欢迎来到学术参考网
当前位置:发表论文>论文发表

干涉仪的论文题目

发布时间:2023-03-04 08:11

干涉仪的论文题目

干涉测量技术是以光波干涉原理为基础进行测试的一门技术。现代干涉测量技术采用激光作光源并且综合了光学和电子学的最新成就,具有量程大、分辨率高、抗干扰能力强、测量精度高等特点,另外随着科学技术的迅速发展,现代工业对测量要求越来越高,其他方法已难以胜任,因此在现代工业中应用非常广泛。 目前已经有几家致力于干涉仪产品的生产和研制的著名厂家,美国Zygo公司就是其中之一。本实验室的Zygo数字波面干涉仪是85年从Zygo公司购进的,属Fiseau型等厚干涉仪,可用于进行各种形状及各种复杂程度的实时干涉图形和干涉图片的快速测量。其关键部件包括MARK III干涉仪,干涉条纹处理器和一个控制终端,并备有许多附件,来满足不同测量需要。但因配套软件缺乏、采集系统性能和处理功能落后,已无法满足现在测量需要。本论文的主要目的是以此Zygo干涉仪为依托,设计以干涉条纹图像为对象的图像采集系统和图像处理软件,构建一套现代干涉测量系统,以满足当前测量需要。本论文完成以下几项工作: 1)针对干涉图像,设计以CMOS图像采集芯片为核心的高性能图像采集系统,包括系统硬件和控制软件 分给我

光纤干涉仪的原理是什么?

(1)干涉仪及干涉条纹的解析
评价光纤连接器端面的球面半径和光纤高度,首先必须测量连接器端面的形状。干涉仪具有测量精度高,速度快,成本低等优点,是测量表面形状的一个有效手段。图3.是光纤连接器端面检测干涉仪的系统概要。由光源射出的光线经半透镜反射到米罗干涉物镜后,光线聚焦于被检测光纤连接器的端面,经端面反射后与米罗干涉物镜的反射面反射的光线一同透过半透镜,成像于CCD摄像头。这时在CCD摄像头上可以观察到干涉条纹。CCD摄像头测得的图像经图像卡传送到计算机进行解析处理。就可以得到我们所需要的测量结果。由计算机经过控制卡及控制回路控制的PZT(压电陶瓷组件)用于移动米罗干涉物镜以产生位相移动。
解析干涉条纹可以应用傅立叶变换法2,3,4,也可以应用位相移动法5,6。傅立叶变换法具有简单,快速,低成本等优点,但精度较低,一般用于简易型测量仪。对于光纤连接器端面形状的测量,一般采用解析精度较高的位相移动法。
必须指出的是位相连接是一个比较复杂的过程。选择不同的位相连接算法,计算速度和安定性将会不同。

(2)载物台的倾斜调整
载物台的倾斜调整是一项关键技术。如果载物台的倾斜调整精度不高,将极大地影响球面顶点偏心,APC角度及定位键角度的测量精度。图4为倾斜调整和球面顶点偏心测量精度的关系概要。如图4(a)所示,当载物台倾斜调整完整时,干涉仪光学系统的光轴将与被测定光纤连接器的插芯的中心轴平行。此时,旋转被测定光纤连接器时,光纤连接器端面的球面顶点(环形干涉条纹的中心如A点或B点)将绕光纤的中心O点旋转,构成一个以O点为中心的圆。测定的顶点偏芯值OA或OB将与实际的顶点偏芯相同。也就是说,无论旋转光纤连接器到什幺角度,测定的顶点偏芯值的变化将不会太大。相反,如图4(b)所示,当载物台倾斜调整不完整时,干涉仪光学系统的光轴将会与被测定光纤连接器的插芯的中心轴交叉成一个角度。此时,旋转被测定光纤连接器时,光纤连接器端面的球面顶点(环形干涉条纹的中心如A点,B点,C点或D点)会绕一个与光纤的中心O不相同的中心O*旋转,构成一个以O*为中心的圆。显然,在不同位置测量的顶点偏芯值OA,OB或OC将与实际的顶点偏芯OD不相同。也就是说,旋转光纤连接器后,测定的顶点偏芯值将会有很大的变化。从这个现象也可以得到一个检验载物台倾斜调整是否完整的方法。即,旋转光纤连接器,依次测定顶点偏芯值,如果测定的顶点偏芯值变化不大,则载物台倾斜调整是完整的。反之,则载物台倾斜调整是不完整的。为了提高载物台倾斜的调整精度,富士写真光机株式会社开发了一种高精度,操作简单的载物台倾斜调整技术(已申请多国专利)7,8,可以达到大大高于一般调整方法的调整精度。

