欢迎来到学术参考网
当前位置:发表论文>论文发表

孔超论文学术

发布时间:2023-03-06 22:47

孔超论文学术

优秀论文评选为贯彻落实2014年全国烟草工作会议精神,繁荣学术思想,推动行业科技创新和促进人才成长,鼓励烟草科技专业人员发表高水平学术论文,中国烟草学会结合行业“五个千方百计”和“三个坚定不移”重点任务组织进行了2014年学术论文征集工作。经省学会初评、各专业委员会复评推荐,有78篇论文入选2014年中国烟草学会学术年会优秀论文。中国烟草学会通过聘请专家进行无记名投票评选,从上述78篇学术年会优秀论文、12篇CORESTA2014年大会宣读论文、15篇行业科技期刊推荐的共105篇论文中,再次评选出“中国烟草学会2014年度优秀论文”22篇。现将中国烟草学会2014年度优秀论文评选结果予以通报。1.徐秀峰等,卷制工艺参数对卷烟质量影响的位置效应与散度效应分析,贵州中烟贵阳卷烟厂;2.黄锋等,片烟增湿与干燥的薄层模型及动力学研究,华环国际烟草有限公司;3.银董红等,卷烟燃烧过程中卷烟纸孔结构特征对主流烟气CO释放量影响的研究,湖南中烟工业有限责任公司;4.文建辉等,巴豆醛在卷烟滤嘴中的过滤和截留行为特征,湖南中烟工业有限责任公司;5.刘百战等,超高效合相色谱/四级杆-飞行时间质谱(UPC2/Q-TOFMS)对卷烟主流烟气气相自由基的定性分析研究,上海烟草集团有限责任公司;6.杨继等,热重-单液滴微萃取-气相色谱/质谱联用研究叶黄素在空气氛围下的热解行为,云南中烟技术中心;7.杨宇虹等,长期施肥对植烟土壤微生物的影响,云南省烟草农业科学研究院;8.李义强等,三唑酮及其代谢物在烟叶中的残留特征与降解,中国烟草总公司青州烟草研究所;9.刘艳霞等,烟草根系分泌物的分离、鉴定及其对病原菌和拮抗菌生长的影响,贵州省烟草科学研究院;10.陈德鑫等,二氯喹啉酸降解菌MC-10的筛选、鉴定及降解,中国烟草总公司青州烟草研究所;11.王克敏等,影响现代烟草农业稳定因素分析及对策研究,贵州省烟草公司遵义市公司;12.武梅华等,我国烟草产业市场结构与经济绩效关系研究,山东省烟草学会;13.薛治国等,COSO框架在烟草行业法律风险防控体系建设中的应用研究,浙江省烟草专卖局(公司);14.李春滨等,构建市场化取向现代卷烟营销体系的思考,中国卷烟销售公司;15.王伟等,基于移动互联时代构建工商零一体化营销平台实践研究,山东省烟草公司青岛市公司;16.邹暾等,大型企业信息基础资源云平台建设探索,湖南省烟草专卖局经济信息中心;17.巫升鑫等,烤烟新品种闽烟9号的选育研究,福建省烟草专卖局烟草农业科学研究所;18.陈翠玲,不同部位烟叶的热失重和热裂解行为研究,广东中烟工业有限责任公司技术中心;19.唐远驹等,烤烟“中间香型”的困惑,贵州省烟草科学研究院;20.刘洪祥等,烤烟雄性不育一代杂交新品种中烟205选育及其主要特征特性,中国烟草总公司青州烟草研究所;21.张启东,主流烟气粒相物水溶性组分中烤甜香成分分析,中国烟草总公司郑州烟草研究院;22.盛培秀,含有醋酸纤维素的纤维纸及滤棒的开发与性能研究,江苏中烟特种滤棒重点实验室。 烟草发展创新知识服务平台该平台是由中国知网针对烟草行业“两化融合、科技创新”需求开发。开发过程中充分吸收了中国烟草学会、行业信息管理部门、企业以及学术期刊代表的意见,以“一网四库”(战略新闻网,战略实务知识库、产业技术知识库、经营管理知识库、学习园地知识库)为框架,满足决策层、技术人员、管理人员、基层骨干的知识需求。平台整合了中国知网的海量知识资源,涵盖了烟草行业所涉及的期刊、博硕论文、会议论文、报纸、年鉴、工具书、专利、标准、科技成果、政策法规等45万篇专业资源,致力于构建具有完整性和系统性的一站式知识服务窗口。美国《工程索引(EI)》收录期刊美国《工程索引》(Engineering Index,EI)官方网站公布了最新的数据库来源期刊名单。分别由中国烟草学会、郑州烟草研究院主办的《中国烟草学报》、《烟草科技》期刊继2013年首次成为EI源期刊后,再次成为EI收录期刊。两刊继续保持EI收录,标志着两刊学术水平、编校质量和国际影响力的持续提升,标志着我国烟草行业整体科研水平和自主创新能力的迅速发展。这既是对两刊的肯定,也是对中国烟草行业广大烟草科技工作者学术技术水平的认可。EI是主要收录工程技术期刊文献和会议文献的大型检索系统,与《科学引文索引(SCI)》和《科技会议录索引(ISTP)》并列为国际最著名的三大数据库。2014年EI在全球范围内共收录期刊3718种,其中中国大陆出版的期刊209种。

