负序电流毕业论文
负序电流毕业论文
安全是铁路运输永恒的主题,是改革发展的保证,是企业生存和发展的生命线,也是铁路做好一切工作的重要前提。下文是我给大家整理收集的关于2017年铁路安全管理毕业论文的内容,欢迎大家阅读参考!
2017年铁路安全管理毕业论文篇1
浅谈高速铁路牵引供电安全管理
摘要:高铁牵引供电安全管理是一项较为复杂且系统的工作,其在确保高铁安全运营方面具有不可替代的地位和作用。因此加强对其的研究是非常有必要的,对此本文分析了高速铁路牵引供电安全管理的相关方面,从而为为高速铁路牵引供电安全技术奠定了平稳发展的安全基础。
关键词:高速铁路;牵引供电;安全管理
1、高铁牵引供电系统的负荷特性及安全管理的特点分析
1.1、高铁牵引供电系统的负荷特性
高铁牵引供电系统的负荷特性与普通铁路存在着非常明显的区别:
(1)负荷波动频繁。负荷大小与供电臂运行的列车数量、线路坡度及列车运行速度等有关。高铁牵引变电所的负荷会随着两供电臂内列车的数量及其负荷状态随时出现波动。
(2)牵引负荷大。高铁列车具有速度快、高峰时段密度大等特点,而空气阻力会随着速度提高成倍增加,此时的列车牵引力需要克服空气阻力运行,这使得牵引负荷较大,高速列车单车电流可达600~1000A,而普速列车电流一般不大于300A。
(3)高铁列车在高速运行的过程中,常常需要克服空气阻力行进,如果列车想要维持高速行驶,就必须持续从接触网获取电能,这使得列车本身的负载率相对较高,并且受电时间较长。
(4)功率因数高。采用交-直-交动车组,功率因数在0.95以上。
1.2、安全管理特点
高铁牵引供电安全管理的特点主要体现在以下四个方面:
(1)动态性。高铁的牵引供电负荷具有非常明显的移动性和不确定性,并且负荷常常处于不平衡的状态,这使得各种安全问题的发生存在动态变化,一旦出现行车事故或是供电间断,势必会造成巨大的经济损失和严重的负面影响。
(2)反复性。由于牵引供电设备全部设置在露天的环境当中,设备的运行受温度变化和气候条件的影响相对较大,从而使得季节性安全问题反复发生。
(3)复杂性。牵引供电系统的接触网具有非常明显的复杂性,如环境复杂、气候变化无常、没有备用设备等等。
(4)独特性。高铁牵引供电的冲击性负荷非常频繁,且谐波含量较大,同时运行环境的污染也比较严重,这对牵引供电安全管理提出了较高的要求。为此,必须采取有效的措施提高牵引供电安全管理水平,这对于确保高铁安全、稳定、可靠运营具有非常重要的现实意义。
2、牵引供电系统面临的主要安全问题
目前牵引供电系统面临的主要问题有:谐波问题、负序电流问题、功率因数问题、机车过分相问题、接地问题、继电保护问题、弓网关系问题、绝缘配合问题、电磁兼容问题。
1)谐波电流注入供电系统将会对通信系统、控制系统的可靠性带来不利因素,降低用电设备的运行效率。
2)负序电流可以降低用户电能的利用率,引起用户旋转电机转子表面温升过高。
3)机车过电分相时中性段断电出现过电压现象,过电压水平有时能达到击穿接触导线绝缘子的数值,出现的电弧有可能烧损接触网吊弦;机车重新带电时,出现过电流现象,过电流水平可达到机车正常运行电流的5~7倍,过流有可能损害设备的正常寿命、影响继电保护动作正确性。
4)接触网系统是无备用系统,机车通过受电弓与接触网滑动连接,取得电能。机车在运动过程中,存在不同方向的振动,这些振动通过受电弓传递到接触网,接触网随之振动。良好的弓网关系是接触网振动特性和受电弓振动特性一致,两者之间为一个随动系统,使接触网和受电弓保持良好的接触。
5)高压设备的带电部分与设备外壳、大地之间需要绝缘,不同电压等级、不同相别的高压设备之间也需要绝缘。绝缘配合,就是在一个供电系统中,由于存在众多的绝缘部分,通过对各部分绝缘水平(耐工频电压、冲击电压能力)的选择,在满足系统绝缘水平要求的前提下,达到一个技术指标和经济指标的合理水平。绝缘配合问题是近年来电气化铁路研究的重要课题之一,之所以引起重视,是因为在不同的环境下,如果不考虑绝缘配合问题,接地技术措施的应用难以达到预期效果。
3、影响牵引供电系统安全的主要因素
影响牵引供电系统安全可靠的主要因素可分为设备因素、供电质量因素、外部影响因素、系统运行因素、管理因素等几部分。在每部分大因素当中还有很多小因素,本文主要将各类影响因素列表如下,见表1:
表1牵引供电影响的因素
4、加强牵引供电安全管理的措施
现代社会,高速铁路已经成为一种先进、重要、快速的运输手段,保障牵引供电系统的正常运转非常重要。
4.1、强化高速铁路专业人员技能,提高安全技能
想要达到电气化高铁牵引供电体系的安全要求,确保电气化高铁运行的安全有效进行,保障牵引供电体系的正常化运转,一是强化高铁安全专兼职人员培训。组织安全管理人员培训班,进行安全法律法规、安全管理技能知识培训,促进高速铁路牵引供电的安全管理。二是组织高铁维护人员的培训班,加强安全管理知识学习,提高其安全技术能力;定期组织高铁技术业务研讨班,分析维护高铁安全工作中存在问题,提出解决问题的思路,使各班组安全管理的经验、教训资源共享,达到共同提高的目的。三是强化员工的高铁安全意识培训。将安全培训与培训基地建设相结合,将员工培训与安全培训相结合。将安全培训内容纳入员工技能培训的课程中,一体培训、一体考核,严格安全培训准入制度。