(3)测量再现性
测量再现性对光纤连接器端面检测仪的测量精度有很大的影响。以顶点偏心为例,目前,绝大部分厂商生产的光纤连接器端面检测仪的测量再现性精度大约在±5μm附近。这些数据可以从各厂家的网页方便的查到。有的厂家以测量再现性的标准偏差σ来衡量。按照误差理论的计算方法,此时的测量再现性最大误差可达±3σ,大约也在±6μm附近。
一般不可能要求测量仪器的测量精度高于测量再现性精度。所以再现性精度是判定测量仪器的测量精度最重要指标之一。
光纤连接器端面检测仪的测量再现性精度主要由光纤连接器端面检测干涉仪的测量再现性精度(由PZT的位相移动精度,CCD摄像头的精度和图像卡的A/D转换器的精度,测量电路的噪声,测量环境,如振动,温度的变化决定),以及载物台光纤连接器固定夹具的定位精度来决定。此外,一般由于光纤连接器插入固定夹具的旋转方向角度的不确定性(除APC光纤连接器),载物台的倾斜调整精度也会影响测量再现性精度。
对于干涉仪的测量再现性,可以固定光纤连接器于载物台的固定夹具上,在不拔出光纤连接器的状态下反复进行测量。然后,对测量的数值进行处理,从而评价干涉仪本身的测量再现性。一般来说,基于现代干涉仪测量技术和干涉条纹解析技术而开发的干涉仪具有很高的测量再现性。不过,由于光学设计及光路布置不当,有些厂家的干涉仪对振动很敏感,从而影响干涉仪的测量再现性精度。
对于光纤连接器固定夹具的定位精度,可以多次插入/拔出被测光纤连接器,对同一光纤连接器反复进行测量。然后,对测量的数值进行处理,从而评价光纤连接器固定夹具的定位精度。必须指出的是,由于大多采用某种标准器,如标准光纤连接器来进行载物台的倾斜调整,载物台的倾斜调整精度也会受到固定夹具的定位精度的影响,因此,提高固定夹具的定位精度是提高整个光纤连接器端面检测仪的测量精度的关键。为了提高固定夹具的定位精度,富士写真光机株式会社开发了一种高精度,操作简单,可靠性高的光

用迈克尔逊干涉仪测空气折射率

一个研究型实验项目的探讨
——利用迈克耳逊干涉仪测气体折射率

王法远
(淮北煤炭师范学院物理系 指导教师:戴建明)

摘 要:“研究型”物理实验的开设对激发学生的求知欲、拓宽其知识面、培养其创新思维能力等方面都具有重要意义。本文以迈克耳逊干涉仪实验为例,通过在实验装置中增设可调压强的气室和CCD图像采集系统,实现对干涉图样的实时观察和气体折射率的较精确测量。实验设计还考虑到了实验内容及其难度的可深入与拓展空间,具有很强的研究型实验特点,并且可以根据适当的教学设计将此实验开设成综合性或设计性实验。
关键词:研究型物理实验;迈克耳逊干涉仪;CCD;折射率

A Research-type Physical Experiment
——Measurement of gas’ refractive index by using Michelson interferometer
Fayuan Wang
Tutored by Jianming Dai
Department of Physics, Huaibei Coal Industry Normal College
Abstract: The research-type physical experiments can play very important role to excite the students’ thirst for knowledge, widen the range of knowledge, cultivate the innovative and research ability. As an example, a research-type experiment, the measurement of gas’ refractive index by using Michelson interferometer and CCD system, is designed and putted in practice. The developmental space in content and complexity is considered in the design of experiment. It is indicated that the experiment has the obvious characters of research and very suits to study as research-type experiment for students.
Keywords: research-type physical experiment;michelson interferometer;CCD;refractive index

