,以正确的方向贴放于正确的位
置。
Placement equipment(贴装设备):结合高速和准确定位地将元件贴放于PCB的机器,分为三种类型:SMD的大量转移、X/Y定位和在线转移系统,可以组合以
使元件适应电路板设计。
R
Reflow soldering(回流焊接):通过各个阶段,包括:预热、稳定/干燥、回流峰值和冷却,把表面贴装元件放入锡膏中以达到永久连接的工艺过程。
Repair(修理):恢复缺陷装配的功能的行动。
Repeatability(可重复性):精确重返特性目标的过程能力。一个评估处理设备及其连续性的指标。
Rework(返工):把不正确装配带回到符合规格或合约要求的一个重复过程。
Rheology(流变学):描述液体的流动、或其粘性和表面张力特性,如,锡膏。
S
Saponifier(皂化剂):一种有机或无机主要成份和添加剂的水溶液,用来通过诸如可分散清洁剂,促进松香和水溶性助焊剂的清除。
Schematic(原理图):使用符号代表电路布置的图,包括电气连接、元件和功能。
Semi-aqueous cleaning(不完全水清洗):涉及溶剂清洗、热水冲刷和烘干循环的技术。
Shadowing(阴影):在红外回流焊接中,元件身体阻隔来自某些区域的能量,造成温度不足以完全熔化锡膏的现象。
Silver chromate test(铬酸银测试):一种定性的、卤化离子在RMA助焊剂中存在的检查。(RMA可靠性、可维护性和可用性)
Slump(坍落):在模板丝印后固化前,锡膏、胶剂等材料的扩散。
Solder bump(焊锡球):球状的焊锡材料粘合在无源或有源元件的接触区,起到与电路焊盘连接的作用。
Solderability(可焊性):为了形成很强的连接,导体(引脚、焊盘或迹线)熔湿的(变成可焊接的)能力。
Soldermask(阻焊):印刷电路板的处理技术,除了要焊接的连接点之外的所有表面由塑料涂层覆盖住。
Solids(固体):助焊剂配方中,松香的重量百分比,(固体含量)
Solidus(固相线):一些元件的焊锡合金开始熔化(液化)的温度。
Statistical process control (SPC统计过程控制):用统计技术分析过程输出,以其结果来指导行动,调整和/或保持品质控制状态。
Storage life(储存寿命):胶剂的储存和保持有用性的时间。
Subtractive process(负过程):通过去掉导电金属箔或覆盖层的选择部分,得到电路布线。
Surfactant(表面活性剂):加入水中降低表面张力、改进湿润的化学品。
Syringe(注射器):通过其狭小开口滴出的胶剂容器。
T
Tape-and-reel(带和盘):贴片用的元件包装,在连续的条带上,把元件装入凹坑内,凹坑由塑料带盖住,以便卷到盘上,供元件贴片机用。
Thermocouple(热电偶):由两种不同金属制成的传感器,受热时,在温度测量中产生一个小的直流电压。
Type I, II, III assembly(第一、二、三类装配):板的一面或两面有表面贴装元件的PCB(I);有引脚元件安装在主面、有SMD元件贴装在一面或两面的
混合技术(II);以无源SMD元件安装在第二面、引脚(通孔)元件安装在主面为特征的混合技术(III)。
Tombstoning(元件立起):一种焊接缺陷,片状元件被拉到垂直位置,使另一端不焊。
U
Ultra-fine-pitch(超密脚距):引脚的中心对中心距离和导体间距为0.010”(0.25mm)或更小。
V
Vapor degreaser(汽相去油器):一种清洗系统,将物体悬挂在箱内,受热的溶剂汽体凝结于物体表面。
Void(空隙):锡点内部的空穴,在回流时气体释放或固化前夹住的助焊剂残留所形成。
Y
Yield(产出率):制造过程结束时使用的元件和提交生产的元件数量比率。
上一篇:论文答辩的笑话
下一篇:征文和论文查重