4.1.1、增强过程监控力度
对于工作人员的管理要加大监控的力度,若遇到问题,必须及时进行改正,避免后期再在同样的事情上犯错误,继而产生不必要的损失。同时加大考核力度,一定要对工作人员进行定期或者不定期的考核,一定要保证工作人员不能怠慢工作,用严格的规范标准要求自己,出现问题时,在尽量减少损失的前提下,保障问题的圆满解决,追究问题人员的责任,提高工人人员的警惕性、工作的严谨性,这是保障安全的重要手段。
4.1.2、增强创新管理意识
对人员的管理方面,要注重不断增强创新意识,加强管理制度的规范性,不断更新管理条例,运用新的管理手段增强团队意识,还要注意在不增加劳动强度的大前提之下,提升管理的水平和电气化高铁牵引供电体系的安全性以及稳定性,进而使机车的营运质量得到提升。
4.2、规范完善台账精细化管理
规范和完善各种设备台账履历,梳理细化设备台账格式和内容,做到及时更新,使台账具有可追溯性和时效性。对设备发生的变化,要明确台账更新的流程和相关责任,以点带面,提高高速铁路安全技术资料管理水平。
4.3、提高牵引供电设备质量
想要达到电气化高铁牵引供电体系的安全性和可靠性,就要利用先进的装备、信息化手段不断加强管理,保障设备的安全性,例如在高铁运行的牵引供电系统的管理过程中,可以采用SCADA系统(数据采集与监视控制系统)对现场的运行设备进行监视和控制,进而逐渐提升设施的安全性和可靠性。为了确保没有工作人员值班依然可以正常营运,在体系里可以使用远动视频装备来进行管理,这样不但可以保障机械的正常运转,还能够有效减少人力资源的浪费。同时还可以运用电阻测试仪、红外成像等高科技设备进行监控,这对于提升设施的监测标准和确保营运的有序性及安全性都是非常重要的。
4.3.1提高“天窗点”设备检修利用率
接触网设备的检修维护主要利用列车运行途中不铺化列车运行线或调整、抽减列车运行为营业线施工和维修的时间进行。成立组织机构,加强领导,逐级负责的原则,制定“天窗”管理办法,用制度约束落实,加大天窗管理、认真考核天窗兑现率,使天窗利用率达到100%。同时加强设备检修,考核设备检修,提高行车设备运行质量 。
4.3.2绝缘清扫
为确保高速铁路牵引供电设备在雪、雾等恶劣天气下的正常运行,防止出现大面积绝缘子污闪。根据所建立高速铁路重污区台帐,合理组织人员进行绝缘清扫,按照瓷质绝缘子必须进行一次人工清扫,复合绝缘子采用小型水冲洗机、水冲洗列冲洗,水冲洗作业漏冲洗的绝缘子进行人工清扫的原则。一是瓷质绝缘子采用停电人工清扫结合带电水冲洗列冲洗。二是复合绝缘子采用停电小型水冲洗或带电水冲洗列冲洗。水冲洗作业漏冲洗的绝缘子要补充进行人工清扫。做到一片不漏、一棒不漏、不留死角。
4.3.3主导电回路测温
根据设备运营单位制定测温计划,并结合设备的实际运行情况利用测温仪器对牵引供电设备主导电回路、接续点、上网点、电缆接头线夹等处所进行检测,参照所测环境温度和设备温度进行对比,及时发现设备隐患,预防设备故障,确保牵引供电设备安全运行
4.3.4检查补偿装置及线岔卡滞、坠砣a值超标、线索张力过大、电连接及隔开引线过紧过松、上网点连接状态不良、附加导线间距不足、附加导线对地距离不满足规程要求等安全隐患,组织设备管理单位通过步行巡视、上网检查、添乘巡视等方式对线索驰度进行检查。
4.3.5根据高铁速设备的特点和季节天气的变化,要有针对性的开展防鸟害、危树整治、防洪、防雷击、防风、防冰柱、防寒、防断、防磨、电缆等专项检查,通过开展专项检查,全面提升高速铁路设备运行质量。
4.5、编制事故应急预案
由于牵引供电系统本身的特殊性,常常会出现各种突发性事故。为此,必须编制科学合理、切实可行的安全应急预案,这是处理突发事故的根本保障。一是完善抢修预案,对抢修预案进行模块化管理,制定各种突发情况下的具体安全应对措施。二是有针对性地制定演练项目,将非正常应急处置纳入常态化管理,增强应急处置的实效性。三是定期组织应急演练,要按照“一处一案、一事一案”的要求,全面提高抢修效率,缩短抢修时间;不断提高应急抢修能力。四是是对抢修工料具,储备的应急物资进行经常性的检查、维护、保养,确保其完好、可靠。
4.6、加强接触网的全面管理
接触网因为是大型的现场定制工程组合的设备设施,他的性能和安全可靠性是否能完善的发挥,完全取决于设计制造和现场施工。所以应做好建设和管理的各个环节,来保证此设施的安全稳定。
总之,牵引供电系统是电气化铁路的重要的组成部分,确保其安全是非常重要的,因此需要引起我们的重视,对此本文分析了高速铁路牵引供电安全管理,以期提供一些借鉴。
参考文献
[1]曹江华.浅谈高速铁路牵引供电安全管理[J].西铁科技,2014,02:17-18.
[2]戚广枫.高速铁路牵引供电安全技术发展及展望[J].中国铁路,2012,11:18-21.
[3]王蔚.高速电气化铁路牵引供电安全管理研究[D].西南交通大学,2011.
