新型燃烧研究论文
新型燃烧研究论文
柴油发动机是燃烧柴油来获取能量释放的发动机。我为大家整理的柴油发动机新技术论文,希望你们喜欢。
柴油发动机新技术论文篇一
柴油发动机燃烧技术及汽车新能源
摘要:汽车无疑是21世纪发展最为迅速,对人类影响最大的机械。近几十年来,面对地球能源的日益短缺和环境保护的严重形势,人们对车用发动机的燃油经济性更加重视,节能减排受到广泛关注。本文针对近年来柴油发动机燃烧技术以及其他汽车替代燃料的新能源开发应用进行了介绍和评论。最后对柴油发动机燃烧新技术的今后发展进行了展望,指出了汽车科技在21世纪的发展方向,即改善燃烧技术并且研发应用新能源。
关键词:柴油发动机 燃烧技术 燃料 新能源
0 引言
随着机动车保有量的迅速增加,全球石油能源临近枯竭。同时,排放法规日益严格,要求大幅降低汽车尾气中NOx和PM等排放。因此,燃油的经济性、节能减排受到广泛关注。改善燃烧技术,研发汽车新能源渐渐成为一项重要的课题。
汽车的动力来源于发动机气缸内燃料燃烧所放出的热能。传统的汽车发动机根据所用燃料种类区分,可分为柴油发动机和汽油发动机。近年来,由于世界能源短缺和环保低碳的要求,人们开始开发新型清洁燃料,如甲醇、乙醇、液化石油气(LPG)、压缩天然气(CNG)等。现在又大力开发混合动力汽车、电池电动汽车、电容电动汽车和太阳能汽车等。
1 柴油发动机燃烧技术
柴油机汽车因压缩比高,燃油消耗平均比汽油机汽车低30%左右,所以燃油经济性较好、热效率较高。但是传统的柴油机燃烧过程,是采用高压喷射将燃油喷入气缸,形成混合气,并借缸空气的高温自行发火燃烧。如果燃烧不充分,极易产生NOx 、PM。随着排放标准的提高,政府对节约能源与减少排放日益重视。为达到排放法规和降低油耗的要求,应该加强新的燃烧方式的探索,开发出高性能低成本的先进柴油机。近些年应运而生的先进的燃烧技术有:均质充量压缩点燃(HCCI)和低温燃烧(LTC)等。他们与传统的燃烧模式相比有很多自身的优势,有足够的提高效率和降低排放的潜力,但还需要进一步的深入讨论和完善。
1.1 均质充量压缩着火(HCCI)燃烧
自20世纪70年代末,均质充量压缩着火(HCCI)燃烧这一新概念被报道,国际上学术界和工业界一直高度重视这一燃烧技术,是世界内燃机燃烧研究领域中的热点之一。
均质充量压缩着火燃烧,就是柴油机在着火前像汽油机那样形成均质混合气,消除扩散燃烧,采用较高压缩比,压缩可控着火,实现近似等压燃烧;同时要具有良好的化学反应动力学效应,实现低温火焰快速燃烧,燃烧持续期短,燃烧效率高,可以同时保持较高的动力性和燃油经济性,达到高效、低污染的目标。与传统的点燃式发动机相比,它取消了节气门,泵气损失小,混合气多点同时着火,燃烧持续期短,可以得到与压燃式发动机相当的较高的热效率;与传统柴油机相比,由于混合气是均质的,有效的解决了传统均质稀混合气燃烧速度慢的缺点,燃烧反应几乎是同步进行,没有火焰前锋面,燃烧火焰温度低,可以同时降低NOx 和PM排放。另外,实施HCCI燃烧模式可以简化发动机燃烧系统和喷油系统的设计。因为HCCI燃烧的着火和燃烧速率只受燃料氧化反应的化学反应动力学控制,受缸内流场影响较小,同时均质预混的混合气组织也比较简单。HCCI的优点还包括它的燃料灵活性高,它能使用包括汽油、柴油、天然气、液化石油气(LPG)、甲醇、乙醇、二甲醚以及混合燃料等多种燃料。
HCCI这一燃烧方式具有重要的理论意义和广阔的应用前景。目前已在化学反应动力学机理、燃烧控制、负荷拓展等多个方面有了很大的进步。不过,业内多数研究机构认为该技术成熟至少应在2015年后,要想实用化在还技术上还存在很多弊端。这些弊端主要包括:均质混合气的制备;CO和HC排放的降低;低负荷下的燃烧不稳定和失火;高负荷下的燃烧粗暴;着火相位和燃烧速率的控制等。
1.2 低温扩散燃烧
对于柴油机来说,燃烧技术的关键是同时降低微粒和 NOx 排放,基本思想是加速燃油与空气混合,尽量燃烧“均匀”混合气,同时还需要降低燃烧温度,实现“低温”燃烧。柴油机低温燃烧,就是控制缸内燃烧温度低于NOx和碳烟的生成温度,从而有效降低NOx和碳烟排放。均质充量压缩着火(HCCI)燃烧属于低温燃烧,另一种低温燃烧技术是低温扩散燃烧。
与均质充量压缩着火(HCCI)燃烧不同,低温扩散燃烧的着火仍是由燃油喷射来控制。着火时,缸内存在燃空当量比大于1的区域,因此也就存在扩散火焰,燃烧速率受控于燃油空气混合速率,其较低的燃烧温度是通过采用相当大的冷却EGR率、低压缩比以及推迟喷射定时等措施来实现的。
1.3 富氧燃烧技术
发动机气缸内燃料的燃烧是靠空气中的氧气来助燃的, 因此改善发动机燃烧技术可以从进入发动机气缸助燃的空气入手。发动机富氧燃烧就是用比通常空气(含氧21%)含氧浓度高的富氧空气为发动机进气的燃烧。富氧燃烧可增加发动机的功率密度,提高柴油机的动力性和经济性,降低碳烟、CO和HC的排放,它是一项高效节能的燃烧技术。
早在 20世纪60年代末Karim等就已经开始了对柴油机富氧进气燃烧的研究[2]。我国于80年代中期开始富氧技术的研究。从20世纪90年代开始,通过研究人员的大量研究,富氧燃烧技术取得了一系列实质性进展。
由于富氧燃烧提高了柴油机的燃烧速率,优化了燃烧过程,提高了燃料能量释放率,所以使柴油机具有更好的动力性和经济性。富氧燃烧降低了碳烟、CO和HC的排放, 却增加了NO的排放。近年来研究人员提出了更为先进的燃烧技术――膜法富氧燃烧, 膜法富氧技术其基本原理主要是扩散和溶解,利用供应的气体分离膜两边的压力差以及各气体组分对于特定高分子膜的相对通过率不一样,而实现渗透和分离,获得某种高浓度气体[3]。
对于柴油发动机来说,膜法富氧不但可以提高发动机动力性能,最重要的是能够降低NOx和碳烟,达到降低排放的目的。膜法富氧技术被称为“资源的创造性技术”。 1.4 当量比燃烧
最近几年,为了适应更加苛刻的环保法规,柴油机产品上都使用了尾气后处理器,使柴油机的成本增加,也降低了可靠性。为降低后处理成本,Reitz等人[4]-[6]开展了柴油机当量比燃烧的研究,以便使用三元催化器。在一台单缸机上进行了试验。研究发现,在一定条件下,柴油机当量比燃烧可以实现极低的NOx和碳烟排放,二者都在0.2g/(kWh)以下。柴油机当量比燃烧研究的开展是最近几年才开始的,已经显示出很好的低NOX和PM排放性能。如果能够改善经济性,当量比燃烧在柴油机上的应用奖充满期望。
2 汽车新能源
随着汽车工业的不断发展,柴油、汽油等燃料的需求也越来越大,导致的最直接的后果就是石油日益枯竭,柴油、汽油等价格上涨。同时汽车尾气污染也日趋严重,在不可再生能源的日益枯竭和价格的不断上涨以及环保要求的双重压力下,寻找新能源将是今后汽车行业的主要任务。
2.1 燃气汽车
燃气汽车主要有液化石油气汽车和压缩天然气汽车。燃气汽车由于其排放性能好,运行成本低、技术成熟、安全可靠,被世界各国公认为当前最理想的替代品。天然气作为一种储量丰富干净可靠的清洁燃料,兼备汽油柴油的优点,具有抗爆性好、自燃温度高、排放特性好等特点,非常适合作为内燃机的代用燃料使用。与柴油相比,颗粒物和NOx排放非常少,而与汽油相比,HC、NOx和CO2排放较少。因此,加强对燃气汽车的研究,对缓解石油能源危机,改善环境具有重要意义,对于保障国民经济的持续发展也具有重大的战略意义。
2.2 电动汽车
电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。电动汽车最大的优点是只要有电力供应的地方都能够充电。但是蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵。目前电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有镍镉电池、钠硫电池、燃料电池、锂电池、飞轮电池等,这些新型电源的应用对环境影响相对传统汽车较小,其前景被广泛看好,但当前技术尚不成熟。
2.3 混合动力汽车
混合动力是指在原有的汽油发动机和柴油发动机基础上,同时配以电动机来改善低速动力输出和燃油消耗的车型。混合动力主要以发动机驱动行驶,利用电动马达所具有的再启动时产生强大动力的特征,在汽车起步、加速等发动机燃油消耗较大时,用电动马达辅助驱动的方式来降低发动机的油耗。混合动力汽车最大的优点就是“零”排放,而且采用混合动力后可按平均需用的功率来确定内燃机的最大功率。
2.4 甲醇HCCI燃烧
均质压燃的燃烧方式本身具有热效率高、NOx 排放低和几乎零PM排放的优点。甲醇来源广泛,着火界限宽,其气化速度快和易于形成混合气的特点,能更好地适应HCCI稀薄燃烧及分布式多点着火的工作方式。具有较高的抗爆性能,可以提高发动机的压缩比和热效率。将HCCI燃烧技术运用到甲醇车用发机上可满足节能减排的要求,但是目前还未能满足实际运用的要求,如对甲醇发动机HCCI燃烧过程的进行控制、拓展其负荷范围的方法等。
由此可见,汽车科技在21世纪的发展方向就是改善燃烧技术并且研发应用新能源。在大力改善燃烧技术的同时,积极降低替代燃料的生产成本、使用价格,使新能源发展为汽车产业的可持续发展带来光明的前景。
参考文献:
[1]Karim G examination of the cnmhustion processes in a compression-ignition engine by changing the partial pressure of oxygen in the intake charge[C].SAE Paper 680767.
