欢迎来到学术参考网
当前位置:发表论文>论文发表

经典水印检测论文

发布时间:2023-03-04 00:06

经典水印检测论文

数字版权的最后一道防线—数字水印
北京大学计算机科学技术 研究所 朱新山
数字水印被视做抵抗多媒体盗版的“最后一道防线”。因此从水印技术自身来说,它具有广泛的应用前景和巨大的经济价值。
当今社会的发展已经呈现两个明显的特征:数字化和网络化。数字化指的是信息的存储形式,特点是信息存储量大、便于编辑和复制;网络化指的是信息的传输形式,具有速度快、分布广的优点。过去10 年,数字媒体信息的使用和分布呈爆炸性的增长。人们通过互联网可以快捷方便地获得数字信息和在线服务。但同时,盗版也变得更加容易,对数字内容的管理和保护成为业界迫切需要解决的问题。
数字信息在本质上有别于模拟信息,传统的保护模拟信息的方案对数字信息已不再奏效。再加上一些具有通用目的的处理器,如PC 机,使得那些基于硬件的媒体保护方案很容易被攻破。而通常采用的加密技术事实上只能在信息从发送者到接受者的传输过程中保护媒体的内容。在信息被接收到以后,再利用的过程中所有的数据对使用者都是透明的,不再受到任何保护。在这一形势下,数字水印作为一种潜在的解决方案,得到了众多学者的青睐。
数字水印的基本思想是在原始媒体数据中,如音频、视频、图像等,隐藏具有一定意义的附加信息作为标记,这些信息与原始数据紧密结合,并随之一起被传输。在接收端,通过计算机水印信号被提取出来用于各种目的,可能的应用包括数字签名、数字指纹、广播监视、内容认证、拷贝控制和秘密通信等。数字水印被视做抵抗多媒体盗版的“最后一道防线”。因此从水印技术自身来说,它具有广泛的应用前景和巨大的经济价值。
数字水印的基本框架
一个典型的水印系统由嵌入器和检测器组成,如图所示。嵌入器(式(1))根据要传送的信息M 生成真正的水印信号,并把它隐藏到媒体数据x 中,得到含水印的信号y。为了安全起见,水印信号的生成通常依赖于密钥K。y 经过传输网络可能会有一定的信息损失,到达检测器端变成y′,这段通道对于嵌入器和检测器来说都是不可控、不可知的,可以称其为攻击通道(attack channel)。检测器负责从y′中提取信息,如式(2)。对于不需要宿主信号的检测,我们称为盲水印(blind watermarking),相反称为非盲水印(non-blind watermarking)。由于应用的需求,盲水印一直是研究的主流。
数字水印的特性
数字水印的思想虽然简单,但是要达到应用的目的,就必须满足一定的性能指标,其中相对重要的特性包括:
● 保真性(fidelity):又常称为不可见性,指的是水印嵌入导致宿主信号质量变化的程度。鉴于宿主信号多是多媒体数据供人们观赏,水印应具有很高的保真性,同时又增加了水印自身的安全。
● 鲁棒性(robustness):是指水印在媒体数据编辑、处理过程中的生存能力。媒体数据的各种操作会导致宿主信号信息损失,从而破坏水印完整性,像压缩、滤波、加噪、剪切、缩放和旋转等,也包括一些恶意的攻击。
● 信息容量(data payload):是指在一定保真度下,水印信号可传递的信息量。实际应用要求水印可传送多位信息。
● 安全性:在应用中总有人要嵌入、检测或剔除水印,而必须限制其他人做同样的操作,这就是水印的安全性。要实现安全,必须保密重要信息,比如通常使用密钥产生水印。
● 错警率:是指在不含水印的宿主信号中,错误地检测出水印的概率。很显然,只有错警率足够低,系统才能安全可靠地使用。
设计水印必须围绕上述性能指标选择合适的技术。有些特性之间是不相容的,像不可见性、鲁棒性和信息容量,必须做权衡的考虑。
由水印的保真性将其分为可见水印和不可见水印,顾名思义可见水印可通过人眼检测。由水印的鲁棒性又可分为鲁棒水印(robust watermarking)和脆弱水印(fragile watermarking)。鲁棒水印可以抵抗一定程度的信号处理;而脆弱水印的特点是任何对媒体信息的更改都会破坏水印的完整性,使水印检测不出来。所以说鲁棒水印是尽力保证水印信息的完整性,脆弱水印是尽力保证媒体信息的完整性,它们各有各的用途。还有一种水印介于二者之间,称为半脆弱水印,对一些操作鲁棒,但对重要数据特征的修改操作是脆弱的。
