欢迎来到学术参考网
当前位置:发表论文>论文发表

毕业论文幂级数

发布时间:2023-03-04 17:28

毕业论文幂级数

关键词是从论文的题名、提要和 正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。   主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《 汉语主题词表》和《世界汉语主题词表》)。
论文正文
(1) 引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。  〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:  a.提出问题- 论点;   b.分析问题-论据和论证;  c.解决问题-论证方法与步骤;  d. 结论。

大学数学系本科毕业论文题目参考

  还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

  1、导数在不等式证明中的应用

  2、导数在不等式证明中的应用

  3、导数在不等式证明中的应用

  4、等价无穷小在求函数极限中的应用及推广

  5、迪克斯特拉(Dijkstra)算法及其改进

  6、第二积分中值定理“中间点”的性态

  7、对均值不等式的探讨

  8、对数学教学中开放题的探讨

  9、对数学教学中开放题使用的几点思考

  10、对现行较普遍的彩票发行方案的讨论

  11、对一定理证明过程的感想

  12、对一类递推数列收敛性的讨论

  13、多扇图和多轮图的生成树计数

  14、多维背包问题的扰动修复

  15、多项式不可约的判别方法及应用

  16、多元函数的极值

  17、多元函数的极值及其应用

  18、多元函数的极值及其应用

  19、多元函数的极值问题

  20、多元函数极值问题

  21、二次曲线方程的化简

  22、二元函数的单调性及其应用

  23、二元函数的极值存在的判别方法

  24、二元函数极限不存在性之研究

  25、反对称矩阵与正交矩阵、对角形矩阵的关系

  26、反循环矩阵和分块对称反循环矩阵

  27、范德蒙行列式的一些应用

  28、方阵A的伴随矩阵

  29、放缩法及其应用

  30、分块矩阵的应用

  31、分块矩阵行列式计算的若干方法

  32、辅助函数在数学分析中的应用

  33、复合函数的可测性

  34、概率方法在其他数学问题中的应用

  35、概率论的发展简介及其在生活中的若干应用

  36、概率论在彩票中的应用

  37、概率统计在彩票中的应用

  38、概率统计在实际生活中的应用

  39、概率在点名机制中的应用

  40、高阶等差数列的通项,前n项和公式的探讨及应用

  41、给定点集最小覆盖快速近似算法的进一步研究及其应用

  42、关联矩阵的一些性质及其应用

  43、关于Gauss整数环及其推广

  44、关于g-循环矩阵的逆矩阵

  45、关于二重极限的若干计算方法

  46、关于反函数问题的讨论

  47、关于非线性方程问题的求解

  48、关于函数一致连续性的几点注记

  49、关于矩阵的秩的讨论 _

  50、关于两个特殊不等式的推广及应用

  51、关于幂指函数的极限求法

  52、关于扫雪问题的数学模型

  53、关于实数完备性及其应用

  54、关于数列通项公式问题探讨

  55、关于椭圆性质及其应用地探究、推广

  56、关于线性方程组的迭代法求解

  57、关于一类非开非闭的商映射的构造

  58、关于一类生态数学模型的几点思考

  59、关于圆锥曲线中若干定值问题的求解初探

  60、关于置信区间与假设检验的研究

  61、关于周期函数的探讨

  62、函数的一致连续性及其应用

  63、函数定义的发展

  64、函数级数在复分析中与在实分析中的关系

  65、函数极值的求法

  66、函数幂级数的展开和应用

  67、函数项级数的收敛判别法的推广和应用

  68、函数项级数一致收敛的判别

  69、函数最值问题解法的探讨

  70、蝴蝶定理的推广及应用

  71、化归中的矛盾分析法研究

  72、环上矩阵广义逆的若干性质

  73、积分中值定理的再讨论

  74、积分中值定理正反问题‘中间点’的渐近性

  75、基于高中新教材的概率学习

  76、基于最优生成树的'海底油气集输管网策略分析

  77、级数求和的常用方法与几个特殊级数和

  78、级数求和问题的几个转化

  79、级数在求极限中的应用

  80、极限的求法与技巧

  81、极值的分析和运用

  82、极值思想在图论中的应用

  83、几个广义正定矩阵的内在联系及其区别

  84、几个特殊不等式的巧妙证法及其推广应用

  85、几个重要不等式的证明及应用

  86、几个重要不等式在数学竞赛中的应用

  87、几种特殊矩阵的逆矩阵求法

大学数学论文

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

2.1.1伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

2.1.2Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

2.1.3,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

2.1.4用Г函数求积分

2.2贝塔函数的性质及应用

2.2.1贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

2.2.2对称性:=。事实上,设有

2.2.3递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

2.2.4

由上式得以下几个简单公式:

2.2.5用贝塔函数求积分

例2.2.1

解:设有

(因是偶函数)

例2.2.2贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

2.3贝塞尔函数的性质及应用

2.3.1贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

2.3.2贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

2.3.3为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

2.3.4贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例2.4,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

帮我选个好做的毕业论文题目吧。谢谢大家

数学领域中的一些著名悖论及其产生背景

跪求复变函数的论文!!