[2]李胜琴,关强,张文会等.汽油发动机富氧燃烧分析[J].内燃机,2007(1):51-52.
[3]SangsukLee,i-ometriccombustioninaHSDIdieselenginetoallowuseofathree-wayexhaustcatalyst[C].SAE Paper 2006-01-1148.
[4]Lee,S.,GonzalezD.,M.A.,Reitz,sofengineoperatingparametersonnearstoichiometricdieselcombustioncharacteristics[C].SAE Paper 2007-01-0121.
[5]Chase,S.,Nevin,R.,Winsor,R.,Baumgard,K.,StoichiometricCompressionIgnition(SCI)Engine[C].SAE Paper2007-01-4224.
[6]黄喜鸣.浅谈汽油机稀燃层燃技术[J].装备制造技术,2006(4):174-175.
柴油发动机新技术论文篇二
现代柴油发动机节能减排新技术
摘要:文章主要对传统柴油发动机与汽油发动机的优缺点、现状及存在的问题进行了分析和阐述,从高压电控共轨技术、冷却式EGR技术等几方面介绍了现代柴油机为了更好地适应社会发展所采用的一系列节能减排的新技术,以提高柴油机的综合性能。
关键词:柴油机;节能减排;冷却式EGR技术;高压电控共轨技术
中图分类号:U464 文献标识码:A 文章编号:1009-2374(2012)20-0135-03
近几年来,随着发达国家柴油轿车在全部轿车中所占份额的不断增加,电控汽车柴油机开始异军突起,技术也有所突破,特别是出现了改变传统燃油喷射系统的组成和结构特征的高压共轨系统,并且为了符合国际的排放标准及节能标准出现了各种各样
的节能减排技术,使得柴油机的发展越来越好。
1 柴油发动机的优缺点
1.1 柴油机的优点
柴油机与汽油机相比,主要有三大优点:
(1)扭矩大。相同排量下,柴油机力气更大,扭矩更大。
(2)省油。首先柴油的能量密度含量比汽油高;其次柴油机的热效率高。一般柴油机的油耗要比汽油机的低30%~40%。
(3)环保。由于柴油机的富氧燃烧,所以柴油机的CO、HC和CO2排量相对于汽油机较低。
1.2 柴油机存在的问题
柴油机的性能虽然在很多方面比汽油机更有优势,但是也存在着很多关键性的问题需要解决。
(1)尾气排放问题。虽然较汽油机来说,柴油机的CO、HC和CO2排量较低,但是颗粒和NOX的排放比较难控制。
(2)油耗问题。虽然柴油机的油耗要比汽油机的低,但是为了实现社会发展的需要,进一步降低油耗也成为柴油发动机所要克服的问题之一。
(3)升功率问题。柴油发动机本身的质量和体积也影响了其各方面的性能,所以为了使得柴油机进一步得到社会的认可,如何提高柴油发动机的升功率也成为了柴油机发展过程中的问题。
(4)比质量问题。柴油机由于采用压燃的方式,所以其材料要求较高,且其压缩比较大,也使得
柴油机相对于汽油机在同等排量的情况下其质量较大。
2 现代柴油机新技术
2.1 高压电控共轨技术
高压电控共轨式燃油喷射系统的出现,基本上改变了传统柴油机燃油喷射系统的组成和结构特征。高压电控共轨系统的最大特征就是燃油压力的形成和燃油量的计量在时间上、在系统中的部位和功能方面都是分开的。燃油压力的形成和燃油量的输送基本上与喷油过程无关。根据电控单元的指令控制每个喷油器,使得每个喷油器可按所要求的精确的喷油正式从共轨中“调出”具有所要求的精确压力和精确循环的燃油。改善了燃烧过程,提高了燃烧效率,降低了燃烧噪声和排放。该项技术已普遍在柴油车上使用。
2.2 冷却式EGR技术
采用冷却式EGR系统,在EGR气体流动管上安装冷却装置,当EGR气体进入进气管前先降低其温度,故燃烧温度比一般的EGR系统明显降低,且因进气密度高,进入燃烧室的气体量多,使得燃烧更完全,故也可减少PM的排放。
2.3 均质燃烧技术(HCCI)
在均质燃烧方式下,柴油和空气在燃烧开始前已充分混合,形成均质预混合气。混合气被活塞压缩并发生自燃,并呈分布均匀、稀混合的低温、快速燃烧,从根本上消除了产生NOx的局部高温区和产生PM的过浓混合区,从而能大大降低NOx和PM的排放。
2.4 NOx排放控制技术
(1)AR(吸附还原催化剂)。在稀燃阶段将NOx吸附储存起来,而在短暂的富燃阶段,NOx释放并被排气中的HC还原。
(2)SCR催化转化器。它是一种剂量系统,系统将还原剂(尿素)导入排气中,混合后再经过催化,可减少NOx的排放。
(3)NSCR。它是在去氮催化器中,用碳氢化合物作还原剂,将废气中的NO3还原。
(4)采用碳素纤维加载低电压技术。碳素纤维具有催化活性,能促进废气中的NO与C或HC进行氧化还原反应,随着电压的升高,可使NOx排放明显降低。
2.5 颗粒排放控制技术
(1)颗粒捕捉器。颗粒(PM)是柴油机尾气主要成分之一,对人体的危害也非常大。颗粒捕捉器能够将尾气中的颗粒物过滤掉,可以达到90%以上的净化效果。
(2)氧化催化器。氧化催化器是利用催化器中的催化剂来降低废气中的HC、CO和颗粒中的可溶有机成分的活化性能,使这些成分能与废气中的O2在较低的温度下发生反应,从而降低柴油机的有害物质排放量。
2.6 多气门技术
多气门发动机是指每一个气缸的气门数目超过两个,即两个进气门和一个排气门的三气门式;两个进气门和两个排气门的四气门式;三个进气门和两个排气门的五气门式。气门布置在气缸燃烧室中心两侧倾斜的位置上,是为了尽量扩大气门头的直径,加大气流通过面积,改善换气性能,形成一个火花塞位于中心的紧凑型燃烧室,有利于混合气的迅速燃烧,提高柴油机的经济性。
2.7 增压中冷技术
增压就是增加进入柴油机汽缸内的空气密度,中冷则是将压缩后的空气的温度降低。最终是提高进入气缸内的空气量,能够在不改变发动机排量的基础上提高柴油机输出功率,降低其升功率。
2.8 轻质量设计技术
在柴油机设计上,由于轻质量技术的应用以及材料和制造水平的提高,使得柴油机的比质量也有所下降,由汽油机派生出来的柴油机总质量约为汽油机的110%。
3 柴油机技术发展趋势
从当今世界各主要汽车与发动机公司开发的新一代柴油机的技术变化看来,尽管柴油机各有特点,但大体上反映了以下发展趋势:
3.1 优化结构设计
优化结构设计,减少摩擦与附件功率损失,提高机械效率。柴油机的有效效率等于指示效率与机械效率的乘积,因此,柴油机的燃油消耗率也直接受到机械效率的影响,国外在致力于完善缸内工作过程的同时,也十分重视减少摩擦损失和提高机械效率的研究。此外,以德国MTU公司为代表的可变排量技术也是一种有效手段。
3.2 发展各种代用燃料
代用燃料大多是二次能源,常用的有植物油、天然气、醇类燃料、氢和燃料电池等。各种代用燃料一般都有降低环境污染的效果,并且都有较为可靠的来源。
3.3 降污的柴油添加剂
研究节能降污的柴油添加剂,改善燃料的燃烧性能,对已投入使用的车辆来说,是较佳的技术处理方法之一。
4 结语
先进柴油机技术的应用使柴油机的综合性能有了极大的提高,因此柴油机在市场上的占有量正逐步提高。特别是在欧洲,柴油轿车的销售量已占轿车总销量的1/3以上,并且这一数字仍在不断增长。在我国,先进技术的柴油机汽车将得到广泛的采用。
参考文献
[1] 何林华.车用柴油发动机的发展趋势[J].客车技术与研究, 2004,(3).