CO2煤层处置效应与监测研究进展

陈润1 秦勇2

基金项目:国家重大专项(2011ZX05042-01-02),中国矿业大学青年科技基金A类项目(2010QNA09)和中国矿业大学青年教师启动基金资助。

作者简介:陈润,男,1979年生,江苏宿迁人,博士,助理研究员;从事煤层气与CCS研究。地址:(221008)江苏省徐州市中国矿业大学低碳能源研究院。电话:。E-mail:

(1.江苏省煤基CO2捕集与地质储存重点实验室(中国矿业大学低碳能源研究院),江苏徐州 221008;2.中国矿业大学资源与地球科学学院,江苏徐州 221008)

摘要:CO2的煤层封存是-当今节能减排的研究热点。认为CO2煤层封存是通过物理、化学以及微生物转化等方式实现,煤层封存CO2除对地下水以及上覆盖层岩石产生影响外,还可能诱发地震等地质灾害。为了保证煤层封存CO2的安全性与长久性,有必要对CO2在煤层中的运移状况进行监测。基于此,本文论述了目前CO2煤层运移的监测技术,指出CO2煤层封存及监测技术有待深入并加以系统化。

关键词:CO2 煤层 封存 影响 监测

Advance of CO2 Sequestration Effect in Coal Seams and Its Monitoring

CHEN Run1, QIN Yong2

(u Key Laboratory of Coal-based e and Geological Storage (Low Carbon Energy Institute, China University of Mining and Technology), Xuzhou, Jiangsu 221008, China; of Resource and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China)

Abstract: CO2 sequestration in coal seams is a focus of saving energy and reducing greenhouse gas emissions at is considered that CO2 sequestration in coal seams can be implemented through physical, chemical and microbial is found that CO2 sequestration in coal seams except effects on groundwater, microbes and rocks, geological hazards such as earthquake might be order to ensure the safety and longinquity, the monitoring of CO2 migration in coal seams is on this, the technologies of CO2 migration moni- toring in coal seams are discussed, and it is pointed out that the study of technologies of CO2 sequestration in coal seams and monitoring should be furthering and systematization.

Keywords: CO2; Coal seam; Sequestration; Effect; monitoring

1 引言

人类使用化石燃料排放的CO2气体是一种导致全球变暖的温室气体,其大量排放会带来一系列的自然灾害,从而CO2的减排工作引起世界各国政府与社会各界广泛关注。目前,我国CO2的排放总量仅次于美国,居世界第二位。如何将CO2气体有效封存成为我国环境乃至全球环境问题的一个重要议题。煤层气地质研究表明煤吸附CO2的能力比CH4强,众多研究者提出煤层注入CO2强化CH4产出(唐书恒等,2004;吴建光等,2004;苏现波等,2008)。基于此,笔者探讨了CO2煤层封存机制、CO2封存对煤储层环境影响以及CO2地下运移监测技术,以期为CO2煤层封存与驱替煤层气开发服务。