2017年铁路安全管理毕业论文篇2
浅谈铁路中间站安全管理
【摘 要】随着铁路改革和发展,铁路技术设备装备水平日益提高,列车速度提高、行车密度增加、牵引质量加大,面对新时期运输组织变化给安全管理带来的新情况、新变化、新问题,表现出了不适应当前改革发展步伐加快的节奏,安全管理面临着诸多问题,如何解决新时期铁路中间站安全管理,从安全风险管理的新思路入手,进行了有益的探讨。
【关键词】中间站;安全;风险;管理
安全是铁路运输永恒的主题,是改革发展的保证,是企业生存和发展的生命线,也是铁路做好一切工作的重要前提。积极探索高速、重载、新形势下的铁路安全管理是每一个管理者重要的职责。中间站作为铁路车务站段管辖的最基层群体,是铁路运输的重要环节,在保安全、保稳定、保畅通方面有着非常重要的作用。铁路部分中间站均处在地理位置比较偏僻的地方,远离机关,环境较差、交通不便、生活困难,诸多困难因素叠加,给中间站管理带来很大难度,因此,搞好中间站的安全管理工作是我们当前需重点研究解决的课题。
1.中间站管理存在的问题
1.1安全工作缺乏高标准。
高标准是做好工作的前提和基础,既是目标要求,也是质量要求;既是源头性要求,也是结果性要求。一些中间站之所以没能实现安全目标,甚至在安全上打了败仗,关键就是标准不高,满足于过得去,不求过得硬,使本车站的安全工作在低水平上徘徊,许多问题发展成顽症,同类事故反复出现。具体表现在:一是标准认识模糊不清。尽管这几年我们反复强调标准问题,但直至现在,一些干部职工对作业标准、技术标准、设备标准含糊不清,高标定位成为了一种口头禅。二是标准执行不够彻底。经过多年的整章建制,从路局到站段已形成了一整套安全管理制度标准,在确保运输安全中发挥了重要作用。但在日常工作中一些中间站缺乏执行制度标准的严肃性、自觉性、持久性,不按标准办事,结果引发了事故。
1.2人员素质不适应
近年来,随着铁路体制改革的不断推进,新技术、新设备的逐步投入使用,再加上培训教育机制跟不上,导致整体职工素质已越来越不适应新形势下安全运输生产的要求。一是有些站长已跟不上新的管理步伐,新的管理知识贫乏,新技术知识掌握的不深,不能更好的指导车站各岗位的作业,造成车站关键作业把控不住。二是有些职工没有牢固树立“安全第一”思想,安全意识淡薄,责任心不强,作业行为不规范;技术业务水平较差,特别是新技术知识掌握的少,非正常情况作业应急处置能力不强,习惯性作业比较普遍,简化作业程序用语,违章作业习以为常,给安全生产造成一定的安全隐患。
1.3安全管理不适应
长期以来,受传统管理的影响,安全管理还停留在固有的管理模式上,管理往往还是粗放式的、静态的、被动式的,没有做到与时俱进,安全风险管理还基本上是初浅的,管理方法还比较简单,缺乏预见性,管理思路没有理清。主要表现在:①管理理念落后,主动管理滞后,不能严抓细管,有部分站长存在“不出事故就是安全”的片面认识,淡化了预防为主,消除隐患的思想;②有部分站长缺乏进取精神,好人主义和形式主义严重、作风漂浮、责任心不强,对职工违章作业、简化作业程序视而不见,使职工在作业中养成了习惯成标准的风气;③站长一日工作发挥得不好,对车站的班前点名及交接班会抓得质量不高,甚至有的简化交接班会,深入各岗位检查作业情况没有抓住主要问题,表面化现象较多;④不注重技术业务培训学习,应付多,解决实际问题的少,基本上是流于形式;⑤安全隐患的超前防范落实的较差,关键作业程序控制乏力。
1.4安全风险管理控制不力
有些站长对安全风险管理思路不清、认识模糊,缺乏科学管理手段,只重视结果,不重视过程。一是对自站的关键作业,特别对特殊时期及阶段的重点工作不能及时的进行排查,更缺乏超前研判的能力,对排查出的风险源点的针对性控制措施制定的也不严谨、不细致,缺乏可操作性。二是对各项作业的关键部位和环节控制不力,不能认真落实规章制度和作业标准,把不住重点,如施工作业组织、非正常情况接发列车、调车作业、停留车防溜和接发有特殊要求的列车不能严格按规定进行卡控关键作业程序,对反复出现的惯性问题,纠偏力度小,跟踪落实差,构成对安全生产的严重威胁。
2.提高车站安全管理控制能力的几点建议
车站安全管理,主要是指在车站各个生产过程中,通过采取各种安全措施,严格执行规章制度和作业标准,遵守劳动纪律和作业纪律,强化过程作业控制,消除不安全因素,从而防止发生人身伤亡事故和行车事故的一系列实施和监督手段。
2.1提高人员素质,打牢安全基础
安全生产是一项复杂的系统工程,要搞好这项系统工程必须打下一个牢固的基础,这个基础就是人员素质。只有人员素质不断提高,才能不断适应铁路发展的要求,安全生产才有可靠地保证。
2.1.1中间站站长既是中间站安全管理的组织者,又是安全生产活动的指挥者和普通参与者。中间站的安全工作是经常的、大量的、细致的,这些工作都离不开站长,同时站长还必须亲自参与并监控特殊情况下的关键作业程序,中间站站长本身的素质如何,对整个车站的安全生产管理有举足轻重的影响。为此,提高中间站站长的综合素质至关重要。车务站段应加强中间站站长的培训管理,注重培养后备站长,给他们提供一个提升的平台,必要时可引入竞争机制,选拔出称职合格的中间站站长;同时可组织各站站长走出去、请进来,互相交流学习,拓宽思路,取长补短,博采众长,有效提高他们的管理水平和技术业务水平。
2.1.2随着技术设备装备水平的不断提升,行车组织的变化,对行车主要工种人员的技术业务素质也要求越来越高,不适应新形势下铁路安全运输生产的要求已逐步显现。因此要大力开展技术业务培训工作,创造浓厚的学习氛围。要针对新技术、新设备和新要求,组织形式多样的培训活动,注重实效,选树好技术业务能手和尖子,做到以点带面达到全面提高的目的。通过职工综合素质的提高,真正做到班组管理规范、职工业务过硬、安全有序,从而使安全生产步入良性循环发展的轨道。 2.2 加强基础建设,强化班组管理