[2] 李棠, 李理光.柴油机HCCI燃烧的均质混合气制备
[J].汽车技术,2004,(5).
[3] 周玉明. 减少柴油机NOx排放的机外措施[J].柴油机,2001,(1).
[4] 邓元望,朱梅林,向东.柴油机微粒排放控制方法评述
[J].柴油机,2001,(5).
[5] 廖梓珺, 陈国需, 陈淑莲.柴油机排放控制技术的研究进展[J]. 拖拉机与农用运输车,2009,(5).
作者简介:王晓慧,女,浙江工贸职业技术学院助理讲师,硕士,研究方向:载运工具运用工程。
看了“柴油发动机新技术论文”的人还看:
1. 柴油机新技术论文
2. 柴油机共轨新技术论文
3. 电力机车新技术论文
4. 农业机械技术论文
5. 关于机械化的论文
《燃煤锅炉清洁燃烧技术的研究与探讨》这方面的论文?
下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧
一、前言
众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,存在着效率低、污染严重的问题。统计表明,我国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx来源于煤的燃烧。我国的大气污染主要是锅炉、窑炉燃煤产生烟气形成的煤烟型污染。目前我国能源仍然以煤炭为主,改变能源结构,使用油气电等清洁能源,与我国的国情又不太相适应,未来相当长一段时间内,煤炭在我国一次能源结构中的主体地位不会改变,这已成为不争的现实。因此大力发展和应用洁净煤燃烧技术与装置,是解决和控制大气污染的一条重要措施。
近年来,人们已在洁净煤燃烧技术方面进行了大量的研究与实践,但综合效果还都有待于提高。多年来在总结、借鉴、完善、发展国内外相关技术的基础上,我们对原煤气化和分相燃烧技术进行了大量研究,通过几年来的大量实验和工作实践,解决了十多项技术难题,掌握了一种锅炉清洁燃烧技术——煤气化分相燃烧技术, 并利用该技术研制出一种煤转化成煤气燃烧的一体化锅炉,我们称之为煤气化分相燃烧锅炉。其突出特点是无需炉外除尘系统,经过炉内全新的燃烧、气固分离及换热机理,实现“炉内消烟、除尘”,使其排烟无色——俗称无烟。烟尘、SO2、NOX排放浓度符合国家环保标准的要求,而且热效率高达80~85%。这种锅炉根据气固分相燃烧理论,把互补控制技术、气固分相燃烧技术集于一炉,将煤炭气化、燃烧集于一体,组成煤气化分相燃烧锅炉,从而实现了原煤的连续燃烧与洁净燃烧。
二、煤气化分相燃烧技术
烟尘的主要污染物是碳黑,它是不完全燃烧的产物。形成黑烟的原因主要是煤在燃烧过程中,形成易燃的轻碳氢化合物和难燃的重碳氢化合物及游离碳粒。这些难燃的重碳氢化合物、游离碳粒随烟气排出,便可见到浓浓的黑烟。
一般情况下,煤的燃烧属于多相混合燃烧,煤在燃烧过程中析出挥发物,而挥发物的燃烧对煤焦的燃烧起到制约作用,使固体碳的燃烧过程繁杂化、困难化。固体燃料氧化反应过程中的次级反应,即一氧化碳和二氧化碳的产生以及一氧化碳的氧化反应和二氧化碳的还原反应,都不利于固体碳和天然矿物煤的燃烧,而气固分相燃烧就可以有效地解决上述问题。
气固分相燃烧就是使固体燃料在同一个装置内分解成气相态的燃料和固相态的燃料,并使其按照各自的燃烧特点和与此相适应的燃烧方式,在同一个装置内有联系地、互相依托地、相互促进地燃烧,从而达到完全燃烧或接近完全燃烧的目的。
煤气化分相燃烧技术是根据气固分相燃烧理论,将煤炭气化、气固分相燃烧集于一体,以煤炭为原料,采用空气和水蒸气为气化剂,先通过低温热解的温和气化,把煤易产生黑烟的可燃性挥发份中的碳氢化合物先转化为煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。这样在同一个燃烧室内气态燃料与固态燃料有联系地、互相依托地、相互促进地按照各自的燃烧规律和特点分别燃烧,消除了黑烟,提高了燃烧效率,并且在整个燃烧过程中,有利于降低氮氧化物和二氧化硫的生成,进而达到洁净燃烧和提高锅炉热效率的双重功效。
煤气化分相燃烧技术在锅炉上的应用,使固体燃料的干燥、干馏、气化以及由此产生的气相态的煤气和固相态的煤焦在同一炉内同时燃烧。并使锅炉在结构上实现了两个一体化,即煤气发生炉和层燃锅炉一体化,层燃锅炉与除尘器一体化,因此无需另设煤气发生炉便实现了煤的气化燃烧;也无需炉外除尘器,就可实现炉内消烟除尘,锅炉排烟无色。其燃烧机理如图一所示,双点划线框内表示固相煤和煤焦的燃烧过程,单点划线框内表示气相煤气的燃烧过程,实线框内表示煤的干馏过程,虚线框内表示煤焦的气化过程。
原煤首先在气化室缺氧条件下燃烧和气化热解,煤料自上部加入,煤层从下部引燃,自下而上形成氧化层、还原层、干馏层和干燥层的分层结构。其中氧化层和还原层组成气化层,气化过程的主要反应在这里进行。以空气为主的气化剂从气化室底部进入,使底部煤层氧化燃烧,生成的吹风气中含有一定量的一氧化碳,此高温鼓风气流经干馏层,对煤料进行干燥、预热和干馏。煤料从气化室上部加入,随着煤料的下降和吸热,低温干馏过程缓慢进行,逐渐析出挥发份,形成干馏煤气。其成份主要是水份、轻油和煤中挥发物。
原煤经干馏后形成热煤焦进入到还原层,靠下层部分煤焦的氧化反应热进行气化反应。同时可注入适量的水蒸汽发生水煤气反应,这样以空气和水蒸汽的混合物为气化剂,在气化室内与灼热的碳作用生成气化煤气。其成份主要是一氧化碳和二氧化碳以及由固体燃料中的碳与水蒸碳与产物、产物与产物之间反应生成的氢气、甲烷,还有50%以上的氮气。这样干馏层生成的干馏煤气和进入干馏层的气化煤气混合,由煤气出口排出。气化室内各层的作用及主要化学反应见表一。
表一:气化室内各层的作用及主要化学反应
层区名 作用及工作过程 主要化学反应
灰层 分配气化剂,借灰渣显热预热气化剂
氧化层 碳与气化剂中氧进行氧化反应,放出热量,供还原层吸热反应所需 C+O2=CO2 放热
2C+O2=2CO 放热
还原层 CO2 还原成CO,水蒸汽与碳分解为氢气, CO2+C=2CO 放热
H2O+C=CO+H2 放热
CO+H2O=CO2+H2 吸热
干馏层 煤料与热煤气换热进行热分解,析出干馏煤气:水份、轻油和煤中挥发物。
干燥层 使煤料进行干燥
在锅炉的气化室中,煤料自上而下加入,在气化过程中逐步下移,气化剂则由下部进入,通过炉栅自下而上,生成的煤气由燃料层上方引出。这一过程属逆流过程,它能充分利用煤气的显热预热气化剂,从而提高了锅炉的热效率,并且由于干馏煤气不经过高温区裂解,使气化煤气的热值有所提高。
原煤经温和气化低温热解产生的煤气,在经过上部干馏层后,通过气化室的煤气出口进入燃烧室,与充足的二次风充分混合,在燃烧室的高温条件下自行点燃,并与进入燃烧室炉排上煤焦向上的火焰相交,这样在燃烧室内煤气与煤焦分别按照气相和固相的燃烧特点和燃烧方式分别燃烧,又相互联系、相互促进,使一氧化碳和烟黑燃烬,达到或接近完全燃烧。
三、煤气化分相燃烧锅炉的结构特点及应用
锅炉在发展的过程中一直重视提高锅炉热效率和烟尘排放达标两大问题。传统的锅炉解决这两大问题的基本上是靠强化燃烧和传热提高锅炉热效率和设置炉外除尘器。强化燃烧往往会导致锅炉烟尘初始排放浓度的加大,增大除尘器的负担,在发达国家可使用除尘效率在99%以上的电除尘器或布袋除尘器,使烟尘排放浓度控制在50mg/Nm3以下,而在我国由于经济条件的原因,只能使用价格相对低廉的机械式或湿式除尘器,除尘效率一般低于95%,使烟尘排放浓度大于100-200 mg/Nm3,达不到国家的环保要求。这种依靠炉外除尘器解决除尘的办法,不仅增加锅炉房的占地面积和基建投资,而且增大引风机电耗,还造成二次污染。由于煤气化分相燃烧锅炉彻底改变了传统锅炉的燃烧原理,利用气固分相燃烧理论,使煤在燃烧过程中易产生黑烟的可燃性挥发份中的碳氢化合物先转化为可燃煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。由于燃烧室温度高达1000℃以上,烟雾得以充分分解,解决了煤直接燃烧产生黑烟的难题。这种锅炉不仅使原煤尽可能地完全燃烧和高效利用,有较高的热效率,而且还尽可能地减少烟尘和有害气体SO2、NOX等的排放,达到消烟除尘的作用,使锅炉各项环保及节能指标大大优于国家标准。