1 引言
随着社会科技、经济的高速发展,人才竞争越来越激烈,如何培养具有创新能力的高素质人才已受到普遍关注,这也对高校教育教学提出了新的挑战和要求。对理工科各专业来说,大学物理实验教学对培养学生的实践能力、分析和研究问题的能力起到十分重要的作用,因此在高校创新型人才的培养中,大学物理实验教学的改革首当其冲。
长期以来,由于受应试教育和传统文化等方面的影响,与国外学生相比我国的学生学习非常刻苦、理论知识相当扎实,但在动手能力和创新意识上显得不足。
而另一方面,目前大学物理实验教学中也存在许多不利于学生创新能力培养的因素,突出表现在实验内容偏重于验证性,实验的理念、思想、方法和手段落后等。为改变这一格局,近年来,各高校和教学管理部门都十分重视对“综合性、设计性、研究性”实验的开设要求[1-3]。但究竟什么是综合性、设计性、研究性实验,如何开设这样的实验,仍然需要作深入的研究和教学实践。本文就如何开设研究型实验作一探讨,并给出一个研究型实验案例作详细的实验分析。
2 研究型实验及其开设要求
2.1 研究型实验的基本内涵
通常“研究型”物理实验是在综合性、设计性物理实验的基础上由学生自己选题、查阅文献、设计实验方案,在教师指导下完成实验。“研究型”实验通常是要求学生带着问题测取数据,摸索实验规律,然后带着问题查找资料、探寻答案,并试着对所观察到的现象进行理论分析,并做出合理的解释。这类实验的开设目的是全方位地锻炼学生实验研究的能力,充分调动学生的主动性和积极性,激发他们从事物理学研究的兴趣和热情,为以后从事科研工作打下良好的基础。
2.2 研究型实验的选题
研究型实验要精心选题、科学设计。实验内容要新颖、有趣味性,物理现象比较明显和具有可研究性。同时还要考虑实验室条件和学生的水平与能力,能让学生在比较熟悉的理论基础上作初步的分析与发展。既要与已知的现象、理论和方法有联系又要有一定的深度和广度。作为基础物理实验,研究型实验内容不能过于复杂,要求不宜过高,要能通过分析、讨论和查阅资料等方式让学生可以比较容易地设计和实施实验方案。
2.3 如何开展研究型实验的教学
与传统物理实验不同,研究型实验可以较充分地发挥学生的主观能动性去探索未知的领域。因此,开设此类实验项目的最好方式是利用实验室开放的形式,由学生自主选择和掌握实验时间。研究型实验项目可以有教师指定和学生自拟等形式,但无论那种形式,对实验指导教师都提出了更高的要求。指导教师要对学生所选的研究型实验项目在实施过程中可能出现的各种问题有充分的估计和认识,能够引导、启发和激励学生完成实验,并掌握能作进一步深入研究的空间。
研究型实验更注重实验结果的分析、讨论和总结。因此,学生完成研究型实验后要求写出的实验报告可以不同于普通实验的报告,可以写成研究总结报告形式或研究论文形式,甚至可以采用学术报告的形式口头报告研究结果。
3 利用迈克耳逊干涉仪进行研究型实验项目的设计
迈克耳逊干涉仪是一种典型的利用分振幅方法实现干涉的光学仪器,作为近代精密测量光学仪器之一,被广泛用于科学研究和检测技术等领域[4]。利用迈克耳逊干涉仪,能以极高的精度测量长度的微小变化及其与此相关的物理量。如果与CCD摄像、图象处理等现代监测技术结合,可以实时观测和分析各种干涉现象的变化,达到干涉检测和自动控制的目的[5,6]。因此,利用迈克耳逊干涉仪进行研究型实验设计具有变化多、内容丰富、研究性突出等特点。这里我们以“利用迈克耳逊干涉仪测量气体折射率” 为题,作为一个研究型实验的案例,简述其实验设计与实施过程。
3.1 设计原理与实验装置
实验时,可以向学生提供:迈克耳逊干涉仪、He-Ne激光器、带气压表的“气室”、CCD图象采集系统等实验器材,要求设计一个实验方案并测定空气等气体的折射率。这里简述实验基本原理:
在传统的迈克耳逊干涉仪的一个测量光路上放置一个可充气的“气室”,干涉图的观测采用CCD和计算机进行图象采集与处理。如图 1为利用迈克耳逊干涉仪测定气体折射率的实验光路图。

图 1 实验光路图
图中P为“气室”,它是由腔体、压力表和皮囊等组成。通过皮囊可以给气室中的气体增加压力,也可以通过皮囊的减压阀放气给气室减压,腔内气压可以通过压力表读出。图中接收屏W处放置一CCD摄像头,干涉图像可以通过计算机进行显示和处理。
当激光束通过图1中M1前面的气室时,干涉图样随气室里气体气压的变化而变化:当气压增加时,干涉圆环从中心涌出;反之,干涉圆环向中心陷入。通过研究气体压强变化与条纹移动的关系可以得到气体折射率。在恒定温度下,气体折射率n与气压成正比:
(1)
式中p为气体压强,k为比例系数。在绝对真空下 ,则 。对于常压 条件下,则 ,当气室内压强改变 时,由于折射率的变化引起光程差改变( ),可以观测到条纹的移动个数N。各参数之间的关系为
(2)
式中L为气室的有效长度,由上述各式可以推得常压( )下空气折射率为
(3)
3.2 实验结果与分析
利用图1的光路经仔细调节可以获得等倾干涉图象,图2是经CCD和计算机系统采集到的干涉图象。当改变气室内的压强时可以看到干涉圆环从中心涌出或向中心陷入。实验中先向气室充气加压,然后缓慢放气并观测干涉圆环向中心陷入的条纹数。
实验中用He-Ne激光作为光源( =632.8 nm),所用气室的有效长度L=75 mm,如果常压 取标准大气压强760 mmHg,则(3)式可以写成:
(4)
表1给出了气室内压强增加值 与条纹移动数N和计算得到的折射率 之间的关系。