抓企业管理,首先必须从基础抓起,抓基础也必须从班组抓起,所以班组管理是安全管理的出发点和落脚点。一是根据中间站管理要求,并结合自站实际情况,进一步完善、补充、制定各项管理办法、规章制度和考核制度,重点要加强《站细》的修订完善工作,逐步建立以《站细》为主体,各种作业办法和措施为延伸的规章制度体系,做到规范合理、重点突出、针对性和可操作性强,为安全生产提供制度保障。二是行车班组长既是行车指挥者,又是行车组织者,所以应选拔责任心强、技术熟练、以身作则、敢抓敢管,在工作中能起组织和带头作用的职工为班组长,使班组整体技术业务技能和班组长的行车组织指挥能力得到进一步提升。三是坚持开展班前预想、班中互控、班后分析总结活动,做到针对性的提前预防、作业中互控关键作业程序和班后的滚动提高。四是落实岗位作业标准,提高标准化作业水平,强化自控、互控、联控制度。五是以建设自控型班组为抓手,加强整章建制工作,进一步规范班组管理,落实自控型班组实施办法,培育一支素质过硬、自觉遵章守纪的生力军,为确保安全生产奠定坚实的基础。六是建立安全生产激励机制,实行安全联防经济责任制,落实个人保班组,班组保车站,车站保站(段)的包保责任制,实行层层包保,层层定责,以责考绩,奖功罚过,奖优罚劣,充分调动起全员安全生产的积极性。
2.3加强安全管理,强化作业过程控制
2.3.1狠抓过程控制,确保安全管理各环节全面受控
所谓作业全过程控制是指在整个作业过程中,所有参加作业的有关人员通过自控,明确控制项目、内容、办法及有关责任人员,实现作业岗位控制和程序控制,使作业全过程的每个环节都置于控制之下,进而保证作业安全质量的过程,所以严格标准化作业也就是作业程序的控制。
过程控制要立足于“预防为主、抓小放大、防患未然、防微杜渐”的理念,变重结果为重过程,变处理为预防。严格执行“自控、互控、联控、监控”制度,坚持以自控为核心,以互控、联控为重点,以监控为关键,对安全实行全员、全方位、全过程的动态控制是安全管理的控制中心,也是安全控制的有力保证。
2.3.2加强安全风险管理,强化关键环节控制
在铁路运输的生产过程中,某一环节失控都可能导致行车事故的发生,就是说控制与失控同在,安全与事故并存。所以我们要把握安全与事故的内在联系,系统分析,排查研判。要结合自身安全生产的实际,根据本单位的生产组织、设备设施、人员素质的特点,人身安全等风险作为重点,把可能导致事故的管理风险、作业风险、设备风险作为关键,进行全面排查研判,全方位识别风险源和风险点,重点进行有效防控。一是加强重点作业的控制。对车站各项作业过程中薄弱部位、薄弱环节应加强安全控制。如施工作业组织、非正常情况接发列车、调车作业、停留车防溜和接发有特殊要求的列车等均需我们进行重点卡控。二是要加强安全隐患的超前防范,重点抓好苗头性、倾向性和规律性问题的防范和控制,同时要对惯性问题和倾向性问题的整改落实,尽力解决难点、关键问题。
2.3.3树立安全管理的理念,确保安全持续稳定健康发展
安全生产得之于严,失之于宽。严格有效的管理是确保安全生产的前提。安全管理是个系统工程,涉及到方方面面,要分清主次,抓住主要矛盾,要敢于管理、善于管理。把科学管理的理念渗透到日常工作中,继续深化安全风险管理,按照“问题在现场,原因在管理”的思路,大力强化管理基础,解决重点、难点问题,推动各项安全工作严格落实,确保安全有序可控。
3.结束语
在铁路不断改革发展的新形势下,抓好中间站安全管理至关重要。面对中间站诸多实际困难,应进一步理清管理思路,以大力推进安全风险管理为突破口,加强风险排查、研判和控制。以加强安全源头管理、强化现场作业控制、严格安全检查监督为手段,采取针对性的控制措施,确保中间站运输安全生产的健康发展。
猜你喜欢
1. 铁路安全管理论文
2. 铁路施工安全论文
3. 铁路运输安全管理论文
4. 地铁安全管理论文
急需关于变压器_继电保护研究的毕业论文
摘 要
电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。
本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。
本文语言简练、逻辑严密、内容夯实。可作为从事电气工程技术人员的参考资料。
关键词 电力系统故障,变压器,继电保护,整定计算
目 录
摘 要………………………Ⅰ
ABSTRACT………………Ⅱ
1 绪论1
1.1 课题背景…………………………1
1.1.1设计题目………………………1
1.1.2毕业设计原始资料……………1
1.1.3 待保护变压器的在系统中的连接情况……………………1
1.1.4设计任务…………………1
1.2继电保护的综述 ……2
1.2.1电力系统的故障和不正常运行状态及引起的后果………2
1.2.2 继电保护的任务……………2
1.2.3 继电保护装置的组成………3
1.2.4 继电保护的基本要求……3
1.3 电力变压器故障概况…………6
1.4继电保护发展………………7
1.4.1计算机化……………………7
1.4.2网络化…………………………8
1.4.3保护、控制、测量、数据通信一体…………………………9
1.4.4智能化…………………………9
2 短路电流实用计算 ………………11
2.1 短路电流计算的规程和步骤 11
2.1.1 短路电流计算的一般规定…11
2.1.2 计算步骤 …………………12
2.2 三相短路电流的计算…………12
2.2.1 等值网络的绘制…………12
2.2.2 化简等值网络……………12
2.2.3 三相短路电流周期分量任意时刻值的计算……………13
2.2.4 三相短路电流的冲击值…14
3 电力变压器保护原理分析…15
3.1 瓦斯保护原理…………15
3.2 变压器纵差动保护………16
3.2.1 构成变压器纵差动保护的基本原则……………………16
3.2.2 不平衡电流产生的原因和消除方法……………………16
3.3 电流速断保护原理…………20
3.3.1电流速断保护的整定计算20
3.3.2 躲过励磁涌流……………21
3.3.3 灵敏度的校验……………21
3.4 过电流保护的原理……………21
3.4.1过电流保护…………………21
3.4.2 复合电压起动的过电流保护……………………………22