煤气化分相燃烧技术在锅炉上的应用,打破了传统锅炉加除尘器的模式,创建了无需炉外除尘器的一体化模式。而这种一体化并不是机械式地将除尘器加入锅炉。煤气化分相燃烧锅炉与普通煤气锅炉和层燃锅炉相比,具有自己独特的结构,它将后两者有机结合,主要由前部的煤气化室,中部的燃烧室和尾部的对流受热面三大部分组成。(见图二:锅炉结构与燃烧示意图)
气化室是锅炉的技术核心部分,它看上去象是一个开放式的煤气发生炉,其主要功能,一是将煤中的可燃挥发份和煤的气化反应生成气,以煤气的形式排入到燃烧室进行燃烧;二是将释放出挥发份的半焦煤输送到燃烧室继续进行燃烧;三是控制气化室内的反应温度和煤焦层厚度。实现上述功能的关键:一是要保证一定的原煤层;二是要合理配置送风和气化剂,提高煤炭气化率和气化室的气化强度;三是要在煤气化室和燃烧室的连接部位,合理配置煤气出口和煤焦出口。气化室产要由炉体、进煤装置、炉栅、气化剂进口、煤气出口和煤焦出口等部分组成。
在气化室内以煤炭为原料,采用空气和水蒸汽为气化剂,在常压下进行煤的温和气化反应,将煤在低温热分解产生的挥发性物质从煤中赶出。当气化室内温度达到设定条件时,将气化室内脱挥发份的高温煤焦输送到燃烧室的炉排上进行强化燃烧。
燃烧室的主要功能:一是使煤气和煤焦燃烧完全,提高燃烧效率;二是降低烟尘初始排放量和烟气黑度。气化室内产生的煤气经煤气出口,喷入到燃烧室,在可控二次风的扰动下旋向下方,与由气化室进入到燃烧室的煤焦向上的火焰相交而混合燃烧。煤气与固定碳(煤焦)燃烧相结合,强化了燃烧,达到了充分燃烬,洁净燃烧的目的,提高了燃烧效率。并且因为在炉排上的燃烧是半焦化的煤焦,因此产生的飞灰量小,烟尘浓度、烟气黑度都比较低。同时,在燃烧室上方设置了防爆门,确保锅炉的安全运行。
对流受热面的主要功能就是完成与烟气的热量交换,达到锅炉额定出力,提高锅炉换热效率。其结构形式可有多种,与普通锅炉没有太大的区别,因此对大多数锅炉来说,都可以改造成煤气化分相燃烧锅炉。并且锅炉无需除尘器,大大节省锅炉房总投资和占地面积。
设计煤气化分相燃烧锅炉时,应注意的几点:
1、合理布置煤气出口和煤焦出口的位置和大小;
2、煤焦的温度控制;
3、气化剂进口和进煤口;
4、合理设置二次风和防爆门;
5、气化室与燃烧室的水循环要合理。
由上述可知,煤气化分相燃烧锅炉的结构并不复杂,只需在传统锅炉的基础上,在其前部加一个气化室,在原炉膛上设置二次风和防爆门,再结合一些控制技术。利用该原理可以设计出多种规格型号的锅炉,类型主要为0.2t/h~10t/h各参数的锅炉。现仅在东北地区已有几十台此类型的锅炉在运行,广泛用于洗浴、采暖、医药卫生等领域,并已经利用该技术,改造了很多工业锅炉,效果都非常好。
下面以一台DZL2t/h锅炉为例,改造前后对比见表二。
表二:DZL2t/h锅炉改造前后对比
改造前 改造后 比较
热效率 73% 78% 提高5%
耗煤量(AII) 380kg/h 356kg/h 节煤6.3%
适应煤种 AII AIII 褐煤 石煤AI AII AIII 无烟煤 煤种适应性广
锅炉外形体积 5.4×2×3.2m 5.9×2×3.2m 长度约增加一米
环保性能 冒黑烟,环保不达标 排烟无色,满足环保要求
该新型锅炉综合地应用当代高新技术和高效率传热技术,将煤气发生炉与层燃锅炉有机结合为一体,做到清洁燃烧,炉内自行消烟除尘,锅炉运行期间,在无需炉外除尘器的情况下,排烟无色,烟尘浓度≤100mg/Nm3,比传统锅炉减少30-50%,SO2浓度≤1200mg/Nm3,NOx<400mg/ Nm3,符合国家环保标准GB13271-2001中一类地区的要求,同时,热效率在82%以上。而成本仅比传统锅炉增加不到一万元,但却省了一台除尘器。每小时加煤次数少,仅2~3次,并可实现机械上煤和除渣,因而大大减轻了司炉工的劳动强度。
四、煤气化分相燃烧锅炉的特点
传统的煤炭燃烧方式在煤的燃烧过程中会产生大量的污染物,造成严重的环境污染。主要原因是:
(1)煤炭不易与氧气充分接触而形成不完全燃烧,燃烧效率低,相对增加了污染排放;
(2)燃烧过程不易控制,例如挥发份大量析出时往往供氧不足,造成烟尘析出与冒黑烟;
(3)固体燃料燃烧时温度难以均匀,形成局部高温区,促使大量NOx形成;
(4)原煤中的硫大多在燃烧过程中氧化成SO2;
(5)未经处理的固态煤炭直接燃烧时,大量粉尘将随烟气一同排出,造成大量粉尘污染。
煤气化分相燃烧锅炉将煤炭气化、气固分相燃烧集于一体,有效地解决环境污染问题,与传统的燃煤锅炉相比,它有以下优点:
1、烟尘浓度、烟气黑度低,环保性能好。
在气化层生成的气化煤气和在干馏层生成的干馏煤气最终混合在一起,在燃烧室内与二次风充分混合,因是气态燃料,供氧充分,容易达到完全燃烧,使一氧化碳和烟黑燃烬。而从气化室进入到燃烧室的炽热煤焦,因大部分挥发份已被析出,避免了挥发物对固定碳燃烧的不良影响,剩余的挥发份在煤焦内部进一步得到氧化,生成的一氧化碳和烟黑等可燃物在通过煤焦层表面时被燃烬。另外煤焦在燃烧时产生的飞灰量小,同时在锅炉内采用除尘技术,因此从根本上消除了“炭黑”,高效率地清除了烟尘中的飞灰。
2、节约能源、热效率高。
煤料在气化室充分气化热解之后再燃烧,不仅避免了挥发物、一氧化碳、二氧化碳等对煤焦燃烧的不良影响,而且从气化室进入燃烧室的热煤气更容易燃烧,并对煤焦的燃烧有一定的促进作用。进入燃烧室的炽热煤焦已脱去大部分挥发份,不仅有较高的温度,而且具有内部孔隙,能增强内部和外部扩散氧化反应,起到强化煤焦燃烧的作用,从而在降低过量空气系数下,使一氧化碳和炭黑燃烬,燃烧更加充分,因而降低了化学和机械不完全燃烧热损失,提高了煤的燃烧热效率,与直接烧煤相比可节煤5-10%。
3、氮氧化物的排放低
在气化室内煤层从下部引燃,并在下部燃烧,总体上气化室内温度比较低,属低温燃烧。而且在气化室内过量空气系数很小,大约在0.7-1.0之间,属低氧燃烧。这为降低氮氧化物的排放提供了有利条件。煤中有机氮化学剂量小,并处在还原气氛中,只转变成不参与燃烧的无毒氮分子。煤中含有的氮氧化物,一部分在煤层半焦催化作用下反应生成氮气、水蒸汽和一氧化碳,还有一部分在穿过上部还原层时被还原成氮气。而气化室内脱去绝大部分挥发份的高温煤焦在进入燃烧室后,进行充足供氧强化燃烧,其中剩余的少量挥发份在半焦内部进一步热解氧化,氮氧化物在煤焦内部被进一步还原,生成的烟黑可燃物在经过焦层表面时被燃烬,从而控制和减少了氮氧化物的生成与排放。
4、有一定的脱硫作用
煤中的硫主要以无机硫(FeS2和硫酸盐)和有机硫的形式存在,而硫酸盐几乎全部存留在灰渣中,不会造成燃煤污染。在煤气化分相燃烧锅炉中,煤中的FeS2和有机硫在气化室内发生热分解反应,以及与煤气中的氢气发生还原反应,使煤中的硫以硫化氢气体的形式脱除释放出来。而且在气化室下部,温度一般在800℃左右,恰好是脱硫剂发挥作用的最佳反应温度。如燃用含硫量较高的煤,只需在碎煤粒中添加适量的石灰石或白云石,即可得到较好的脱硫效果,从而大大降低烟气中二氧化硫的含量。
5、操作和控制简单易行
煤气的发生和燃烧在同一设备的两个装置中进行,不用设置单独的煤气点火装置,煤气在燃烧室内由高温明火自行点燃,易于操作和控制,简化了运行管理,操作方便,减轻司炉工劳动强度,改善锅炉房卫生条件,实现文明生产。