2 CO2煤层封存技术

煤层封存CO2可通过物理封存、化学封存以及微生物转化等机制实现。在已知的CO2煤层封存技术中,物理封存能力最大,煤层微生物转化最具前景。

2.1 物理封存

CO2的物理封存是一种不改变CO2理化性质的封存方式,被看做是天然气开采的逆过程。煤层封存捕获CO2与其他地质体相比既有相同之处,但也存在差异。一方面,在CO2注入煤层初期,煤层捕获CO2也是通过上覆岩层隔挡来实现。即CO2注入煤层后,由于上覆的页岩和粘土质岩类低渗透性而阻挡了CO2向上运移,形成了压力封存箱。另一方面,在高压条件下,煤对CO2吸附能力要比CH4大得多(苏现波等,2008),被压力封堵在煤层的CO2运移一定距离后很快就在煤表面吸附捕获,驱替煤表面吸附CH4产生;实现煤层物理封存CO2的方式转变,同时实现强化煤层气产出的功效。

此外,在一些含水煤层,CO2的物理封存还包括CO2的水溶封存以及其水合物封存等。在高压条件下,CO2在水中的溶解度是极其可观的(陈润等,2007),溶解作用也对CO2煤层封存起到了一定作用,但一般煤层含水性较差,CO2水溶封存在CO2煤层封存中一般不予考虑。CO2水合物封存具有很强的封存能力,但由于其封存需要极其苛刻的温压条件,在煤层封存CO2中很难实现。

2.2 化学封存

CO2的化学封存是CO2与其他物质发生化学反应生成新物质而实现CO2固定的一种方法。一般情况下,煤层这种特殊的储层存在渗透率各向异性(KelemenSR et al.,2009),即沿水平方向的渗透能力较强,锤直方向则相对较弱。而这种各向异性表现为煤层沿水平一侧或多侧开口,有利于CO2在盖层下侧向流动。随着运移的进行,CO2与煤中矿物质以及围岩中矿物发生化学反应,实现化学封存。该封存方式随着矿物的类型不同而有显著差异(于洪观,2005)。

中国煤层气技术进展:2011年煤层气学术研讨会论文集

中国煤层气技术进展:2011年煤层气学术研讨会论文集

从而,CO2通过溶蚀作用形成碳酸盐或碳酸氢盐不溶物或可溶物而实现了地质封存。

2.3 地下微生物转化

CO2的地下微生物转化利用是少有人涉足的领域,仅有的研究表明:地质条件下注入CO2和H2经微生物转化生成CH4(夏遵义等,2004),这样即实现了CO2封存,又生成了新的能源。由于研究中人为加入了H2,使得储层条件下(少氢气)能否实现CO2的微生物自然捕获并转化有待进一步验证。但相关研究表明:煤储层条件下产氢菌的大量存在是CO2微生物转化的一个有利条件(夏遵义等,2004),其他类型化学反应或低价含铁矿物的蚀变也都可能为产甲烷菌转化CO2提供必要的H2。如生物膜——岩石相互反应、岩浆热液流、水的辐射分解等(徐永昌,1994)。可见,CO2的地下微生物转化在一定的地质条件下是可以实现的。

CO2的微生物封存可实现CO2的永久转化,减少CO2的大气排放,达到减缓温室效应的目的;同时CO2的地下微生物转化具有可观的能源生成前景。但由于地下微生物作用要具备苛刻的环境条件,微生物转化CO2能力还有待进一步研究。

3 CO2封存对环境的影响

3.1 地下水污染

CO2封存对地下水污染是多方面的。CO2在水中溶解量增加,会降低地层水的pH值,导致地下水酸化。研究表明,1kg水中溶解1摩尔CO2溶液的pH值为2.88(孙茂远等,1998);研究也表明地下水的酸性不断增强,致使地层中许多微量元素被溶蚀在地层水中富集。CO2对地下某些重金属或其有机化合物大量溶蚀时,则可能严重影响人类工业、农业和生活用水的安全和健康。Wang和.Jaffe(WangS et al.,2004)采用化学模拟的方法,将CO2注入到100m深处让其向浅部含水层运移(中间层位富含一定浓度的硫化铅)。结果发现,在缺少束缚的条件下,封存的CO2充分溶解,导致地层水中大量有害的矿物硫化铅从固体中溶出,造成以注入点为中心的CO2晕,方圆几百米内的地层水受到了严重污染。

3.2 岩体变化

如前文所述,随着煤层CO2注入量的增加,CO2注入井附近煤储层负荷压力增加,导致CO2在煤层水中的溶解度增大溶蚀煤中的矿物,改变煤岩对原有矿物的束缚性,降低煤岩及上覆盖层的力学强度,造成岩层断裂;同时,由于煤储层吸附大量的CO2气体发生膨胀效应(KaracanCO,2007;SiriwardaneHJ et al.,2009),减小煤中孔裂隙空间,降低煤储层的渗透率。在地下水存在的情况下,CO2的大量溶解也可能使地层水中的一些矿物沉淀或析出,堵塞煤中通道孔隙。