3.4.3负序电流和单相式低压过电流保护……………………24
3.5零序过电流保护原理………24
3.5.1中性点直接接地变压器的零序电流保护………………25
3.5.2中性点可能接地或不接地变压器的保护………………26
3.6 过负荷保护原理 ……………28
3.7 过励磁保护原理……………29
3.8微机保护原理 ……………………29
3.8.1 微机保护概况……………30
3.8.2 变压器的微机保护配置…30
4 保护配置与整定计算…31
4.1电力变压器的保护配置…31
4.2 保护参数分析与方案确定………33
4.2.1 保护方案……33
4.2.2 保护设备配置选择……34
4.3 接线配置图…………………35
4.4 整定计算……………………36
4.4.1 带时限的过电流保护整定计算…………………………36
4.4.2 电流速断保护整定计算 36
4.4.3 单相低压侧装设低压侧接地保护………………………37
4.4.4过负荷保护………………38
4.5保护配置动作实现……………38
结论…39
参考文献……………………40
附录A:接线配置图…………………41
求电气化铁道接触网毕业论文,题目:接触网现场作业人员安全卡控要点执行情况调查。四千字。qq:1542876788
电气化铁道电能质量综合控制研究
摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不
容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止
无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。
关键词:电气化铁道;电网;电能质量;综合控制
1 前言
中国的电气化铁道总里程已经突破2·4万公里,
跃居世界第二。电气化铁道具有运载能力强、行车速
度快、节约能源、对环境污染小等优点,在现代国民经
济发展中起着举足轻重的作用。
但是,由于电气化铁道牵引负载所具有的随即波
动性和不对称性,其给公共电网带来的诸如负序电流、
谐波以及无功功率等电能质量问题也引起了极大的关
注。研究如何利用有效手段治理电气化铁道牵引负载
所带来的一系列电能质量问题,确保电网中其他电力
设备的安全经济运行具有重大意义。
2 电气化铁道牵引供电系统
2·1 概述
我国的动力供电电网电压一般为110kV或者
220kV,通过牵引变压器转换为27·5kV作为牵引动力
机车的供电。现在普遍流行的牵引变压器种类主要有
单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引
变压器、Scott变压器等。我国电气化铁道采用工频交
流50Hz三相供电单相用电,其负荷牵引电力机车的
功率大,速度、负载状况变化频繁,且具有不对称的特
性,导致牵引电网具有功率因数低、谐波含量高、负序
电流大等特点,不但自身损耗大,而且对公共电网及铁
路沿线的其他电力设备也带来严重危害,必须采取有
效措施加以治理[1]。
2·2 单相变压器牵引供电网
采用单相牵引变压器的牵引供电系统拓扑结构如
图1所示[2]。
单相接线牵引网采用单相变压器供电,供电方式
又分为单相接线方式和V-V接线方式。单相接线牵
引变压器的原边跨接于三相电力系统中的两相;副边
一端与牵引侧母线连接,另一端与轨道及接地网连接。
牵引变压器的容量利用率高,但其在电力系统中单相
牵引负荷产生的负序电流较大,对接触网的供电不能
实现双边供电。所以,这种结线只适用于电力系统容
量较大,电力网比较发达,三相负荷用电能够可靠地由
地方电网得到供应的场合。另外,单相牵引变压器要
按全绝缘设计制造。而单相V-V接线将两台单相变
压器以V的方式联于三相电力系统每一个牵引变电
所都可以实现由三相系统的两相线电压供电。两变压
器次边绕组,各取一端联至牵引变电所两相母线上。
而它们的另一端则以联成公共端的方式接至钢轨引回
的回流线。这时,两臂电压相位差60°接线,电流的不
对称度有所减少。这种接线即通常所说的60°接线。
2·3 三相Y-D11变压器牵引供电网
采用三相Y-D11牵引变压器的牵引供电系统拓
扑结构如图2所示[2]。
三相Y-D11结线牵引变压器的高压侧通过引入
线按规定次序接到110kV或220kV,三相电力系统的高
压输电线上;变压器低压侧的一角c与轨道,接地网连
接,变压器另两个角a和b分别接到27·5kV的a相和b
相母线上。由两相牵引母线分别向两侧对应的供电臂
供电,两臂电压的相位差为60°,也是60°接线。因此,在
这两个相邻的接触网区段间采用了分相绝缘器。
3 SVC静止型动态无功补偿装置
3·1 SVC的发展
静止型动态无功补偿装置SVC是一种先进的高
压电网动态功率因数补偿装置。它通过提高功率因数
来节约大量的电能,同时又起到减少电网谐波、稳定电
压、改善电网质量(环境)的作用。20世纪70年代以
来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容
器(TSC)以及二者的混合装置(TCR+TSC)等主要形
式组成的静止无功补偿器(SVC)得到快速发展。SVC
可以看成是电纳值能调节的无功元件,它依靠电力电
子器件开关来实现无功调节。SVC作为系统补偿时可
以连续调节并与系统进行无功功率交换,同时还具有
较快的响应速度,它能够维持端电压恒定
3·2 SVC的工作原理及在电网中应用
TCR+TSC型SVC的基本拓扑结构见图3。它由
1台TCR、2台TSC以及2个无源滤波器组成,在实际
系统中,TSC及无源滤波的组数可根据需要设置。
TCR的工作原理是通过控制与相控电抗器连接
的反并联晶闸管对的移相触发脉冲来改变电抗器等效
电纳的大小,从而输出连续可变的无功功率。图3中
两个晶闸管分别按照单相半波交流开关运行,通过改
变控制角α可以改变电感中通过的电流。α的计量以
电压过零点为基准,α在90°~180°之间可部分导通,
导通角增大则电流基波分量减小,等价于用增大电抗