6、燃烧稳定,煤种适应性强
煤在锅炉气化室的下部引燃,因而燃烧稳定。可燃劣质煤矿和燃点高的煤,其煤种适应性较强,在难熔区或中等结渣范围以内的煤种均适合。其中褐煤、长焰煤、不粘结或弱粘结烟煤、小球形型煤是比较理想的燃料。
五、结束语
实践证明,新的燃烧理论及多种专利组成的集成技术,保证了煤气化分相燃烧锅炉高效环保的稳定性及先进性,克服了旧技术无法解决的浪费及污染的难题,获得了明显的经济效益和环境效益,受到用户青睐。中国的煤炭资源十分丰富,随着能源政策和环境的要求越来越高,煤气化分相燃烧锅炉在我国市场前景十分广阔。
车用发动机燃烧技术发展趋势及未来展望
目前,内燃机对于实现低碳排放目标仍起着重要作用。混合动力汽车及电动汽车已取得了一定技术进步,而内燃机热效率的持续提升又有利于电驱装置充分发挥技术功效。采用大流量废气再循环(EGR),提高压缩比并实现稀薄燃烧是内燃机用于提高效率的核心技术。针对燃烧过程的优化及新型燃烧技术的开发对车用发动机的技术发展起着重要作用。概述目前车用发动机的技术发展趋势,描述基于汽车电驱动化进程而开发的发动机技术,着重论述了影响未来发动机燃烧技术的关键问题,同时介绍了发动机的全新燃烧理念与燃烧方式等研究成果及发展前景。
0 前言
为解决汽车工业快速发展过程中的各类问题,研究人员通过采用先进技术有效改善了内燃机排气净化及运作过程。最近,随着日本国内政策的不断引导与支持,日本政府在逐步推广纯电动汽车(EV),并将其投入实际应用。同时,为满足日本国内的低碳需求,研究人员仍须进一步提高发动机热效率。
本文首先阐述了日本社会与经济的发展趋势及汽车普及情况,概述了车用发动机技术的进展,随后对可用于汽车电驱动系统的发动机进行了展望,并对影响未来发动机燃烧过程的关键技术进行了研究。
1 社会需求与发动机技术的新进展
如图1所示,随着二战后社会经济的逐步复苏,日本国内的汽车产业得以飞速发展,由此引发了多种社会问题,特别是由于汽车排放而导致的环境气候的恶化现象,以及对人体健康带来的危害。研究人员通过在日本各地对汽车废气排放进行调查研究,对排放标准提出了进一步要求。为满足社会需求,日本政府制定了全新的排放法规,并逐步收紧排放法规限值。近年来,为抑制地球温室效应,研究人员须进一步降低汽车CO2排放,同时实现发动机的高效率化,并进一步改善汽车燃油经济性。
如图2所示,研究人员通过测量由汽车所排放的碳氢化合物(HC)、氮氧化物(NOx)及排放颗粒物(PM),计算出了上述排放物总量的变化过程及各车型产生排放物所占的比例。在由柴油车产生的排放物中,NOx及PM 约占85%。在由汽油车产生的排放物中,HC约占60%。随着法规的逐步强化,源于汽车的污染物排放量开始逐步降低。就目前而言,除了光化学氧化剂及PM2.5之外,其他排放物基本已可满足相应的环保标准要求。
为满足上述排放法规要求,研究人员开始以提高发动机性能并改善燃油经济性为目标而进一步开展研发过程。包括发动机零部件技术在内的许多重大突破主要得益于先进的数值计算方法与分析技术。
研究人员在汽油机的如下技术领域中均取得了一系列进展:(1)针对燃油供给系统中的精确空燃比控制、减速时的停缸技术;(2)针对火花塞的技术改良及高能点火技术;(3)针对气门驱动系统中凸轮驱动方式的改良及基于相位与可变升程的控制技术;(4)针对爆燃过程进行优化并降低泵气损失;(5)采用包括废气再循环(EGR)、增压系统在内的进、排气系统改良技术;(6)为降低机械损失而采用了润滑、冷却等技术。
此外,在柴油机技术领域,4气门系统、缸内直接喷射技术、EGR装置、中间冷却系统、可变截面涡轮增压系统及共轨式喷油系统等领域均取得了一系列进展。研究人员通过采用氧化催化剂及柴油机排气颗粒过滤器(DPF),并降低NOx催化剂的排气后处理系统,逐步实现了降低排放与提高整机热效率的技术目标。
2 汽车电驱动化时代的发动机技术
从2017年起,汽车电驱动系统得以飞速发展,其发展过程主要与以下因素存在密切联系:(1)主要国家地区(如西欧、中国、美国加利福尼亚州等地)的政府及相关部门出台支持政策,并提供经济补助;(2)各大汽车生产商(OEM)的经营方针。
在欧洲,以大众柴油机排放门为契机,研究人员重新制定了针对传统内燃机汽车的排放法规,并提出了应对环境问题的解决措施,同时将逐步引进EV与插电式混合动力汽车(PHEV)。在中国地区,政府部门除了采用相关环保政策之外,同时也在大力推进新能源汽车(EV、燃料电池汽车(FCV)、PHEV)的制造与销售进程。如图3所示,在最近十几年中,中国的乘用车保有量得以飞速增长,OEM 也在通过各种方式对中国汽车市场的发展趋势进行深入了解,并探索相应的战略方针。
与上述发展趋势相呼应,,汽车工业的产业结构也发生了一系列变化,不同行业的从业人员也逐步加入到汽车领域中来。随着世界范围内新能源汽车的逐渐普及,各大车企有针对性地扩大经营规模,以实现标准化发展。同时,各大车企也加强了与电气设备OEM的合作,并确保电池供应体系的构建与完善,从而逐步搭建起基于该领域的技术平台。
为了适应当前汽车电驱动时代的需求,发动机技术也逐渐呈现出多样化趋势,各种混合动力系统也得到了充分发展。混合动力汽车(HEV)仍需要随车携带传统化石燃料,因此不断提高发动机燃油经济性依然是重中之重。随着对阿特金森循环等技术的有效应用,HEV预计可将整车燃油耗降低约20%~50%。
目前,研究人员已将燃烧控制技术、降低冷却损失及抑制爆燃的相关技术列为亟待解决的重要课题。就PHEV而言,其技术优势与HEV相似。
PHEV 可有效延伸整车续航里程,并充分降低了燃油耗。但在电池容量增大的同时,由于整车质量增加,会相应引发燃油经济性恶化及成本上升等问题。对此,研究人员建议可将纯电驱动作为基本行驶模式,而用最大功率约为20 kW 的小型发动机作为增程器。同时,研究人员也在力求改善发动机摩擦现象,同时使动力装置实现轻量化,并视情况采用阿特金森循环。
3 发动机燃烧技术的发展
3.1 新型燃烧方式
为实现车用发动机的高效率化,研究人员须利用先进的零部件技术。在充分考虑了冷却损失的前提下,研究人员对热释放系数进行了研究。在燃烧持续期内,由于在热释放开始阶段下指示热效率逐渐提高,因此研究人员有必要对燃烧持续期进行着火定时控制。如果最高压力被限制在较低的水平,在燃烧持续期较短的情况下,研究人员须相应推迟热释放开始时刻。在燃用稀薄混合气的条件下,为缩短发动机燃烧持续期,部分研究人员提出了有效利用预混合燃烧的方案。
目前,研究人员对均质充量压缩着火(HCCI)技术的关注度与日俱增。HCCI技术在汽油机低负荷工况下可充分发挥作用,但在变工况条件下,适当地控制混合气的自着火过程有着较高难度。而通过火花点火方式能可靠地使部分混合气进行燃烧。目前使稀薄混合气实现压缩着火并对快速燃烧进行控制的方法已进行了实用化。除了利用可变气门驱动系统以实现压缩比的可变过程,并利用机械增压以实现进气量控制之外,研究人员还通过采用高压汽油的直接喷射方式形成合适的混合气,同时利用大流量EGR降低燃烧温度,由此减少NOx排放量。与此同时,研究人员利用各气缸中设置的燃烧压力传感器,并根据采集的负荷、转速、机外温度、气压等参数,可实现对燃烧过程的精确控制。
研究人员对预混合压缩着火(PCCI)技术也开展过许多研究。在该燃烧方式中,虽力求同时降低NOx与炭烟排放,但如果增加喷射量,会使混合气浓度提高,并使燃烧过程过于粗暴,所以该燃烧技术通常仅在部分负荷工况下得以应用。目前也有相关研究表明,除了采用大流量EGR之外,可通过米勒循环降低有效压缩比,即使在高负荷工况下也能实现平稳的燃烧过程,并大幅降低NOx与PM。同时,研究人员通过调节膨胀比,能使热效率保持不变。未来,研究人员可通过对喷射、燃烧控制等相关技术的有效应用,扩大发动机高效运转区域。
