生物研究保护论文
生物研究保护论文
在地球表面上,生物圈是一个厚度很薄却又十分独特的圈层。它的概念约在一个世纪前就由奥地利地质学家休斯(Suess)引入自然科学之中。他于1875年出版了一本关于阿尔卑斯山起源的论著,在最后总结性的一节内,首先提出了“生物圈”这个术语,但是一直未被科学界所接受。直到苏联科学院院士维尔纳斯基(В.И.Вернадский)首先在1926年的苏联科学界,而后又于1929年在法国发表了题为生物圈的两篇演说后,生物圈的概念才得到了全世界的广泛反响,一直延续至今,有关生物圈的内容和基本概念,仍然属于维尔纳斯基所定义的范畴。1970年,美国出版的《科学美国人》,以专刊的形式,系统地总结了有关生物圈研究的主要进展,尤其是哈奇逊(Hutchinson)的论文,更对于生物圈的基本特性,作了全面的综合性论述。 生物体系中存在的这个薄层,比地球上该薄层之外的空间具有更加独特的地方。如果没有这一独特的自然环境存在,结果将正如其它星体上目前尚未正式发现生命现象一样,地球本身也只能是一片死寂的世界。那么,在生物集中存在的空间,具备着哪些独特的表现呢?归纳起来大致应具如下的基本条件: (1)它必须伴随有大量液态水的存在,而且在这种液态水存在的部位上,还应同时存在或交替存在着固、液、汽3种状态,并可在其间实行能量和物质的积极转换。 (2)它必须具有一个稳定而有效的外来能源??太阳,以满足生物生命过程所必须得到的能量,同时它亦可为生物环境的改变和进化提供基本的动力。 (3)在生物圈中,一定要具备充分大的三相物质界面,即具有固体的岩石圈,液体的水圈与气体的大气圈三者相邻接的庞大界面活动带。例如象绝大多数的绿色植物那样,它的根要伸入固体的土壤中,茎叶充分伸展于大气中,液态水则通过植物体联系着物质和能量的转换和流通。倘若无这种三相界面的存在,要发展到高等植物是不可能的。因为高等的生命形式,尤其是第一性生产力,很少只在一个单独的物质相中存在。 (4)必须有一个气压较为恒定、组成成分较为一致的大气。一方面为初始生命力的形成提供二氧化碳源以及为生物的呼吸作用提供氧源,另一方面又可保护生物体免受致命的紫外线辐射,并且是形成温室效应,防止能量过分逸失的贮能器。 (5)在这个生物圈中,必须具备全球规模的能量和物质循环,以助于能量物质分配的均衡并创造出一种特殊的环境结构,这种环境结构执行着有利于生命活动的特殊功能。事实上,生物本身的循环过程,与无机界的地质循环过程、大气循环过程、水循环过程,紧紧地交织在一起,而这种交织的空间,恰好只能位于地表界面附近狭小的范围中。因此在生物圈内,是唯一允许这四大循环同时并存并产生复杂偶合效应的场所。 (6)在生物圈中,环境因素的日变幅及年变幅不能太大。要求它们有一个比较精巧的组合,以满足生物生长和发育的要求。因此,过冷、过热、过湿、过干、营养元素的过度缺乏和过度富集、极端的盐碱度、过小的比表面积等,以及在各自然环境要素中过于偏离正常的组合关系,均不可能期待有丰富的生物物质量以及正常的生物活动,尤其不能期待会有高等植物的正常活动。 基于上述6个基本条件,适于生物活动大量集中的空间所占据的体积,既是很独特的,也是很小的。 前已述及,在距今30多亿年前,地球上产生了生命,这可视为地表无机环境进化的第一次质变。由此开始,在原来单一的无机环境中分离出有机和无机这两大部分,并产生了二者之间的物质能量交换。这种原始的生物物理与生物化学过程,显示了生命在地球的某一特定环境(最初的生命似乎只能在水中产生)内,已经牢牢地奠定了生存的基础。同时,随着生物化学过程的释氧反应,使原来地表环境所表现的还原性气氛,逐渐改变并趋于消失,氧化性气氛逐渐增强。大约进化到9~10亿年前,地表环境已由还原性占统治地位反转到以氧化性占统治地位了。这种改变将使生物进入第二次质变。 在第二次质变以前,生物的存在尚未形成一个圈层,只不过在海洋这个庇护所内生存,以躲避致死的紫外辐射的伤害。这样从全球来看,生物的分布还只是一种不连续的存在。直至大气中的氧达到某个特定的浓度时(目前一些学者倾向认为,大气中的氧是由生物放氧而来的),这种游离的氧就成为整个地球表面的主要化学营力。生物体亦逐渐地适应了这种游离氧的新环境,生物体中的过氧化氢酶体系也已发展起来,以抵抗氧气对有机体的氧化破坏作用,形成了有氧呼吸的生理生化功能(所谓碳?3与碳?4型植物的区别,与此有很大关系)。好气生物的产生和发展,光合自养生物数量的不断增殖,加速了氧气向大气的逸入,致使大气中游离氧所占的比重进一步加大,当其浓度占整个大气组成的10%左右时,就逐渐在大气圈的上部形成了有巨大意义的臭氧层。