器的电抗来减小基波无功功率。导通角在90°~180°
之间连续调节时电流也从额定到0连续变化,TCR提
供的补偿电流中含有谐波分量[3]。
TSC的工作原理是根据负载感性无功功率的变化
通过反并联晶闸管对来切除或者投入电容器。这里,
晶闸管只是作为投切开关,而不像TCR中的晶闸管起
相控作用。在实际系统中,每个电容器组都要串联一
个阻尼电抗器,以降低非正常运行状态下产生的对晶
闸管的冲击电流值,同时避免与系统产生谐振。用晶
闸管投切电容器组时,通常选取系统电压峰值时或者
过零点时作为投切动作的必要条件。由于TSC中的
电容器只是在两个极端的电流值之间切换,因此它不
会产生谐波,但它对无功功率的补偿是阶跃的。
TCR和TSC组合后的运行原理为:当系统电压低
于设定的运行电压时,根据需要补偿的无功量投入适
当组数的电容器组,并略有一点正偏差(过补偿),此
时再利用TCR调节输出的感性无功功率来抵消这部
分过补偿容性无功;当系统电压高于设定电压时,则切
除所有电容器组,只留有TCR运行。
4 电网电能质量综合控制与治理
4·1 谐波抑止与无功补偿
利用SVC动态无功补偿装置对牵引供电系统的
谐波和无功进行综合治理的关键是SVC最大无功补
偿量的确定和滤波器支路的设计[3]。
SVC最大无功补偿量Qsvc应该和设计线路牵引负
荷的大小相适应,应该按电气化铁道牵引负荷的最大
有功需求以及补偿后对装设地点功率因数或在最大无
功冲击时的最大电压损耗的要求来确定,具体可以按
照式(1)、(2)来计算。
QSVC=(tanφ1-tanφ2)Pmax(1)
式中,φ1、φ2分别为补偿前后110kV电源测功率
因数角;Pmax为电铁负荷最大有功需求。
QSVC=Qfmax-ΔU%Xs(2)
式中,Qfmax为装设地点最大无功冲击;ΔU%为装
设地点最大电压损耗要求;Xs为系统阻抗。
要想达到理想的谐波抑止效果,必须综合考虑FC
滤波支路的设计,既要保证装置的安全运行,又要达到
预计的理想效果。在实际设计中,首先需要根据供电
臂中所含的谐波分量来确定FC滤波支路的组成。由
于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大
的比重,所以FC滤波支路一般由3、5、7次单调谐滤
波器构成。
当最大无功补偿容量和滤波支路的组成确定后,
如何将需补无功容量合理分配到各滤波支路中,这是
非常重要的问题。如果各滤波支路的容量分配不合
理,一方面会使设备安装总容量偏大,另一方面有可能
因为某此滤波回路补偿功率偏小而发生过负荷,对设
备安全运行造成影响。
一些著名的电气公司采用的一些算法如下[6]:
如西门子公司的无功功率补偿按式(3)分配
Qc(h)=QSVCIh/h∑Ih/h(3)
式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih
为供电臂第h次谐波电流。
BBC电气公司按照式(4)分配无功功率
Qc(h)=QSVC∑Ih(4)
AEG电气公司则按照式(5)分配无功
Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)
式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、
13次滤波支路分配的补偿容量。
4·2 负序电流补偿
牵引电力机车产生的大量负序电流给电网中其他
的电力设备的安全、经济运行带来极大影响。SVC静
止动态无功补偿装置在补偿负序和末端电压上有着相
当高的效率。工程应用上可以选择在电网系统和负荷
上都安装SVC[5]。
在电网系统端安装应用SVC来补偿负序电流的
原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采
用哪一种牵引变压器,负序补偿的实现分为如下两步:
(1)电力因数修正。通过安装电容器件,使得每
相负荷都为电阻性。
(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相
的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA
相的电感性负荷G/ 3互相对称。
电流环路图和相位图分别如图4、5所示:
从图5可以明显看到线电流I·A,I·B,I·C是对称
且正序的,BC相和CA相之间的阻抗负载也可以做到
类似的对称,因此系统中的所有负序电流都可以被补
偿而消除。
现在问题的关键是如何随着牵引负荷的起伏动态
地控制补偿需要的电容和电感器组。急于数字信号处
理器(DSP)的固定电容(FC)和晶闸管控制的电抗器
(TCR)的组合得以广泛应用,如图6所示。得益于
DSP对数据信息的快速处理,补偿所需的电容和电感
参数可以被快速、精确计算得到。
5 结论与展望
本文提出的基于静止动态无功补偿装置(SVC)的
电气化铁道牵引电网电能质量综合控制与治理原理与
方案具有重要的工程意义。电气化铁道的电能质量是
一个突出且严峻的课题与难题,要求我们不断探求新
的综合补偿方法,来综合控制与治理影响电能质量的
无功、谐波、负序等因素,以提高电网电能质量,确保电
网安全、经济运行。
参考文献
[1] 李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道
出版社, 1993.
[2] TB/10009-2005铁路电力牵引供电设计规范[S].
[3] 王兆安.谐波抑止和无功功率补偿[M].北京:机械工业出版社,1999.
[4] 铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册牵
引供电系统[M].北京:中国铁道出版社, 1988.
[5] 安鹏,张雷,刘玉田.电气化铁道对电力系统安全运行的影响及对
策[J].山东电力技术, 2005, (4): 16-19.
[6] 马千里.动态无功补偿装置在牵引变电所的应用[J].电气化铁
道, 2008(4).