数字水印技术的进展
早期,水印设计者关注的是如何把信息隐藏在数字媒体中并不被发现。为此,水印信息被置于二进制数据的最低位中,这类方案被统称为最低有效位调制。很明显,最低有效位内的信息容易在常用的信号处理中丢失,水印的鲁棒性差。
随后,出现了大量空间域内的水印算法。水印嵌入不再是修改空间域内的单个点,而是一个点集或一个区域的特征,例如均值、方差、奇偶性等。Patchwork 是这类方法的一个典型代表。它在图像空间随机选取n 对像素点(ai, bi),并且对像素ai 的亮度加d,bi 的亮度减d,结果这两组像素点之间亮度差值的均值被修改为2d。该均值和统计假设检验理论可确定水印的有无。可是Patchwork 能嵌入的信息量有限,而且对几何变换敏感。空间域内水印算法存在的共性问题是对图像处理的鲁棒性差。
相较于空间域,频谱则是一种很好的信号描述方法。低频分量代表了信号的平滑部分,是主体信息;高频分量表示信号的抖动部分,是边缘信息,信号的分析和处理非常直观方便。扩频水印引入了扩频通信理论,是一种非常流行的频率域内的水印设计思想。它将数字媒体视为信道,通常具有较宽的带宽,要嵌入的水印信号作为发射信号,带宽较窄。可以先将水印扩展到多个频率点上,再与媒体信号叠加。这样,每个频率分量内只含有微小能量的水印,既保证了不可见性,同时要破坏水印,则必须在每个频率上叠加幅值很高的噪声。这一思想首先被应用到DCT 域内,之后又被推广到傅立叶变换域和小波域内。另外,为了兼顾水印的保真性,人类感知模型被用于控制每个频率点上水印的能量,使其不至于破坏信号质量,从而形成了一类自适应的扩频水印。
另一种重要的水印模型是把水印看成是已知边带信息的通信。边带信息指的是嵌入器端已知的信息,包括媒体数据。嵌入器应该充分利用边带信息,尽可能提高水印正确检测的概率。这对水印的设计有重要的指导意义,它说明含水印的宿主信号应该选择在可检测到水印的区域,同时保证一定的保真度。
当前,水印研究的热点是探讨媒体信号中能嵌入并可靠检测的最大信息量,它应用了已知边带信息的通信模型以及信息论的知识。水印算法的研究则侧重于针对压缩域,即JPEG、MPEG等压缩标准,因为压缩是信息传输中必须采用的技术。
数字水印的攻击技术
对媒体数据的各种编辑和修改常常导致信息损失,又由于水印与媒体数据紧密结合,所以也会影响到水印的检测和提取,我们把这些操作统称为攻击。水印的攻击技术可以用来测试水印的性能,它是水印技术发展的一个重要方面。如何提高水印的鲁棒性,抵抗攻击,是水印设计者最为关注的问题。
第一代水印性能评价系统 Stirmark 囊括了大量的信号和图像处理操作,它们可以分为:
● 去除水印攻击(Removal attack):主要包括A/D、D/A 转换、去噪、滤波、直方图修改、量化和有损压缩等。这些操作造成了媒体数据的信息损失,特别是压缩,能在保证一定信息质量的前提下,尽可能多地剔出冗余,使得水印被去掉。
● 几何攻击(Geometrical attack):主要包括各种几何变换,例如旋转、平移、尺度变换、剪切、删除行或列、随机几何变换等。这些操作使得媒体数据的空间或时间序列的排布发生变化,造成水印的不可检测,因此也叫异步攻击。
● 共谋攻击:攻击者利用同一条媒体信息的多个含水印拷贝,使用统计方法构造出不含水印的媒体数据。
● 重复嵌入攻击:攻击者在已嵌入他人水印的媒体数据中嵌入自己的版权信息,从而造成版权纠纷。第二代水印攻击系统由 Voloshynovskiy 提出,其核心思想是利用合理的媒体数据统计模型和最大后验概率来估计水印或者原始媒体信号,从而将水印剔除。对攻击技术的分析和研究促进了水印技术的革新,但也为水印自身提出了一个又一个挑战。
当前,还不存在一种算法能够抵抗所有的攻击,特别是几何攻击,是学术界公认的最困难的问题,目前还没有成熟的方案。
数字水印产品