近年来,研究人员对反应可控压缩着火(RCCI)技术进行了研究。在该燃烧过程中,以预混合气的快速燃烧作为增加等容度的主要方式,并能实现较高的指示热效率。在多种负荷条件下进行的稳定着火控制,抑制剧烈的热释放过程并确保燃烧效率是目前亟待解决的重要课题。为了进一步提高热效率,研究人员认为上文所述的PCCI燃烧技术有着较好的应用前景,同时为扩大发动机的高效运转区,须相应采用进排气控制、燃料喷射控制等先进技术。
3.2 燃料-空气混合与燃烧
燃料-空气混合气的形成对发动机燃烧过程有着重要影响。图4表示采用计算流体动力学(CFD)得出的多种燃烧方式条件下的热释放率与50%燃烧过程中当量比φ-温度T的分布示意图。燃烧反应过程主要受以下因素影响,主要包括燃料供给方式、定时的燃料-空气混合气的形成过程及燃烧气体的φ-T 分布。
在普通的柴油燃烧过程中,即便在混合气着火后,缸内仍在继续进行燃油喷射。在经分层后的混合气稀薄化处理过程中,喷雾及燃烧过程还在继续进行。虽然着火及燃烧过程的可操纵性较好,但同时降低NOx与炭烟仍是亟待解决的课题。就PCCI燃烧方式而言,通常在压缩行程中会采用多种喷射策略,使混合气实现分层,并且NOx的排放量较高,而炭烟排放量则相对较低。在该工况条件下,研究人员通过延迟喷射即可延长燃烧持续期,进而降低压力升高率。在HCCI燃烧过程中,通常会在进气行程中供应燃油,使稀薄混合气实现压缩点火。虽然NOx与炭烟的排放较少,但受化学反应速度的影响,对着火及燃烧过程进行控制有着较高难度。在压力上升率较高与负荷较低的条件下,燃烧效率会相应降低。在RCCI燃烧过程中,由于研究人员对2种燃料比及燃料喷射定时进行了调节,因此可有效抑制NOx与炭烟排放,并可实现稳定的着火及燃烧控制过程。目前,在低负荷工况下改善燃烧效率并在高负荷工况下降低燃烧噪声等课题仍亟待解决。
随着近年来计算机科学的快速发展,针对发动机燃烧过程的CFD技术得到了长足发展,预测精度也大幅提高,并成为了当前研究开发过程中不可缺少的工具。目前,研究人员仍需要进一步提高预测精度,并对燃料-空气的微观混合形态进行观测。
如图5所示,在由研究人员所提出的随机过程理论模型中,最初分离着的燃料(燃料质量百分数Y=1)与空气(Y=0)实现湍流混合,并按照随机过程理论而逐步形成均匀混合过程。该混合过程应用了相关研究人员所提出的二体碰撞及再分散模型,该模型利用由湍流特性所决定的频度ω,在1个较大流体块经历了碰撞及融合过程后,将其分解为2个相等的较小流体块。
研究人员通过对ω的时间积分定义无量纲时刻η(该数值与1个流体块的平均碰撞次数一致),并可用于表示混合度。换言之,到η=2时,是按分散浓度进行分布的状态,但在逐渐达到η=6的状态后,浓度会接近于正态分布。η=12时,浓度会更接近于平均浓度Yo,表明了其可形成均匀的混合气。在图5中,不同颜色图案表示燃料在空间均匀破碎时的浓度分布状况。因此,作为湍流混合过程的评价指标起着重要作用。此外,ω 与湍流强度u'与积分比例L 存在数值关系,可通过ω=0.4u'/L 的公式来进行计算。
研究人员利用该模型对柴油无因次燃烧过程进行了预测研究。计算中,得出了随时间变化的热释放量及压力过程。研究人员可相应计算出燃油喷射量、喷油定时、涡流比、EGR条件下的缸内压力及热释放率,从而合理地预测NO生成量的变化。
通过该模型,研究人员可得出燃料-空气的不均匀度与浓度、燃烧后的温度与NO生成速度的概率分布。研究人员通过应用基于随机分析系统(RANS)的CFD仿真,能有效记录各个计算单元内的微观混合情况。研究人员通过引入反应动力学计算方法,也能将其应用于柴油机的PCCI燃烧过程中。此外,除了能通过无因次计算以预测喷雾着火过程之外,研究人员可根据实测的压力、放热率而得出基于混合时间的变化函数,由此可对多次喷射时的排气进行预测。通常,研究人员认为在强湍流场中对于点火不确定性与循环变动的预测结果,以及对由壁面碰撞而产生的流动过程的观测过程也起着重要作用。
3.3 燃烧室壁面附近现象的说明
通过采用最新的燃烧系统设计方案,研究人员能对各种各样的发动机技术规格及运转条件实施最佳的燃烧控制,但如要进一步改善燃烧过程并提高热效率,仍有许多后续工作需要开展。
研究人员就燃烧室壁面非稳定热传导问题,运用了如图6所示的等容燃烧装置及高响应性热流束传感器(Vatell,HFM-7),通过气体射流火焰及均匀混合气的传播火焰对壁面热流束变化进行了计测。图7是在采用预燃方式的条件下(温度为950 K,压力为2 MPa,氧气浓度为21%),从喷孔直径为0.8 mm 的喷嘴中以喷射压力为8 MPa,喷射持续期为9 ms的参数喷射了氢燃料并使其自行着火燃烧后的结果。图7示出了缸内燃烧压力p,放热率dq/dt,平均温度Tave及在燃烧室壁面的2点P1、P2处测算出的热流束qhf的时间与喷射后的时刻t 的关系。图7(a)中的号码对应于图7(b)中逆光摄影图像的时刻,喷雾在与容器壁面相碰撞后(图像①),在喷射后的3.25 ms内在P2附近着火,dq/dt数值随之急剧增大(图像③)。火焰在到达P2(图像②),并进行快速传播(图像④),随即进行扩散燃烧,在图像⑤时到达P1工况点。在喷射过程结束后(图像⑦),dq/dt数值随之减小,同时火焰亮度有所降低(图像⑧、图像⑨)。qhf对应于以上燃烧区域的变化过程,P2在图像④,P1在图像⑥的时刻急剧增加。P2在扩散燃烧持续期(图像④~图像⑦),持续保持相对恒定的值,随着火焰亮度的降低(图像⑧、图像⑨),qhf也得以缓慢减小。P1在图像⑦出现极大值之后,qhf数值同样有所减少。此外,P2相比于P1之所以qhf数值较高,是由于在P2附近,着火燃烧的气体由于存在绝热压缩现象而具有较高的温度。根据上述情况进行分析,对燃烧室壁面附近的着火过程得出了2项结论:(1)在该燃烧过程中存在较大的热损失;(2)在可燃混合气自行着火燃烧的过程中,使qhf的数值相对较高。
而且,为了对燃烧过程中热传导的状况进行直接观测,研究人员采用了具有5根微细热电偶的传感器,并测算了壁面附近的温度分布。该5根微细热电偶分别为A、B、C、D、E,其中A、B、C线材直径为25 μm,D、E线材直径为75 μm,伸长距离为δ。图8(a)表示了从点火后到燃烧结束时的燃烧室内压力p,放热率dq/dt,各热电偶的温度T,局部热流束qhf的持续时间与点火后的时刻t 的关系。图8(b)除了表示qhf与T的关系之外,根据由压力变化而计算出的未燃气体温度Tu及在温度传感器附近进行放大拍摄的逆光摄影图像(图8(c))截取2个时刻的图像作为实例(分别为23.90 ms与32.45 ms),并在火焰锋面接近壁面约5 mm并持续14 ms后,示出了火焰锋面与壁面的距离x。图8中相应示出了各热电偶的δ 值,在缸内温度急剧升高的时期,同时在相同的线材直径条件及δ 值较大的情况下,温度增长速度较快。在δ 相同的条件下,线材直径越细小,时间常数会相应提前。T及qhf会随着未燃气体的压缩加热而缓慢地增加,由于火焰锋面的接近,dq/dt 数值得以明显增大。相比于qhf在火焰锋面到达壁面后成为极大值,T 极大值的出现存在滞后现象。尽管研究人员充分考虑到了热电偶信号的时间常数,并对此进行补偿,T的极大值也比火焰温度更低。由于T 的极大值会随着δ 的减少而降低,研究人员认为T的数值大小能在某种程度上影响到边界层内的温度分布。根据在各种条件下进行同样测算的结果,可得出如下趋势。在燃烧温度较高的条件下,由于压缩加热导致温度与热流束的形成速度快速增加,同时由于温度梯度较大,qhf也会相应变大。