4.1.3复变函数项级数
定义4.3设{fn(z)}(n=1,
2,
…)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和.
若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数(4.2)在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域.
若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数.
下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.
4.2幂级数〖〗
在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1,
2,
…),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+…
(4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如(4.3)或(4.4)的级数称为幂级数,其中,a0,
a1,
…,
an,
…和z0均为复常数.
在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).
4.2.1幂级数的收敛性
关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z|<|z0|内绝对收敛(即∑∞〖〗n=0|anzn|收敛);若在z=z0处发散,则在|z|>|z0|内级数发散.
证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n

0anzn0收敛,
所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|<M当|z|<|z0|时,|anzn|=|anz0|z〖〗z0n<Mz〖〗z0n,而级数∑∞〖〗n=0z〖〗z0n收敛,
所以,∑∞〖〗n=0anzn绝对收敛.
若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n

0anzn1收敛.
则由上面讨论可知,∑∞〖〗n

0anzn0收敛,与已知∑∞〖〗n

0anzn0发散矛盾!
因此,∑∞〖〗n=0anzn在|z|>|z0|发散.
由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:
(1)
对所有正实数z=x,
∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;
(2)
对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;
(3)
既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n

0anxn1收敛,z=x2时级数∑∞〖〗n

0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散.
在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|<R内绝对收敛,在|z|>R时发散,则称R为幂级数的收敛半径,称|z|<R为幂级数的收敛圆.
约定在第一种情形,R=∞;第二种情形,R=0.
而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|<R.
至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定.
关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6(
幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:
(1)
(比值法)limn→∞an+1〖〗an=L;
(2)
(根值法)limn→∞n〖〗|an|=L.
则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L.
证明从略.
当L=0时,R=∞;当L=∞时,R=0.
例4.4求下列幂级数的收敛半径:
(1)
∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2)
∑∞〖〗n=1(z-1)n〖〗n(讨论z=0,
2的情形);
(3)
∑∞〖〗n=0(cosin)zn.
解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n
〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|<1.由于在圆周|z|=1,级数∑∞〖〗n=1zn〖〗n3=∑∞〖〗n=11〖〗n3收敛(p级数,p=3>1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1.
(2)
由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|<1.
在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点.
(3)
由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e.
例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径.
解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e.
例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径.
解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗
fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2<1时,即|z|<2时,幂级数绝对收敛;
当1〖〗2|z|2>1时,即|z|>2时,幂级数发散.
所以,该幂级数的收敛半径为R=2.
4.2.2幂级数的运算和性质
和实函数的幂级数类似,复变函数的幂级数也可以进行加、减、乘等运算.
设幂级数∑∞〖〗n=0anzn=S1(z),
∑∞〖〗n=0bnzn=S2(z),收敛半径分别为R1、
R2,则∑∞〖〗n=1anzn±∑∞〖〗n=1bnzn=∑∞〖〗n=0(an±bn)zn=S1(z)±S2(z),|z|<R(4.5)∑∞〖〗n=1anzn∑∞〖〗n=1bnzn=∑∞〖〗
n=0(anb0+an-1b1+…+a0bn)zn=S1(z)S2(z),
|z|<R(4.6)其中,R=min(R1,R2).
复变函数的幂级数还可以进行复合运算.
设h(z)在D内解析,且|h(z)|<R,
z∈D,则f(h(z))在D内解析,且f(h(z))=∑∞〖〗n=0anhn(z),
z∈D.在f(z)的幂级数展开中,可以用z的一个函数h(z)去代换展开式中的z,这在后面解析函数的级数展开中经常用到.
幂级数∑∞〖〗n=oanzn在其收敛圆|z|<R内,还具有如下性质:
(1)
它的和函数S(z)=∑∞〖〗n=0anzn在|z|<R内解析;
(2)
在收敛圆内幂级数可逐项求导,即S′(z)=∑∞〖〗n=1nanzn-1,
|z|<R;(4.7)(3)在收敛圆内幂级数可逐项积分,即∫CS(z)dz=∑∞〖〗n=0∫Canzndz=∑∞〖〗n=0an〖〗n+1zn+1,(4.8)|z|<R,C
为|z|<R内的简单曲线.

上一篇:大学毕业论文交

下一篇:毕业论文如何投稿