20 世纪90 年代末期国际上开始出现一些水印产品。美国的Digimarc 公司率先推出了第一个用于静止图像版权保护的数字水印软件,而后又以插件形式将该软件集成到Adobe 公司的Photoshop 和Corel Draw 图像处理软件中。AlpVision 公司推出的LavelIt 软件,能够在任何扫描的图片中隐藏若干字符,用于文档的保护与跟踪。MediaSec 公司的SysCop 用水印技术来保护多媒体内容,欲杜绝非法拷贝、传播和编辑。
美国版权保护技术组织(CPTWG)成立了专门的数据隐藏小组(DHSG)来制定版权保护水印的技术标准。他们提出了一个5C 系统,用于DVD 的版权保护。IBM 公司将数字水印用于数字图书馆的版权保护系统中。许多国际知名的商业集团,如韩国的三星、日本的NEC 等,也都设立了DRM 技术开发项目。另外,当前还有一些潜在的应用需求,例如软件的搜索和下载数量的统计、网页安全预警、数字电视节目的保护和机密文档的防遗失等。一些国际标准中已结合了数字水印或者为其预留了空间。SDMI 的目标是为音乐的播放、存
储和发布提供一个开放的框架。SDMI 规范中规定了多种音频文件格式,并联合加密和数字水印技术来实现版权保护。已经颁布的JPEG2000 国际标准中,为数字水印预留了空间。即将颁布的数字视频压缩标准MPEG-4(ISO/IEC 14496),提供了一个知识产权管理和保护的接口,允许结合包括水印在内的版权保护技术。
在国内,政府对信息安全产业的发展极为重视。数字水印的研究得到了国家自然科学基金和“863”计划的资助。国内信息隐藏学术研讨会(CIHW)自1999 年以来至今已成功举办了五届,有力地推动了水印技术的研究与发展。去年政府更颁布了《中华人民共和国电子签名法》,这给水印技术的应用提供了必要的法律依据。尽管数字水印发展迅速,但离实际应用,还有一段距离要走。许多项目和研究都还处于起步和实验阶段,已出现的水印产品还不能完全满足使用需求。如今水印技术正在向纵深发展,一些基本的技术和法律问题正逐个得到解决。相信不久的将来,水印与其它DRM 技术的结合,将彻底解决数字内容的管理和保护问题。
小资料2
多媒体数字版权保护的应用案例
在安全领域有 20 年发展历史的美商SafeNet 推出的数字产权保护方案DMD 是采用加密技术的DRM 产品。SafeNet 公司亚太地区副总裁陈泓应记者的要求介绍几个成功的应用案例。DMD 主要应用于音乐和铃声的下载、VOD、多媒体内容发布服务,以及最近的移动TV。基本来说,客户选择基于以下几点:基于电信级的性能,可以同时处理上千个用户;可以同步支持多种DRM 技术,并且对未来的DRM 技术有高支持能力;高互通性,确保服务器端与客户端能安全稳定地沟通;先进的授权能力,例如可以有效控制一个授权的使用量;高集成性,确保DRM的平台不是独立作业的,可以很容易地整合至服务器平台,与收费系统等结合。
在音乐下载方面,NPO 是SafeNet 在法国的客户。他们主要负责发布CD 音乐及将发表的音乐放到FN@C 的网络上供人付费下载。NPO 将音乐内容做DRM 处理后,将内容由FN@C (这是一个公开的入口网站)发布,提供给人付费下载。当终端用户付了钱,FN@C 会将一部分的证明数据加密并提交给NPO,由NPO 产生授权给此用户。在 VOD 的应用层面,德国的Arcor 公司是一家ISP 供货商。透过DRM 解决方案,Arcor 将影音内容加密,透过互联网和Cable 给客户做使用者付费的服务。客户付了钱,Arcor 由SafeNet的DRM 解决方案产生正式授权,让客户享用影音服务。
在 3G 的应用方面,英国的BT LiftTime 公司也采用SafeNet 的DMD 方案。BT LifeTime 向内容供货商购买cable TV 的内容(如运动节目或音乐节目等),并将此内容转成dab 格式,经过DMD加密并放到其平台,再转卖给无线运营商,提供移动装置用户直接付费下载内容。通过SafeNetDMD 将授权提供给已经付费的客户。