近年来,研究人员正在开展针对壁面附近现象的测算研究与模型试验。以发动机燃烧室壁面的热流束为例,研究人员历来通过热电偶对其进行测试,并按照非稳定传热分析而进行计算。在柴油机领域,由于燃烧室壁面碰撞而使热流束增加的现象会限制热效率的提高,因此研究人员目前正运用多个传感器以对热流束进行测算并对燃烧现象进行研究。同时,研究人员利用激光电子式传感器(LES)进行燃烧室壁面碰撞喷雾动态与局部热流束分布的数值分析,并研究了火焰接近壁面附近时的放大摄影图像,根据对温度边界层厚度的推定结果,从而对传热系数与热流束进行验算。
近年来,利用壁温回转式隔热膜以改善热效率的效果引起了研究人员的关注。研究人员采用基于激光诱导荧光法(LIF)的壁面温度测算方法,并充分利用粒子图像测速法(μPIV),对壁面附近的气体进行流动测算。相关燃烧机理说明上述方法正有效地应用于发动机的燃烧室设计过程中。此外,基于薄膜测温电阻器式的微电子机械(MEM)技术的相邻多点热流束测试传感器已得以成功开发,可期待其将在今后的发动机测试领域中得以应用。
4 结论
上文概述了可有效满足社会需求的车用发动机技术的进展,并对汽车电驱动时代的相关发展条件进行了展望。
随着环境及物质需求的变化,社会各界对汽车性能的要求也在逐步提升。目前,按照节能降耗的技术观念,研究人员仍须持续提高发动机热效率。燃料-空气混合气的形成过程、燃烧室壁面附近燃烧现象及其控制技术将是未来数年间的重点研究领域。
本文发表于《汽车与新动力》杂志2020年第5期
作者:[日]塩路昌宏
整理:彭惠民
编辑:伍赛特
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
找一篇关于新能源的论文1000字左右
对建筑节能的几点看法 论文
随着科学技术的日新月异,能源短缺已不容忽视,节约能源已受到世界性的普遍关注,在我国亦不例外。目前,全世界有近30%的能源消耗在建筑物上,长此以往,将严重影响世界经济的可持续发展。因此,能源问题将成为本世纪的热门话题,我们必须从可持续发展的战略出发,使建筑尽可能少地消耗不可再生资源,降低对外界环境的污染,并为使用者提供健康、舒适、与自然和谐的工作及生活空间。
中国建筑能耗基本情况
我国的建筑能耗量约占全国总用能量的1/4,居耗能首位。近年来我国建筑业得到了快速的发展,需要大量的建造和运行使用能源,尤其是建筑的采暖和空调耗能。据统计,1994年全国仅住宅建筑能耗在基本上不供热水的情况下为1.54×108t标准煤,占当年全社会能源消耗总量12.27×109t标准煤的12.6%。目前每年城镇建筑仅采暖一项需要耗能1.3×108t标准煤,占全国能源消费总量的11.5%左右,占采暖区全社会能源消费的20%以上,在一些严寒地区,城镇建筑能耗高达当地社会能源消费的50%左右[1]。与此同时,由于建筑供暖燃用大量煤炭等矿物能源,使周围的自然与生态环境不断恶化。在能源的利用过程中,化石类燃料燃烧时排放到大气的污染物中,99%的氮氧化物、99%的CO、91%的SO2、78%的CO2、60%的粉尘和43%的碳化氢是化石类燃料燃烧时产生的,其中煤燃烧产生的占大多数。燃煤产生的大气污染物中SO2占87%、氮氧化物占67%,CO2占71%,烟尘占60%[2]。由于我国是主要以煤而不是以油、气等优质能源作为主要能源消耗的国家,每年由于燃烧矿物燃料向地球大气排放的二氧化碳仅次于美国居世界第二,预计到2020年,中国将取代美国成为世界二氧化碳排放第一大国。因此,中国对于全球气候变暖承担着重大的责任,而作为耗能大户的建筑,其节能也就成为关系国计民生的重大问题。
我国节能工作与发达国家相比起步较晚,能源浪费又十分严重。如我国的建筑采暖耗热量:外墙大体上为气候条件接近的发达国家的4~5倍,屋顶为2.5~5.5倍,外窗为1.5~2.2倍;门窗透气性为3~6倍;总耗能是3~4倍[4]。如果听任高耗能建筑大行其道,建筑能耗增长的速度将远远超过我国能源生产可能增长的速度,国家的能源生产势必难以长期支撑这种浪费型需求,从而不得不组织大规模的旧房节能改造,将耗费更多的人力、物力。另外,每年新建和改建的几千万栋建筑要消耗掉几十亿吨林木、砖石和矿物材料,造成森林的过度砍伐,材料资源的大量开采,带来土地的破坏,植被的退化,物种的减少和自然环境的恶化。
几种节能途径
1.墙体节能
墙体是建筑外围护结构的主体,其所用材料的保温性能直接影响建筑的耗热量。我国以实心粘土砖为墙体材料,保温性能不能满足设计标准。以外墙为例,JGJ26-1995标准规定,在建筑物形体系数(建筑物与室外大气接触的外表面积与其所包围的体积的比值)小于0.3时,北京地区传热系数不超过1.16W/(m2·K),而目前常用的内抹灰砖墙,传热系数都大于上述节能标准数值。因而在节能的前提下,应进一步推广空心砖墙及其复合墙体技术。
2.门窗节能
外门窗是住宅能耗散失的最薄弱部位,其能耗占住宅总能耗的比例较大,其中传热损失为1/3,冷风渗透为1/3,所以在保证日照、采光、通风、观景要求的条件下,尽量减小住宅外门窗洞口的面积,提高外门窗的气密性,减少冷风渗透,提高外门窗本身的保温性能,减少外门窗本身的传热量。其节能措施有:
(1)控制住宅窗墙比。住宅窗墙比是指住宅窗户洞口面积与住宅立面单元面积的比值,JGJ26-1995《民用建筑节能设计标准(采暖居住部分)》对不同朝向的住宅窗墙比做了严格的规定,指出“北向、东向和西向、南向的窗墙比分别不应超过20%、30%、35%”。
(2)提高住宅外窗的气密性,减少冷空气渗透。如设置泡沫塑料密封条,使用新型的、密封性能良好的门窗材料。而门窗框与墙间的缝隙可用弹性松软型材料(如毛毡)、弹性密闭型材料(如聚乙烯泡沫材料)、密封膏以及边框设灰口等密封;框与扇的密封可用橡胶、橡塑或泡沫密封条以及高低缝、回风槽等;扇与扇之间的密封可用密封条、高低缝及缝外压条等;扇与玻璃之间的密封可用各种弹性压条等。
(3)改善住宅门窗的保温性能。户门与阳台门应结合防火、防盗要求,在门的空腹内填充聚苯乙烯板或岩棉板,以增加其绝热性能;窗户最好采用钢塑复合窗和塑料窗,这样可避免金属窗产生的冷桥,可设置双玻璃或三玻璃,并积极采用中空玻璃、镀膜玻璃,有条件的住宅可采用低辐射玻璃;缩短窗扇的缝隙长度,采用大窗扇,减少小窗扇,扩大单块玻璃的面积,减少窗芯,合理地减少可开启的窗扇面积,适当增加固定玻璃及固定窗扇的面积。
(4)设置“温度阻尼区”。所谓温度阻尼区就是在室内与室外之间设有一中间层次,这一中间层次象热闸一样可阻止室外冷风的直接渗透,减少外墙、外窗的热耗损。在住宅中,将北阳台的外门、窗全部用密封阳台封闭起来,外门设防风门斗,防止冷风倒灌,楼梯间设计成封闭式的,对屋顶上人孔进行封闭处理等措施均能收到良好的节能效果。
3.屋面节能
在不断改进建筑外墙、外窗的保温性能后,还必须进一步加强屋面保温隔热的研究。屋面节能措施的要点,其一是屋面保温层不宜选用密度较大、导热系数较高的保温材料,以免屋面重量、厚度过大;其二是屋面保温层不宜选用吸水率较大的保温材料以防屋面湿作业时因保温层大量吸水而降低保温效果,如选用吸水率较高的保温材料,屋面上应设置排气孔以排除保温层内不易排出的水分。现在,高效保温材料已经开始应用于屋面,一些建筑的屋面保温,采用膨胀珍珠岩保温芯板保温层代替常规的沥青珍珠岩或水泥珍珠岩做法,就克服了常规作法的诸多缺点。这种保温芯板施工方便、价格低廉、不污染环境;芯板为柔性制品,不仅适用于具有平面的屋面,也可用于带有曲面的屋面,其保温工程更可显示出它的优越性。其主要技术指标,表观密度为110~150kg/m3;导热系数为0.04~0.06W/m·K;蓄热系数为0.90~0.11m2·K。抗压强度大于0.2MPa;吸水率小于0.01%;蒸汽渗透系数为2.18×[5]。这些指标充分体现了膨胀珍珠岩密度较小,导热系数较低,而且吸水率和蒸汽渗透系数也都很低。这是保温性能好的材料所必须具备的。2001年已经在西宁污水处理厂的数百平方米屋面工程中使用,收到了好的技术经济效果。