求一份电气化专业大专毕业论文
电气化铁路中SVC负序补偿应用技术研究 摘要:随着电气化铁路的迅速发展,电铁牵引负荷产生的负序分量及高次谐波,除对牵引供电系统造成危害外,还会造成电力系统负序及谐波污染[1],因而,电铁的负序及谐波危害已成为制约我国电气化铁路发展的重要因素。结合电气化铁路给电网带来的影响,着重探讨电铁负序补偿中SVC的使用问题。根据国外一些发达国家如日本、澳大利亚等国成功将SVC技术应用在电气化铁路的无功和负序补偿案例以及国内SVC负序补偿应用实例,对SVC负序补偿原理及运行方式进行了研究分析,对SVC在电铁负序治理中的应用前景做了初步探讨,以期提高电力系统运行的经济效益和社会效益。 关键词:电气化铁路;负序补偿;SVC 0 引言 世界上第一条用电力机车作为牵引动力的电气化铁路于1879年在德国柏林建成。中国于1961年建成第一条电气化铁路———宝成铁路的宝鸡至凤州段。电气化铁路问世后发展很快,法国、日本、德国等国家已形成以电气化铁路为主的铁路运输业,大部分货运量由电气铁路完成。电气化机车上不设原动机,其电力由牵引供电系统提供。该系统由牵引变电所和接触网构成,来自高压输电线路的高压电经牵引变电所降压整流后,送至铁路架空接触网,电气机车通过滑线弓受电,牵引机车行驶。由于电力机车运营可以使铁路运输成本降低30%~40%,因此越来越成为发展的方向。电力机车是波动性很大的大功率单相整流负荷,对于三相对称的电力系统供电来说,电铁牵引负荷具有非线形、不对称和波动性的特点,将产生三相不平衡的负序及高次谐波电流注入电网[1],使得旋转电机转子发热、电力变压器使用寿命缩短、输电线路送电能力降低,继电保护装置误动及安全自动装置不能正常投切等诸多影响电网运行的不利因素。因此,必须对电铁机车对电力系统的影响有足够的重视并采取应对措施[2-3]。目前关于电铁谐波治理的技术已经趋于成熟[4],但对于负序的治理仍存在很多问题,传统上广泛使用的关于减小电铁负序分量的方法大多是合理安排机车及系统机组运行方式,尽量削弱电铁负序分量对电网的影响,此方法虽能在一定程度上控制电铁对电力系统的影响,但仍存在诸如列车运行方式临时变化、电力系统机组检修等问题,影响治理效果。根据电铁负荷给电网带来的负序影响,着重对SVC负序补偿基本原理及运行方式进行了研究分析;将国内外应用SVC治理电铁负序分量的案例做了综述;最后对SVC在电铁负序治理中的应用前景做了初步探讨。 1 电铁负荷负序分量对电网的影响 1.1 负序分量对电网的影响[2] 1.1.1 对旋转电机的影响 1)汽轮发电机转子为敏感部位,因为汽轮发电机转子负序温升比定子大,存在局部高温突出部位,国内曾发生过向电铁供电的汽轮发电机转子部件嵌装面过热受损的事故;另一方面,当负序电流流过发电机时,产生负序旋转磁场、负序同步转矩,使发电机产生附加振动。 2)对邻近牵引变电所而远离电源的异步电动机,其定子绕组为敏感部位。同时还将在电动机中产生一反向旋转磁场,此反向磁场对电动机转子起制动作用,影响其出力。在谐波和负序电流的共同影响下,国内曾发生多起定子绕组过热烧毁事故。 1.1.2 对电力变压器的影响负序电流造成电力系统三相电流不对称,使得变压器的额定出力不足(即变压器容量利用率下降)。 1.1.3 对输电线路的影响流过电力网的负序电流,只是降低了电力线路的输送能力,并不作功。 1.1.4 对继电保护和自动装置的影响对各种以负序滤波器为启动元件的保护及自动装置干扰:由于保护按负序(基波)量整定,整定值小、灵敏度高。滤波器为启动元件时,实际运行中已引起下列保护和自动装置误动。 1)发电机的负序电流保护误动。2)变电站主变压器的复合电压启动过电流保护装置的负序电压启动元件误动。3)母线差动保护的负序电压闭锁元件误动。4)自动故障录波装置的负序启动元件的误启动,导致无故障记录而浪费记录胶卷。在频繁误动时,可能造成未能及时装好新胶卷而导致发生故障时无记录。 1.2 负序分量影响的标准[5] 我国有关同步发电机承受不平衡电流允许值的规定如下:1)在按额定负荷连续运行时,汽轮发电机三相电流之差不超过额定值的10%,水轮发电机和同步调相机三相之差不超过额定值的20%,同时任何一相的电流不得大于额定值。2)在低电压额定负荷连续运行时,各相电流之差可以大于上面的规定值,但应根据实验确定数值。对于100 MW及以下汽轮发电机,当三相负荷不对称时,若每相电流均不超过额定值,且负序分量与额定电流之比不超过8%,应能连续运行,100 MW以上的发电机,一般认为负序分量与额定电流之比不超过5%。 2 SVC负序补偿基本原理及运行方式[6-8] SVC全称为“静止型动态无功补偿器”,主要用于补偿用户母线上的无功功率,其通过连续调节其自身无功功率来实现的,一般SVC由并联电感和电容两个回路组成,其中感性回路为动态回路,其感性无功功率可连续分相调整,使得整个装置无功功率的大小和性质发生变化,分相控制的依据为三相平衡原理。用Qs表示系统总无功功率,QF为用户负荷的无功功率,QL为晶闸管控制电抗器(TCR)的无功功率,QC为电容器无功功率,上述平衡过程可以用公式(1)来表达:Qs=QF+QL-QC=常数=0 (1)如图1所示,A为系统工作点。负荷工作时产生感性无功QF,补偿装置中的电容器组提供固定的容性无功QC,一般情况下后者大于前者,多余的容性无功由TCR平衡。当用户负荷QF变化时,SVC控制系统调节TCR电流从而改变QL值以跟踪,实时抵消负荷无功,动态维持系统的无功平衡。最简单的TCR装置组成和工作原理如图2所示:TCR的基本结构是两个反并联的晶闸管和电抗器串联。晶闸管在电源电压的正负半周轮流工作,当晶闸管的控制角α在90°~180°之间时,晶闸管受控导通(控制角为90°时完全导通,180°时完全截止)。在系统电压基本不变的前提下,增大控制角将减小TCR电流,减小装置的感性无功功率;反之减小控制角将增大TCR电流,增大装置的感性无功。就电流的基波分量而言,TCR装置相当于一个可调电纳。其等效电纳为:式中,α为晶闸管导通角;L为电抗器电感值;ω为网压的角频率。对于不对称负荷,应采用分相调节,根据瞬时电压和电流求出所需的补偿电纳。TCR分相调节的理论基础为司坦麦兹(STEINMETZ)理论,在此理论指导下,SVC能够将负荷补偿为纯有功的三相平衡系统。