大豆基因论文研究
大豆基因论文研究
大豆又名菽,在我国已有5000多年的大豆种植历史。大豆起源于中国,由分布于黄淮流域(北纬32-40度)的野生大豆驯化而来。随后广泛传播到世界各地,为人类提供了主要的植物油料和蛋白资源。
据统计, 全世界现有60 000份不同类型的大豆种质资源。毫无疑问,大豆的研究价值是所有豆科作物中最高的。这里对大豆的十年经典研究做一个回顾。
Genome sequence of the palaeopolyploid soybean
研究者利用全基因组鸟枪法对大豆进行全基因组测序,利用 大豆栽培品种Williams 82 品种大豆家系的444个重组自交系构建遗传图谱用来辅助组装,最终组装后的基因组大小为994Mb,ContigN50为189.4 Kb,ScaffoldN50达47.8 Mb,其中有397条Scaffold组装并锚定到 20条染色体 水平,组装基因组中确定了4991个SNP和874个SSR,并预测出 46430 个蛋白编码基因,重复序列占到整个基因组的59%。
此外,该研究后续除了对基因组成、重复DNA鉴定、全基因组复制事件等进化问题进行研究外,还对大豆固氮瘤和油脂的生物合成基因及基因转录因子多样性进行了鉴定,该大豆基因组准确序列的获得加快改良大豆品种的培育。
Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection
研究人员对 17株野生大豆和14株栽培大豆 进行了全基因组重测序,与参考基因组比对后,共发现了630多万个SNP,建立了高密度的分子标记图谱。此外通过对野生大豆和栽培大豆进行初步组装,从而在两种大豆中鉴定出18余万个PAV,得到了在栽培大豆中获得以及丢失的基因。此研究还发现大豆基因组存在较高程度的基因连锁不平衡和较高比例的单核苷酸非同义替换/同义替换比例,这表明大豆分子标记育种比基因图位克隆可能会拥有更多的优势。
与栽培大豆相比,野生大豆有着更高水平的遗传多样性,这表明人工选择导致了栽培大豆狭窄的生物多样性,这可能对可持续种植带来负面影响。而对野生大豆的分析表明,随着野生大豆生存环境的减少,野生大豆的有效群体大小在减少,野生种质资源的保存迫在眉睫。
该项研究第一次为大豆基因组学研究提供了全面的重测序数据,对未来的大豆群体遗传学研究,分子标记育种,新基因的发现奠定了坚实的基础。
De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits
中国农科院作科所邱丽娟团队牵头选择了 7份有代表性的野生大豆 进行De novo测序和独立组装,构建野生大豆泛基因组,Contig N50为7.7-26.6 Kb,Scaffold N50约16.3-62.7 Kb。通过基因集比较分析发现,48.6%的基因为7个野生大豆所共有,超过51.4%则仅存在于个别样本中(特有基因),并且特有基因主要富集在生物和非生物逆境相关途径中,这也反映了野生大豆具有广泛的适应性。此外,还鉴定到3.6-4.7Mb的SNP和0.50-0.77Mb的InDel。
进化分析表明,野生大豆与栽培大豆的祖先约在80万年前即发生了分化;正选择分析发现栽培大豆受选择的基因多与抗旱有关,而野生大豆中受选择基因非常多样化。同时,鉴定出大量与抗逆、抗病、花期、产油量和高度等重要农艺性状相关基因和变异,如野生大豆和栽培大豆开花时间的差异与开花时间调控基因SNP和InDel变异有关。
该成果是首例重要作物泛基因组研究成果,为研究大豆的遗传多样性及进化历程提供了新的启示,奠定了解析重要驯化性状建成、发掘优异基因/标记的基础。
Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean
中科院遗传发育研究所田志喜团队,对 302份 代表性大豆种质进行了重测序(>10x),分析表明大豆在驯化和改良过程中遗传多态性明显降低,在驯化阶段鉴定出121个强选择信号,在品种改良阶段鉴定出109个强选择信号。
除了SNP变异的分析,同时对能够解释更多生物学问题的 CNV变异信息 也进行了深入的选择分析和全基因关联分析。选择分析发现,CNV也在驯化过程中受到人工选择,共发现农家品种和驯化品种中162个受选择区域;通过关联分析发现,18号染色体与抗胞囊线虫相关的CNV与前人报道的区间Rhg1有交集,有趣的是,这个区间同样在驯化种中受到选择。另外,8号染色体上一个与豆脐颜色表现强关联的CNV位于一个查尔酮合成相关的区间内,同样为驯化种中受选择的位点。本文通过CNV的研究实现了鉴定到更多与大豆优良性状相关基因的研究目的。