由于臭氧(O3)能强烈吸收来自宇宙的紫外线,阻挡了致生命于死地的紫外线大量到达地表面,为水生生物向陆地的发展创造了一种基本条件,因此在大约4亿年前的泥盆纪,终于实现了生物从海到陆的飞跃。从此时起,由植物、动物、微生物所共同组成的生物界,才549能遍布全球,名副其实地形成一个连续的圈层。 现在氧在大气中所占的比例,基本上保持一个常数。一年中,1公顷年轻的、生长茁壮的森林,将产生10吨氧气并消耗30吨二氧化碳。每200万年左右,地球上就有15亿立方公里的水,被绿色植物的光合作用所裂解并为呼吸作用再形成。裂解后形成的氧暂时存留于大气中,大约相当于2000年的时间,它本身再循环一次。 地球上生物圈的垂直幅度,大约从最深的海洋(超过11000米)到达高出海平面以上9000米的距离之内。科学家们已于海平面以下7000米处发现有鱼类;在海洋深度达6000米处,每立方米海水中的浮游生物量仍有4.5毫克。根据水生生物的考察,在超过10000米海深的底部(如菲律宾深海沟),每一克湿泥中仍含有10万个细菌甚至达到100万个细菌。而在地表以上海拔9000米的地方,也发现了细菌和真菌的孢子,在大气中飘浮。在距离地表面较远的极为恶劣的环境条件下,只有这种极原始的低等生物才能存活,而生物物质总量中的绝大部分(99.9%),只能生存于比上述所列范围小得多的薄层内。 生物圈的垂直幅度,如果和地球本身相比,则显得微不足道了。暂且抛开地球的大气层不计在内,仅仅从地球的半径来看,生物圈的厚度也只占一个极小的份额。例如,截止到1966年,据全球的12个地面观测站对13颗人造地球卫星所进行的46500次观测结果,计算出地球的赤道半径值为6378.169±0.008公里,它大约是生物圈厚度的3200倍(生物圈平均厚度以2公里计算)。 为了认识生物圈在地球中的地位,表10-1列出了它与地球其他部分的比较。 另据美国学者埃尔里奇(h)等在1977年的著作,将生物物质的质量与全球其他成分作了一个对比。经笔者稍加计算 整理后,列于表10-2中。 地球上所分布的元素自生命起源以来,一直是在变化的。随着原核生物的发展,在岩石内的元素碳和元素氧,就开始转换到有机物中或大气之中。于是,大气也就逐渐地从一种还原性介质,变成为含氧介质,以支持生命的延续和进化。 非生物物质(岩石圈、水圈和大气圈)中的成分,不同于生物圈中物质的成分,于是有机物不得不从所选择的介质中,萃取有关的各类元素,关于这一点可以参看图10-1,它标出了在岩石圈中所存在的元素成分及浓度,它们是整个有机界得以存在和发展的物质基础,也是衡量一个区域空间内资源丰枯程度的标志。因此在地理环境中,如果研究化学元素的迁移和积累,研究生物地球化学过程等问题时,就必须顾及到岩石圈中这种元素的存在状况。 更进一步加以分析,由于这些基本元素广泛分散于地球表层中,生物圈就不得不强烈地摄取、贮存和重新利用某些元素,以维持生命物质的存活过程和整个生物圈的发展。由此,发现了生命体内所进行的有关元素循环的本质,这种生物地球化学过程以及生物物质循环的发现,是生物圈中诸多伟大发现之一,它将导致人们更深刻地揭示地理学的动态规律,而各种动态规律的综合研究又将会把理论地理学的研究水平推向一个新的层次。
给篇谈谈生物多样性的论文2500字.题目是保护生物多样性
保护生物多样性小论文:生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,包括数以百万计的动物、植物、微生物和它们所拥有的基因以及它们与其生存环境形成的复杂的生态系统,是生命系统的基本特征。生命系统是一个等级系统,包括多个层次或水平:基因、细胞、组织、器官、种群、物种、群落、生态系统、景观。每一个层次都具有丰富的变化,即都存在着多样性。但在理论与实践上重要且研究较多的主要有基因多样性(或遗传多样性)、物种多样性、生态系统多样性和景观多样性。现在,人们往往把生物多样性视为生命实体本身,而不仅仅看作生命系统的重要特征之一。人类文化的多样性也可被认为是生物多样性的一部分。正如遗传多样性和物种多样性一样,人类文化(如游牧生活和移动耕作)的一些特征表现出人们在特殊环境下生存的策略。同时,与生物多样性的其它方面一样,文化多样性有助于人们适应不断变化的外界条件。文化多样性表现在语言、宗教信仰、土地管理实践、艺术、音乐、社会结构、作物选择、膳食以及无数其它的人类社会特征的多样性上。
生物多样性是人类赖以生存的物质基础,其价值可以从下列两个方面得以了解。第一,直接价值。从生物多样性的野生和驯化的组分中,人类得到了所需的全部食品、许多药物和工业原料,同时,它在娱乐和旅游中也起着重要的作用;第二,间接价值。间接价值主要与生态系统的功能有关,通常它并不表现在国家核算体制上,但如果计算出来,它的价值大大超过其消费和生产性的直接价值。生物多样性的间接价值主要表现在固定太阳能、调节水文学过程、防止水土流失、调节气候、吸收和分解污染物、贮存营养元素并促进养分循环和维持进化过程等7个方面。随着时间的推移,生物多样性的最大价值可能在于为人类提供适应当地和全球变化的机会。生物多样性的未知潜力为人类的生存与发展展示了不可估量的美好前景。