3.3 诱发地质灾害

CO2注入煤层进行封存使得煤层所受有效应力增加,如果注入压力超过上覆地层所能承载压力时,将可能诱发上覆盖层断裂以及断裂沿一定方向移动。该现象反映到地表为地质变形、坍塌等地质灾害。在一些高压层位,伴随着一系列裂缝产生和断层的活动,也有可能诱发地震这种高危害地质灾害。如:美国科罗拉多州Rangely油田,就发生过因向其孔隙中注入流体而导致微地震产生的事件(Gibbs J Felal.,1973);同样由于向深部钻井中注入废液,德国大陆深钻工程(Shapiro S A et al.,1997)和加拿大艾伯特冷湖油田(Talebi S et al.,1998)都曾诱发过中等级地震;美国还曾因此诱发强度高达为4.9级O-hio地震和5.3级Denver地震(Bert M et al.,2005)。

3.4 对煤层微生物影响

煤层封存CO2对其中存活的微生物通过多方面产生影响。一方面,pH在5.9~8.8之间适宜大部分产甲烷菌生长,而pH介于6.8~7.8之间其活性最强(郭泽清等,2006)。煤层水酸化使得产甲烷菌活性降低,生长受到抑制,降低固定CO2能力。另一方面,煤层水的酸化可大量溶解岩石中碱金属元素和微量元素。如果煤中Na,K等离子大量溶解会抑制产甲烷菌的活性;与此相反,Fe,Co,Ni,Se等离子溶解则会增强产甲烷菌活性(祖波等,2008)。可见,金属离子和微量元素的溶解对产甲烷菌的影响应根据地质环境具体分析。

4 CO2运移监测

当CO2注入煤层时,其注入速度及注入量对封存效果及安全性产生重要影响,故开展CO2煤层运移监测是非常有必要的。如前文所述,当CO2注入煤层后,极易对煤层及围岩以及存活于其中的微生物产生影响,故监测多从CO2本身或其对煤层及其围岩地层产生的影响进行开展。目前监测技术主要分为物理监测和化学监测。

4.1 物理监测

物理监测有储层压力监测、测井、地震、电磁手段以及地表变形等多种方法(Preston C et al.,2005)。目前使用最广、技术最成熟的是三维地震监测技术和测井监测技术。三维地震监测是通过监测煤层CO2注入量随着时间偏移的变化来实现。即:随着CO2向煤层不断注入,煤吸附气体的饱和度、煤孔隙压力、气体饱和度以及流体运移方向都将发生变化,不同时期观测到的地震资料属性也将发生变化。该方法利用两次或多次观测对比,推断CO2的运移情况。除了人工源地震以外,煤层注入CO2所造成的盖层断裂及其微小震动在监测的过程中都可以加以利用。而电法、电磁法以及重磁法等监测技术都不如地震监测来的直观、准确和形象。

4.2 化学监测

地球化学成分的变化也可以有效地反映CO2在煤层中的运移状况。CO2注入煤层后,极易与煤层内的气、水以及围岩发生物理和化学反应,最为明显的变化是流体中酸度增加,尤其酸式碳酸盐离子。通过采集煤层气体和地下水层样品分析CO2的含量或根据水中碳、硫稳定同位素的特征直接测量。Emberley等(2004)研究加拿大Weybum油田封存CO2发现,CO2注入储体后其碳同位素相比注入前存在一定的差异。此外,化学监测与示踪剂联合使用不失为一种较为理想的监测方法。它通过监测CO2碳同位素以及外加示踪剂在煤层中的运移情况来反映CO2在煤层中的平面展布,通过时间偏移来反映CO2在煤层中的运移情况。