对种子大小、种皮颜色、生长习性、油含量等性状进行全基因组关联(GWAS)分析,找出了一系列显著关联位点。研究表明大豆产油性状受人工选择较多,形成复杂的网络系统共同调控油的代谢。
Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean
继302个大豆重测序研究之后,中科院遗传发育研究所的田志喜团队又对 809份 大豆进行了重测序(8.3×)分析,深入解析了大豆84个农艺性状间的遗传调控网络,共鉴定出245个显著关联位点,发现其中95个关联位点和其它位点存在上位性效应。
例如,对于油含量相关性状,共鉴定到24个脂肪酸代谢相关和21个脂代谢相关的基因。深入分析发现,这些基因是通过加性效应共同调控多个大豆油脂性状的形成。
这些关联位点揭示了 不同性状间相互耦合 的遗传基础。根据连锁不平衡分析,发现115个关联位点可相互连锁,并与所观测的51个性状联系起来,形成复杂的 多性状多位点调控网络,该遗传调控网络很好地解释了不同性状间的耦合关系 。研究还发现其中23个关联位点,包括16个新鉴定的位点,对不同性状的形成起到关键调控作用。
De novo assembly of a Chinese soybean genome
中国科学院遗传与发育生物学研究所田志喜团队联合其他单位,综合运用单分子实时测序(SMRT)、单分子光学图谱(optical mapping)和高通量染色体构象捕获技术(Hi-C),对中国国审大豆品种“中黄13”的基因组 (Gmax_ZH13) 进行从头组装,最终得到1.025 Gb的基因组序列,包含20条染色体和1条叶绿体。该基因组Contig N50为3.46 Mb,Scaffold N50为51.87 Mb,是目前连续性最好的植物基因组之一。
进一步分析表明,Gmax_ZH13和Williams 82基因组之间存在着大量的遗传变异,包括1404个易位事件、161个倒位事件、1233个倒位易位事件,以及在Gmax_ZH13中出现的505506个小插入/缺失(1-99 bp)和17409个大插入/缺失(≥100 bp)。
该研究整合大量转录组数据为Gmax_ZH13基因注释基因构建了一个完整的基因共表达网络。通过已报道控制大豆开花时间的基因与新定位的QTL或GWAS区间内候选基因的共表达关系,对新定位区间内控制该性状的基因进行更精确地筛选,得到26个可能控制大豆开花时间的基因,并利用自然群体遗传变异和表型差异的关联对其中部分基因进行验证,为重要农艺性状基因的挖掘提供了新思路。Gmax_ZH13基因组的发表为大豆基础研究提供了重要资源,为国产优异大豆品种的培育奠定了基础。
A reference-grade wild soybean genome
野生大豆含有丰富的基因资源,可用于提升栽培大豆抗逆性、种子蛋白质和次级代谢产物含量等农艺性状,是大豆品种改良的天然宝库。2019年3月,香港中文大学与华大基因的联合科研团队针对 野生大豆W05 ,应用三代PacBio测序技术、Bionano Genomics双酶切光学图谱(OM)和高通量染色体构象捕获技术(Hi-C)产出的数据,组装得到染色体级别的参考基因组。最终组装获得的基因组大小为1013.2Mb,contig N50 3.3Mb,scaffold N50 50.7Mb。注释获得 55,539 个蛋白编码基因,对应89,477个蛋白质编码转录本。此外,在W05基因组中,还发现了288个miRNA,1,988个snRNA及147 个rRNA。
Pan-Genome of Wild and Cultivated Soybeans
中科院遗传发育所田志喜/梁承志课题组合作发表了大豆图形结构泛基因组图谱。这项研究 在植物中首次实现了基于图形结构的基因组构建,突破了传统线性基因组的存储形式 ,将引领下一代基因组学研究思路和方法,被审稿人称为“基因组学的里程碑工作”。
该研究首先对来自世界大豆主产国的2898个大豆自然种质资源进行了深度重测序和群体结构分析,进而精心挑选出26个最具代表性的大豆种质材料。该 26个种质包括3个野生大豆,9个农家种和14个现代栽培品种 ,其中一些材料作为骨干核心亲本已经培育了上百个优良新品种,一些材料是各个大豆主产区推广面积最大的主栽品种。进一步利用最新组装策略,对该26个大豆种质进行了基因组的从头组装和精确注释。在此基础上,结合已经发表的中黄13、Williams 82 和 W05 基因组,构建了高质量的基于图形结构的基因组,经过泛基因组分析,挖掘到大量的大片段结构变异。