生物技术在环境保护中的应用的毕业论文
2个问题 都回答了``` 不一样的2篇论文 你可以参考下
摘 要 针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。
关键词 现代生物技术 生态环境 环境保护
1 我国生态环境现状
目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8 000万人和6 000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2 500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。
2 现代生物技术与环境保护
现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪 80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。
(1)生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。
(2) 利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。
(3)生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。
所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。
3 现代生物技术在环境保护中的应用
3.1 污水的生物净化
污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。污染土壤的生物修复
重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。
3.3 白色污染的消除
废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。
有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-β羟基烷酸(PHAs),研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过程,降低提取成本。
3.4 化学农药污染的消除
一般情况下,使用的化学杀虫剂约80%会残留在土壤中,特别是氯代烃类农药是最难分解的,经生态系统造成滞留毒害作用。因此多年来人们一直在寻找更为安全有效的办法,而利用微生物降解农药已成为消除农药对环境污染的一个重要方面。能降解农药的微生物,有的是通过矿化作用将农药逐渐分解成终产物CO2和H2O,这种降解途径彻底,一般不会带来副作用;有的是通过共代谢作用,将农药转化为可代谢的中间产物,从而从环境中消除残留农药,这种途径的降解结果比较复杂,有正面效应也有负面效应。为了避免负面效应,就需要用基因工程的方法对已知有降解农药作用的微生物进行改造,改变其生化反应途径,以希望获得最佳的降解、除毒效果。要想彻底消除化学农药的污染,最好全面推广生物农药。
所谓生物农药是指由生物体产生的具有防止病虫害和除杂草等功能的一大类物质总称,它们多是生物体的代谢产物,主要包括微生物杀虫剂、农用抗生素制剂和微生物除草剂等。其中微生物杀虫剂得到了最广泛的研究,主要包括病毒杀虫剂、细菌杀虫剂、真菌杀虫剂、放线菌杀虫剂等。长期以来并没有得到广泛的使用。现在人们正在利用重组DNA技术克服其缺点来提高杀虫效果,例如目前病毒杀虫剂的一个研究热点是杆状病毒基因工程的改造,人们正在研究将外源毒蛋白基因如编码神经毒素的基因克隆到杆状病毒中以增强杆状病毒的毒性;将能干扰害虫正常生活周期的基因如编码保幼激素酯酶的基因插入到杆状病毒基因组中,形成重组杆状病毒并使其表达出相关激素,以破坏害虫的激素平衡,干扰其正常的代谢和发育从而达到杀死害虫的目的。
参考文献
1 孔繁翔. 环境生物学[M]. 北京:高等教育出版社,2000
2 陈坚. 环境生物技术[J], 生物工程进展,2001(5)
3 姜成林,徐丽华. 微生物资源的开发与利用[M].北京:中国轻工业出版社,2001
上一篇:同行评议论文模板
下一篇:自动光学检测论文