司坦麦兹(STEINMETZ)理论有多种表达形式,本文给出一种常用的补偿电纳公式:r分别为△连接的补偿电抗器电纳值;V为系统电压有效值为系统电压(线电压)瞬时值;ia(I),ib(I),ic(I)为系统电流瞬时值;T为采样周期,一般为10 ms。根据以上补偿理论,将一个理想的补偿网络与负荷相连就可以把任何不平衡的三相负荷变换成一个平衡的三相有功负荷,而不会改变电源和负荷间的有功功率交换,能够取得良好的电能质量治理效果。 3 SVC在电铁负序治理中的应用 3.1 国外电铁SVC应用情况 日本东海道新干线西相模牵引变,根据牵引变接入电网点检出的无功电流和负序电流,由负荷特性计算补偿电路SVC所需无功电流的数值,对TCR中的晶闸管触发信号加以控制,从而对有功功率的不平衡与负序进行补偿。澳大利亚昆士兰铁路将总容量为600 MV·A的套SVC根据需要分别装设在沿途各牵引变的低压侧,将一套340 MV·A的SVC装设在更高一级电压等级的电网。补偿后,负序电压由补偿前的4.5%下降到0.8%。英法海底隧道采用了ABB提供的SVC以解决负荷平衡问题,通过SVC补偿后,不平衡度小于0.1%。 3.2 国内电铁SVC应用情况 2000年10月,神朔电气化铁路(神华集团)开通,单相供电牵引所产生巨大负序电流,引起三相供电系统的不平衡,给邻近神木电厂(属神华集团)发电机组(2×100 MW)稳发、满发以及整个陕北电网的稳定和安全运行带来严峻考验。2000年11月至12月神木发电公司2台发电机组由于负序原因被迫停运,损失发电量超过1×108 kW·h。2001年330 kV神木变投运后,供电质量得到了一定的改善。根据实测,330 kV神木变2台主变并列运行时,神木发电公司单机组运行,发电机中负序电流可达到额定电流的15%(规定值<8%,2 台机组同时运行时发电机中负序电流也可达到8%的临界值)。为保证发电公司能正常发电,330 kV主变只能采用分列运行方式,1台供神木发电公司发电进网,1台供电铁牵引站送电。在该方式下,单机组发电时,发电机中的负序电流仍时有超过8%的现象发生。由于电铁的影响,神木发电公司在运行中还经韩宏飞等:电气化铁路中SVC 负序补偿应用技术研究Vol.25 No.6常出现发电变差动保护误动、循环水泵电机过负荷等故障。2002年,经过多方考虑神华集团公司斥巨资在神朔电铁供电线路上加装静止型动态无功补偿装置(SVC)以治理电铁牵引站对电网所产生的污染,包括抑制谐波、提高功率因数、快速连续无功调节、抑制电压波动和闪变、解决三相不对称等问题。神朔SVC工程与2002年5月底投入运行,并于2002年8月10日完成竣工验收移交。其间西北电力试验研究院受用户委托对该工程进行了实际跟踪测试,证明该设备性能稳定、运行安全可靠、各项指标均为优良、补偿效果良好,完全达到并优于用户要求,方案实施后取得了预期效果。该装置在国内首次实现了110 kV电铁供电线上对多座电铁牵引负荷的整体动态实时补偿,首开电铁与电网补偿综合治理的成功先例。 4 结语 SVC装置在电气化铁道中应用的主要问题是资金问题。随着我国电网建设的进一步发展以及电气化铁路大规模的建设,对SVC在电铁中的应用提出了更高要求,迫切需要设计、生产出性能最佳、价格便宜的SVC装置。辽宁某厂家生产的SVC,于1997年通过了辽宁省科委及原国家计委重点工业性试验项目鉴定,实现了国产化;中国电力科学研究院生产的SVC于2004年在鞍山红一变投入运行,也实现了国产化;在我国冶金、煤炭、化工、电铁等行业中使用的SVC,国产的占绝大多数。国产SVC实用化程度进一步提高,国产的SVC装置除具备SVC的常规特点外,还具有无水冷却(热管自冷技术),出厂前进行全载、全压试验,运行中可以进行远程实时监控运行等特征。近10 a来,国产SVC装置的安全运行实践证明了国产SVC装置技术经济指标的优越性和先进性。经辽宁该厂家建议,由全国电压/电流等级和频率标准化技术委员会牵头制定的中华人民共和国国家标准《静止式动态无功功率补偿装置(SVC)功能特性导则》和《静止式动态无功功率补偿装置(SVC)现场试验导则》报批稿已经上报,必将促进SVC的进一步发展。目前,国产SVC的规模化生产能力不仅完全可以满足我国电力系统和各行业的需要,而且还具有出口能力。目前该厂家生产的我国第一套应用于电气化铁路的高压大功率静止无功发生器亦进入最后调试阶段,此套装置将发往上海铁路局用于电气化铁路电能质量治理。首套电铁系统专用静补装置的问世,标志着我国成为世界上少数几个掌握该技术的国家。目前国产SVC已占领了国内电气化铁路系统、冶金行业绝大部分市场份额,成为世界上SVC的主要制造商之一,2006年的装机数量更是首次超过瑞士ABB与德国西门子SIEMENS,跃居全球第一,国内厂家精心研制的高压动态无功补偿装置(SVC)已具有国际同期先进水平。可以预见,随着国产SVC技术水平的进一步成熟、性价比的进一步提高,SVC在我国电气化铁路建设中必将发挥重要作用,为促进我国铁路建设实现跨越式发展提供有力保障。 [参考文献]: [1] 林建钦,杜永宏. 电力系统谐波危害及防止对策[J].电网与清洁能源,2009,25(02):28-31. [2] 卢志海,厉吉文,周剑.电气化铁路对电力系统的影响[J].继电器,2004,32(11):33-36. [3] 任元.信阳和驻马庙地区电气化铁路谐波引起220 kV高频保护动作的分析[J].电网技术,1995,19(2):32-35. [4] 李郑刚. 电石炉无功补偿与谐波抑制.文秘杂烩网 ,2009,25(01):76-78. [5] 电力工业部电力规划设计总院.电力系统设计手册[S].北京:中国电力出版社,2005. [6] 朱永强,刘文华,邱东刚,等.基于单相STATCOM的不平衡负荷平衡化补偿的仿真研究[J]. 电网技术,2003,27(8):42-45. [7] 李旷,刘进军,魏标,等.静止型无功发生器补偿电网电压不平衡的控制及其优化方法[J].中国电机工程学报,2006,26(5):58-63. [8] 辽宁荣信电力电子股份有限公司.SVC控制系统用户手册[K].辽宁: 荣信电力电子股份有限公司,2006
采纳哦
上一篇:优秀毕业论文体育
下一篇:应届论文会查重吗