深入分析发现,有些结构变异导致了不同基因间的融合,这为新基因的产生研究提供了重要线索;一些结构变异在重要农艺性状调控中发挥重要作用,如种皮亮度、种皮颜色的驯化、缺铁失绿等。
综上,经过10年的努力,起源于中国的大豆再次迎来了自己的高光时刻!这些遗传变异的发布为大豆研究提供了极为重要的资源和平台,无疑将大力推进大豆分子设计育种,助力实现大豆“绿色革命”。
转基因大豆论文资料
04/05 05/06 06/07 07/08 08/09
进口大豆压榨量 3490 3940
国产大豆压榨量 960 820 490 380 170
市场年度(10-9月)
以上数据为本人身处业内,自行统计数据,不知道有没有官方数据.国产大豆压榨量为估计值,仅供参考,进口大豆压榨量较为准确
国产大豆年比减少,并不完全是进口大豆冲击,有部分年度减产和上一年度国储高价收购的原因。农民每年卖货心理也不一样,部分年度惜售,部分年度销售意愿较强,可能主要是比照上一年度的售价决定本年度的销价导致。
【豆科基因组】大豆适应性位点GWAS分析[转载]
本文利用99085个高质量SNP 通过STRUCTURE,PCA和neighbour-joining tree的群体结构分析将地方品种分为三个亚群,这些亚群表现出地理上的遗传分化。利用纬度相差10°的两个位置(北京、武汉)收集的表型数据,鉴定了17个与开花时间性状相关的SNP(TAS),包括一个稳定的基因位点Chr12:5914898和以前未检测到的在开花基因E1和E2附近的候选基因。利用与地方种收集地点相关的已公布数据,鉴定出与三个生物气候学变量(温度,日长和降水)相关的27个SNP。在12个生物气候TASs的连锁不平衡(LD)区域内检测到一系列候选开花基因。其中9个TASs在开花时间上表现出显著差异。在44个开花和生物气候TASs中,有38个检测到了驯化、地方品种多样化和适应过程中的选择信号。
测序材料 :2368个种质材料,包括112个野生种(选自中韩俄日,代表广泛的生态地理范围),和2256个地方种(可代表核心种质的表型多样性和地理分布的中国主要的地方种)
测序平台: Life Technologies’ Ion Proton Systems
数据量: 0.75T
筛选后的97个野生种和1938个地方品种(地方种据其地理分布及种植季节类型分为7类);414个核心地方种质
开花时间表型鉴定材料: 2256个地方种,分别种于7月武汉(30.5°N, 114.3°E)、6月北京(40.1°N, 116.7°E),各两次重复;414份核心种质种于广西(2009-2011年)的南宁(7月中),北京(2011-2012)的昌平(5月初,春季型)、顺义(6月末,夏季型),三年2~3次重复。
地理和气候变量: 利用已知数据获得不同品种的经纬度及海拔的坐标,利用坐标在生物气候网站BioClim ( 1.4)查询其对应的生物气候变量:年温度变化范围(TAR)及年降水量(AP),最大日光长度(MDL)的计量以表型鉴定为准。
群体结构分析方法 :
群体结构:软件STRUCTURE
Neighbor-joining tree:APE(V3.2)
PCA:PLINK(V1.9)
Qst-Fst比较:Pstat (V1.2)
LD:PLINK (V1.9)
参考基因组:*Glycine max *Wm82.a2.v1
图1 不同基因型种质的地理分布和大豆基因组的特性。
A:7种生态型:东北春季型(NESp),北方春季型(NSp),黄淮春季型(HSp),黄淮夏季型(HSu),南方春季型(SSp),南方夏季型(SSu) )和南方秋季型(SAu)。
B:20条大豆染色体上共获得99085个SNP。最外圈:大豆20条染色体,灰色为染色体杂合区域,黑色为染色体臂。a:基因密度 b:SNP密度 c-f依次为:野生种、SR、HR、NR的遗传多样性。
多态性、群体结构和多样性
对2035个种质材料进行群体结构分析,共鉴定出1类野生型(wild),三类地方种的亚群(北方种NR,黄淮种HR,南方种SR),和一类混合基因组种质(mixed)。对群体分化程度的鉴定表明,虽然地方种比野生种的数量大20倍,但地方种仍比野生种存在更多的LD(图2D), SNPs更少,多样性也更少(表S5)。选择性清除分析(Fst)的比较结果表明HR和SR之间遗传分化程度最大(0.164),其次是NR与SR(0.136),NR与HR之间差异最小(0.077)。
图2群体结构和连锁不平衡分析
A:样本按生态类型和采集地点的纬度排列
B:对1938个地方种和97个野生种的群体结构分析(K=4)
C:根据99085个SNPs对2035个种质的PCA分析