4.利用太阳能
地球拦截的太阳辐射能相当于目前全球电力消费量的1500倍。而在现有技术、经济条件下可供开发利用的太阳能,只占理论资源量的很小一部分。据美国能源部评估,1990年美国太阳能经济可开发资源量约为22Mtce/年,仅为技术可开发量的0.6%。所以,太阳能的开发利用有巨大的潜力。太阳能作为一种可再生的洁净能源,是建筑上很具有利用潜力的新能源之一。太阳能在建筑上的利用方式主要有,被动式太阳能采暖、太阳能供热水、主动式太阳能采暖与空调、以及太阳能发电等等。我国太阳能资源丰富,陆地每年接受的太阳辐射能,相当于2.4×1012tec,2/3国土面积的太阳能总辐射量超过0.6MJ/m2[6]。如果将太阳能源充分加以利用,不仅有可能节省大量常规能源,而且有可能在某些区域完全利用太阳能采暖。
5.夜间通风
夜间通风方法的原理是在夜间引入室外的冷空气,通过冷空气与作为蓄热材料的建筑维护结构接触换热,冷却建筑材料,达到蓄冷目的。在夏季,为了获得舒适的室内环境,则需要空调供冷系统。而此时,因为夜间的室外空气温度比白天低得多,所以夜间室外冷空气则可以作为一种很好的自然冷源加以利用。严格地说,只要室外空气温度低于室内空气温度,此时的室外冷空气就可视为可利用的自然冷源。
有关新能源开发与利用科技小论文
1. 木质生物能源利用技术研究
刘守新,李海潮,张世润 文献来自: 中国林副特产 2001年 第03期 caj下载 pdf下载
木材是生物能源的主体,开展木质生物能源利用技术研究工作具有非常重要的理论及现实意义。 1木质生物能源 木材是生物能源的主体,它是最古老的能源物质。 20世纪 70年代以来,世界上很多国家都对木质生物能源的利用给予 ...
被引用次数: 7 文献引用-相似文献-同类文献
2. 我国未来可再生能源开发利用的战略思考
李俊峰,王仲颖,梁志鹏,时景丽 文献来自: 中国能源 2004年 第03期 caj下载 pdf下载
我国也应加大可再生能源的开发利用量。4.4开拓新的经济增长领域的良好机遇可再生能源的开发利用主要是使用当地资源和人力物力,对促进地区经济发展具有重要意义,同时快速发展的可再生能源和新能源也是一个新的经济增长领域。我国太阳能热水器 ...
被引用次数: 7 文献引用-相似文献-同类文献
3. 一种新型生物塑料(phb)的研究进展和开发前景
郭秀君,于昕 文献来自: 生物工程进展 1997年 第05期 caj下载 pdf下载
一种新型生物塑料(phb)的研究进展和开发前景郭秀君于昕(山东大学微生物学系塑料作为高分子聚合物成为现代社会不可缺少的重要材料。塑料制品在国民经济各部门发挥着重要作用。但这类化学合成的高分子不能被生物降解。所以一旦 ...
被引用次数: 25 文献引用-相似文献-同类文献
4. 21世纪的新能源及其开发和利用
韩志萍,霍文兰 文献来自: 榆林学院学报 2003年 第01期 caj下载 pdf下载
包括氢能、太阳能、生物质能、风能、地热能、海洋能等,了解其在世界范围内的开发和利用的现状和前景,对我国的能源开发与建设是很有借鉴意义的。[1]中国科学院化学学部展望21世纪的化学[m ] ...
被引用次数: 3 文献引用-相似文献-同类文献
5. 能源的开发利用与节能
梁荣光,简弃非,翁仪璧,许石嵩 文献来自: 内燃机 2001年 第06期 caj下载 pdf下载
今后应加大开发力度。核能是一种量大、洁净而廉价的能源。一些工业发达的国家都把它作为一种主要能源来开发利用 ,如日本占 2 5 %。价格以日本为例 ,利用核能、煤、天然气、重油发电 1 k w? h的价格依次为 1 2 , ... 能源的开发利用与节能@梁荣光$华南理工大学交通学院!广东广州510640 @简弃非$华南理工大学交通学院 ...
被引用次数: 2 文献引用-相似文献-同类文献
6. 细菌磁的生物技术开发和利用
任修海 文献来自: 生物学杂志 1995年 第01期 caj下载 pdf下载
这样即有可能将有关的基因或基因组转移到其它细菌或高等动植物以进行更大规模的生物磁生产,从而促进进一步的开发和利用细菌磁的生物技术开发和利用@任修海$上海大学生物工程系 ...
被引用次数: 2 文献引用-相似文献-同类文献
7. 国内外能源植物资源及其开发利用现状
能源是人类活动的物质基础。在某种意义上讲,人类社会的发展离不开优质能源的出现和先进能源技术的使用。在当今世界,能源的发展,能源和环境,是全世界、全人类共同关心的问题,也是我国社会经济发展的重要问题。
“能源”这一术语,过去人们谈论得很少,正是两次石油危机使它成了人们议论的热点。能源是整个世界发展和经济增长的最基本的驱动力,是人类赖以生存的基础。自工业革命以来,能源安全问题就开始出现。在全球经济高速发展的今天,国际能源安全已上升到了国家的高度,各国都制定了以能源供应安全为核心的能源政策。在此后的二十多年里,在稳定能源供应的支持下,世界经济规模取得了较大增长。但是,人类在享受能源带来的经济发展、科技进步等利益的同时,也遇到一系列无法避免的能源安全挑战,能源短缺、资源争夺以及过度使用能源造成的环境污染等问题威胁着人类的生存与发展。
那么,究竟什么是“能源”呢?关于能源的定义,目前约有20种。例如:《科学技术百科全书》说:“能源是可从其获得热、光和动力之类能量的资源”;《大英百科全书》说:“能源是一个包括着所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需的能量”;《日本大百科全书》说:“在各种生产活动中,我们利用热能、机械能、光能、电能等来作功,可利用来作为这些能量源泉的自然界中的各种载体,称为能源”;我国的《能源百科全书》说:“能源是可以直接或经转换提供人类所需的光、热、动力等任一形式能量的载能体资源。”可见,能源是一种呈多种形式的,且可以相互转换的能量的源泉。
确切而简单地说,能源是自然界中能为人类提供某种形式能量的物质资源。
通常凡是能被人类加以利用以获得有用能量的各种来源都可以称为能源。
能源亦称能量资源或能源资源。是指可产生各种能量(如热量、电能、光能和机械能等)或可作功的物质的统称。是指能够直接取得或者通过加工、转换而取得有用能的各种资源,包括煤炭、原油、天然气、煤层气、水能、核能、风能、太阳能、地热能、生物质能等一次能源和电力、热力、成品油等二次能源,以及其他新能源和可再生能源。
分类
能源种类繁多,而且经过人类不断的开发与研究,更多新型能源已经开始能够满足人类需求。根据不同的划分方式,能源也可分为不同的类型。
1、按来源分为3类:地球本身蕴藏的能量 通常指与地球内部的热能有关的能源和与原子核反应有关的能源。
①来自地球外部天体的能源(主要是太阳能)。除直接辐射外,并为风能、水能、生物能和矿物能源等的产生提供基础。人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。
②地球本身蕴藏的能量。如原子核能、地热能等。
③地球和其他天体相互作用而产生的能量。如潮汐能。温泉和火山爆发喷出的岩浆就是地热的表现。地球可分为地壳、地幔和地核三层,它是一个大热库。地壳就是地球表面的一层,一般厚度为几公里至70公里不等。地壳下面是地幔,它大部分是熔融状的岩浆,厚度为2900公里。火山爆发一般是这部分岩浆喷出。地球内部为地核,地核中心温度为2000度。可见,地球上的地热资源贮量也很大。
2、按能源的基本形态分类,有一次能源和二次能源。前者即天然能源,指在自然界现成存在的能源,, 文秘杂烩网
上一篇:乘务毕业论文
下一篇:知网论文开题