在知网进行论文查重后,重复率很高的话,有什么降重技巧吗?

方法/步骤

急救!求离散小波变换dwt的数字水印论文!发至邮箱453607891@

取得了很大的进步,下面对一些典型的算法进行了分析,除特别指明外,这些算法主要针对图像数据(某些算法也适合视频和音频数据)。
空域算法
该类算法中典型的水印算法是将信息嵌入到随机选择的图像点中最不重要的像素位 (LSB:least significant bits)上,这可保证嵌入的水印是不可见的。但是由于使用了图像不重要的像素位,算法的鲁棒性差,水印信息很容易为滤波、图像量化、几何变形的操作破坏。另外一个常用方法是利用像素的统计特征将信息嵌入像素的亮度值中。
Patchwork算法
方法是随机选择N对像素点 (ai,bi) ,然后将每个ai点的亮度值加 1 ,每个bi点的亮度值减 1,这样整个图像的平均亮度保持不变。适当地调整参数,Patchwork方法对JPEG压缩、FIR滤波以及图像裁剪有一定的抵抗力,但该方法嵌入的信息量有限。为了嵌入更多的水印信息,可以将图像分块,然后对每一个图像块进行嵌入操作。
变换域算法
该类算法中,大部分水印算法采用了扩展频谱通信 (spread spectrum communication)技术。算法实现过程为:先计算图像的离散余弦变换 (DCT),然后将水印叠加到DCT域中幅值最大的前k系数上(不包括直流分量),通常为图像的低频分量。若DCT系数的前k个最大分量表示为D=,i=1 ,… ,k,水印是服从高斯分布的随机实数序列W =,i=1 ,… ,k,那么水印的嵌入算法为di = di(1 + awi),其中常数a为尺度因子,控制水印添加的强度。然后用新的系数做反变换得到水印图像I。解码函数则分别计算原始图像I和水印图像I*的离散余弦变换,并提取嵌入的水印W*,再做相关检验 以确定水印的存在与否。该方法即使当水印图像经过一些通用的几何变形和信号处理操作而产生比较明显的变形后仍然能够提取出一个可信赖的水印拷贝。一个简单改进是不将水印嵌入到DCT域的低频分量上,而是嵌入到中频分量上以调节水印的顽健性与不可见性之间的矛盾。另外,还可以将数字图像的空间域数据通过离散傅里叶变换(DFT)或离散小波变换(DWT)转化为相应的频域系数;其次,根据待隐藏的信息类型,对其进行适当编码或变形;再次,根据隐藏信息量的大小和其相应的安全目标,选择某些类型的频域系数序列(如高频或中频或低频);再次,确定某种规则或算法,用待隐藏的信息的相应数据去修改前面选定的频域系数序列;最后,将数字图像的频域系数经相应的反变换转化为空间域数据。该类算法的隐藏和提取信息操作复杂,隐藏信息量不能很大,但抗攻击能力强,很适合于数字作品版权保护的数字水印技术中。
压缩域算法
基于JPEG、MPEG标准的压缩域数字水印系统不仅节省了大量的完全解码和重新编码过程,而且在数字电视广播及VOD(Video on Demand)中有很大的实用价值。相应地,水印检测与提取也可直接在压缩域数据中进行。下面介绍一种针对MPEG-2压缩视频数据流的数字水印方案。虽然MPEG-2数据流语法允许把用户数据加到数据流中,但是这种方案并不适合数字水印技术,因为用户数据可以简单地从数据流中去掉,同时,在MPEG-2编码视频数据流中增加用户数据会加大位率,使之不适于固定带宽的应用,所以关键是如何把水印信号加到数据信号中,即加入到表示视频帧的数据流中。对于输入的MPEG-2数据流而言,它可分为数据头信息、运动向量(用于运动补偿)和DCT编码信号块3部分,在方案中只有MPEG-2数据流最后一部分数据被改变,其原理是,首先对DCT编码数据块中每一输入的Huffman码进行解码和逆量化,以得到当前数据块的一个DCT系数;其次,把相应水印信号块的变换系数与之相加,从而得到水印叠加的DCT系数,再重新进行量化和Huffman编码,最后对新的Huffman码字的位数n1与原来的无水印系数的码字n0进行比较,只在n1不大于n0的时候,才能传输水印码字,否则传输原码字,这就保证了不增加视频数据流位率。该方法有一个问题值得考虑,即水印信号的引入是一种引起降质的误差信号,而基于运动补偿的编码方案会将一个误差扩散和累积起来,为解决此问题,该算法采取了漂移补偿的方案来抵消因水印信号的引入所引起的视觉变形。
NEC算法
该算法由NEC实验室的Cox等人提出,该算法在数字水印算法中占有重要地位,其实现方法是,首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0,1)分布,密钥一般由作者的标识码和图像的哈希值组成,其次对图像做DCT变换,最后用伪随机高斯序列来调制(叠加)该图像除直流(DC)分量外的1000个最大的DCT系数。该算法具有较强的鲁棒性、安全性、透明性等。由于采用特殊的密钥,因此可防止IBM攻击,而且该算法还提出了增强水印鲁棒性和抗攻击算法的重要原则,即水印信号应该嵌入源数据中对人感觉最重要的部分,这种水印信号由独立同分布随机实数序列构成,且该实数序列应该具有高斯分布N(0,1)的特征。
生理模型算法
人的生理模型包括人类视HVS(HumanVisualSystem)和人类听觉系统HAS。该模型不仅被多媒体数据压缩系统利用,同样可以供数字水印系统利用。利用视觉模型的基本思想均是利用从视觉模型导出的JND(Just Noticeable Difference)描述来确定在图像的各个部分所能容忍的数字水印信号的最大强度,从而能避免破坏视觉质量。也就是说,利用视觉模型来确定与图像相关的调制掩模,然后再利用其来插入水印。这一方法同时具有好的透明性和强健性。

上一篇:中职财会论文题目

下一篇:勾漏粤语研究论文