图2 CCD和计算机系统采集到的干涉图象
表1:气室内压强增加值 、条纹移动数N和计算得到的折射率 值
/mmHg 230 210 190 170 150 130 110
N/个 20.8 19.0 16.6 15.0 13.5 11.8 9.8

1.0002903 1.002904 1.0002805 1.0002832 1.0002889 1.0002914 1.0002860
对测量数据求平均值并计算不确定度,得到

数据处理的方法还可以用作图软件,作出 ~N的关系曲线,通过求斜率计算得到折射率 。空气折射率的标准值是1.0002926(对 nm)[7],测量误差主要来自条纹移动非整数部分的估读和气压表读数误差。另外,对气室的有效长度L和实验室的常压 的测量也对实验结果引入误差。
3.3 实验内容和难度的拓展
作为研究型实验,迈克耳逊干涉仪可以提供丰富的设计思想。例如,采用上述方法将气室与一充满不同气体的气囊(如氧气袋)相连,可以用于测量各种气体的折射率;如果对CCD采集图象进行计算机处理和编程可以实现条纹移动的自动记数;利用这一实验系统可以仔细观测、分析定域和非定域干涉现象[8];如果采用面光源或扩束的平行光作为光源,在图1光路中气室P换成一个平板玻璃(或有机玻璃片、透明塑料片等),则可以检测玻璃表面平整度或介质内部的不均匀性;如果对有机玻璃片或透明塑料片等施加一定的应力,用上述方法可以分析透明介质的应力分布。等等这些内容经过精心设计均可作为研究型实验开设。值得一提的是根据综合性、设计性实验的不同要求,将上述研究型实验进行适当的教学设计,完全可以开设成综合性或设计性实验。
4 结束语
研究型物理实验是一种不同于传统物理实验教学的模式,它具有很强的灵活多样性,主要以激发学生的求知欲、拓宽其知识面、培养其创新思维能力为目的。我们通过“利用迈克耳逊干涉仪测量气体折射率”作为一个研究型实验的案例,较详细地进行了研究型实验设计和实验测试与分析,结果表明可以作为一个很好的研究型实验项目提供给学生作为实验教学用。

参考文献:
[1] 周进,于瑶,王思慧,潘元胜.学生主导性物理实验的探索〔J〕.物理实验,2005,25(1):28
[2] 张瑞,林幸笋,何友军等.一个研究型物理实验项目——周期物成像规律实验〔J〕.物理实验,2001,21(4):28
[3] 金恩培,钱守仁,赵海发,张立彬.如何开好设计性实验〔J〕.物理实验,2000,20(7):24
[4] 程守洙,江之永.普通物理学〔M〕.北京:高等教育出版社,1998: 198
[5] 胡再国,黄建群,李娟.提高CCD实验效果[J].物理实验,2002, 22(8):43
[6] 许伯强,王纪俊.用现代技术设备改善迈克尔孙干涉仪的性能〔J〕.物理实验,1999,19(4):10
[7] 杨述武.普通物理实验(光学部分)[M].北京: 高等教育出版社,2000: 269
[8] 沈元华,陆申龙.基础物理实验[M]. 北京: 高等教育出版社,2003: 245

致 谢

本文能够得以完成,非常感谢我的指导老师戴建明老师,他的渊博知识以及在治学过程中表现出来的严谨态度使我深受鼓舞,给予我极大的指导和帮助,在此向戴建明表示衷心的感谢!

帮我写一篇激光原理的论文

激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。   说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛(ow)与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。  现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。  激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。  现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。
能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。
除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。
激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。
激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。
激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。
按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。
按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。
按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。
按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(2.5~25微米)的激光器件,代表者为CO分子气体激光器(10.6微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(0.75~2.5微米)的激光器件,代表者为掺钕固体激光器(1.06微米)、CaAs半导体二极管激光器(约 0.8微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或0.4~0.7微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(0.01~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段
[编辑本段]激光器的发明
激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。
激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。
此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。
如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。
然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。
但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。
汤斯等人研制的微波激射器只产生了1.25厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。
此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。
1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。
“梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。
尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。
1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。
由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。
今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。

上一篇:学校毕业论文质检

下一篇:银行方面论文题目