D:LD衰减距离,landrace代表混合地方种
生物气候变量和开花时间的变化
不同地理位置上开花时间与生物气候变量呈现显著的相关性(图S4),两个地方的每个种质的开花时间也显著相关(图S5)。这些结果表明,虽然可以根据环境因素(不同地点)推测其开花时间,但是同一地点的不同品种间开花时间应主要受遗传因素控制。
图s4 北京和武汉不同气候变量与开花时间的相关性比较
图s5 北京和武汉三个大豆地方种群开花时间的变化
开花时间的GWAS分析
利用GWAS鉴定与开花时间相关的基因,共关联到18个相关位点,代表17个TASs,同时在武汉和北京的Chr12:5914898位置关联到同一个位点。对414份核心种质材料在其余三个地点的GWAS分析,进一步验证了该结果。
图3 地方种开花时间性状相关位点(TASs)的鉴定分析
ABEFG:五个地点开花时间的GWAS分析的曼哈顿图,北京、武汉所用材料为1938个地方种,昌平、顺义、南宁三个地点所用材料为414个核心种质。
灰色水平线表示1%阈值线
红色垂直线表示两个克隆的开花时间基因 E1 、 E2 的基因组位置。
CDHIJ:每个地方种携带早开花位点的TASs数量与开花时间的相关性
生物气候因素的GWAS分析
文中利用GWAS分析鉴定了与三个生物气候变量(温度/TAR,日长/MDL,降水/AP)的适应性相关的基因座,共鉴定到29个显著关联位点,对应27个独特的TASs(图S9)。其中两个SNPs(Chr02:6487107和Chr15:23361474)均分别与MDL和TAR相关。
图s9 大豆地方种与生物气候因素相关的GWAS分析
大豆驯化过程中选择信号的检测以及适应过程中地方品种的多样化
研究比较了地方种和野生种之间的Fst和等位基因频率比较,评估了这些生物气候TASs和开花时间的遗传分化间的关系。17个开花时间TASs和27个生物气候TASs的大部分均在驯化过程中存在强选择。在44个TASs中,有11个同时在驯化、地方种多样化和适应性中经历了选择,有3个仅在驯化过程中经历了选择,24个仅在地方种多样化和适应性中经历了选择,有6个没有表现出被选择。这些分析结果说明了自然和人工选择对特定环境适应性的作用及生物气候变量对大豆地方种之间遗传变异模式的影响。
开花候选基因/QTL的鉴定
E1 、 E2 基因是已知影响开花的基因。文中鉴定到的三个TASs(Chr06:19873100,Chr06:20003061和Chr06:20355903)位于Chr06上 E1 基因附近,且对开花时间的影响不同,在不同的地区表现出不同的表型变异,其地理分布也表现出不同的模式。说明在 E1 附近可能存在一个或多个以前未检测到的开花时间相关基因。
在E2基因附近检测到两个强关联位点Chr10:45520960和Chr10:45521328,通过对携带不同基因型的不同亚群之间表型鉴定,检测到开花时间的显著差异,表明 Glyma.10G224500 是开花时间的相关候选基因。
利用北京和武汉两地点的实测开花时间数据,通过GWAS鉴定了第12号染色体上的两个开花时间TASs(Chr12:5470311和Chr12:5914898)。Chr12:5470311位点与拟南芥开花基因同源且与一开花时间相关TAS连锁;Chr12:5914898位于编码Cyclic Nucleotide-gated Ion Channel 15-Related蛋白的基因 Glyma.12G076800 的内含子上;经表型(图4C,D)及Fst和等位基因频率分析鉴定(图4E)表明两位点均参与了开花时间的调控。
图4 开花时间位点Chr12:5470311和Chr12:5914898的鉴定
谁有转基因大豆的相关文献,包括有害性 食用价值 种植分布 还有食用油的数据
这是一篇关于转基因植物安全性试验的文献,其中包括转基因玉米,马铃薯,大豆,水稻,小黑麦。文献介绍了关于转基因的多项安全实验,包括90天的,长期的(多于90天, 最长到两年),多代的(2-5代)。这些实验都一致的证实转基因作物和传统作物一样安全。
题目:
Snell C, Bernheim A, Bergé JB, Kuntz M, Pascal G, Paris A, Ricroch AE., “Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review,”, Food Chem Toxicol. 2012 Mar;50(3-4):1134-48. doi: .2011.11.048. Epub 2011 Dec 3.
摘要:
The aim of this systematic review was to collect data concerning the effects of diets containing GM maize, potato, soybean, rice, or triticale on animal health. We examined 12 long-term studies (of more than 90 days, up to 2 years in duration) and 12 multigenerational studies (from 2 to 5 generations). We referenced the 90-day studies on GM feed for which long-term or multigenerational study data were available. Many parameters have been examined using biochemical analyses, histological examination of specific organs, hematology and the detection of transgenic DNA. The statistical findings and methods have been considered from each study. Results from all the 24 studies do not suggest any health hazards and, in general, there were no statistically significant differences within parameters observed. However, some small differences were observed, though these fell within the normal variation range of the considered parameter and thus had no biological or toxicological significance. If required, a 90-day feeding study performed in rodents, according to the OECD Test Guideline, is generally considered sufficient in order to evaluate the health effects of GM feed. The studies reviewed present evidence to show that GM plants are nutritionally equivalent to their non-GM counterparts and can be safely used in food and feed.
全文见附件。
转基因大豆食用价值等同于传统大豆,食用油不含转基因成分。
大豆抗逆基因工程试验设计,详细点
抗性基因工程育种与抗逆基因工程育种
抗性基因工程育种
基因工程的发展为培育抗病虫的作物提供了新的手段,从而开辟了植物抗病虫育种的新时代。抗病毒基因工程育种主要是将病毒外壳蛋白基因移植到农作物中,使农作物能抵抗病毒感染,培育出抗病毒番茄、抗病毒烟草、抗病毒黄瓜等作物新品种。
在抗真菌病害方面,中国农业科学院生物技术研究中心与作物科学研究所合作,将几丁质酶和葡聚糖酶双价基因导入小麦,育成双价抗病转基因小麦,抗赤霉病、纹枯病和根腐病等真菌性病害。抗植物虫害的基因有多种,目前经常使用的主要有3种:
① 从微生物苏云金杆菌分离出的苏云金杆菌杀虫结晶蛋白基因,简称B2基因。
② 从植物中分离出的昆虫蛋白酶抑制剂,其中应用最广泛的是豇豆胰蛋白酶抑制剂基因(~T1)。
③ 植物凝集素基因(1ectingene)。这些转基因作物能减少杀虫剂和农药的用量,降低杀虫剂和农药及其残留物对食物链、水体造成的污染,从而有利于保护生态环境。
抗逆基因工程育种
基因工程在抗旱、抗盐碱育种上的应用为克服干旱提供了新思路。美国斯坦福大学把仙人掌基因导入小麦、大豆等作物,育成抗旱、抗逆的新品种。我国在抗逆基因的分离、克隆和转化等方面的研究也取得了新进展,已克隆了耐盐碱相关基因,通过遗传转化已获得了耐盐烟草、水稻、番茄、草莓等。
上一篇:空中乘务论文格式
下一篇:环境审计研究论文