5 结语

CO2的煤层封存通过煤层物理封存、化学封存以及微生物封存三种途径来实现。其封存项目的实施除了具有减排、增产效应外,还可能带来一个极大的附加值——生物甲烷生成。最重要的是,CO2煤层封存对地质体具有一定的影响,其污染甚至可能威胁到人类健康。为此,在CO2封存的过程中,在保证CO2注入速度和注入压力的合理性的前提下,监测CO2在煤层中的运移与分布情况也非常重要。目前,CO2地质封存可行在不断细化,CO2地质封存的影响与危害的认识也在不断强化,因此,CO2地下运移的监测技术也需要不断更新。而我国在该方面的研究更是刚刚起步,仅有的试验井也以强化煤层气产出为目的,对CO2封存效果及其对地下环境的影响、危害及其监测甚少(中联煤层气有限责任公司,2007)。因此,相关认识和论证工作亟待深入开展,逐步实现系统化,为CO2煤层封存技术工业化实施扫除障碍。

参考文献

陈润,苏现波,林晓英.2007.亨利定律在煤层气组分溶解溶解分馏中的应用[J].煤田地质与勘探,35(2):31~33

郭泽清,李本亮,曾富英等.2006.生物气分布特征和成藏条件[J].天然气地球科学,17(3):407~413

苏现波,陈润,林晓英等.2008.煤解吸二氧化碳和甲烷的特征曲线及其应用[J].天然气工业,28(7):17~19

孙茂远,黄盛初.1998.煤层气开发利用手册[M].北京:煤炭工业出版社,12~17

唐书恒,汤达祯,杨起.2004.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,33(4):448~453

吴建光,叶建平,唐书恒.2004.注入CO2提高煤层气产能的可行性研究[J].高校地质学报,10(3):463~467

夏遵义,白志强.2004.利用产甲烷菌进行CO2地质固定在中国生物气田的应用初探[J].石油勘探与开发,31(6):72~74

徐永昌.1994.天然气成因理论及应用[M].北京:科学出版社

于洪观.2005.煤对CH4、CO2、N2及其二元混合气体吸附特性、预测和CO2驱替CH4的研究[M].青岛:山东科技大学,157~158

中联煤层气有限责任公司编著.2007.中国煤层气勘探开发技术研究[M].北京:石油工业出版社

祖波,祖建,周富春等.2008.产甲烷菌的生理生化特征[J].环境科学与技术,31(3):5~8

Bert M, Ogunlade D, Heleen D C et special report on CO2 capture and storage [M] .Cambridge: Cam- bridge University Press, 195~276

Emberley S, Hutcheon I, Shevall er M et mical monitoring of rock-fluid interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada [J] .Energy, 29: 1393~1401

Gibbs J F, Healy J H, Raleigh C B et city in the Rangely, Colorado area: 1962~1970 [J].Bulletin of theSeismological Sociely of America, 63: 1557~1570

Karacan C ng induced volumetric strains internal to a stressed coal associated with CO2 sorption [J] .International Journal of Coal Geology, 72: 209~220

Kelemen S R, Kwiatek L al properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption [J].International Journal of Coal Geology, 77: 2~9

Preston C, Monea M, Jazrawi W et GHG Weyburn CO2 monitoring and storage project [J] .Fuel Processing Technology, 86: 1547~1568

Shapiro S A, Huenges E, Borm ting the crust permeability from fluid-iniection-induced seismic emission at the KTB site [J] .Geophysical Journal International, 131 (2): F15~F18

Siriwardane H J, Gondle R K, Smith D age and swelling of coal induced by desorption and sorption of flu- ids: Theoretical model and interpretation of a field project [J] .International Journal of Coal Geology, 77: 188~202

Talebi S, Boone T J, Eastwood J ion induced microseismicity in Colorado shales [J] .Pure and Applied Ge- ophysics, 153: 95~111

Wang S, Jaffe P ution of trace metals in potable aquifers due to CO2 release from deep formations [J] .Energy Conversion and Management, 45 (18-19): 2833~2848

天然气学术论文

天然气作为一种优质、高效的清洁能源,在多个领域已获得广泛的应用,并且发展前景广阔。下面是我精心推荐的天然气学术论文,希望你能有所感触!

天然气净化综述

[摘 要]介绍脱碳、脱汞、脱水工艺方法。

[关键词]天然气;净化;工艺。

中图分类号:TE645 文献标识码:A 文章编号:1009-914X(2014)18-0107-01

1 引言

天然气进入液化前,需要脱除其中的酸性气体CO2。酸性气体CO2将导致设备腐蚀,还将在液化的低温部分形成固态的干冰,堵塞设备和管道,使生产无法进行,故设置酸性气体脱除单元脱除原料气中的CO2,使其达到液化的天然气质量要求。原料气还需要进行脱水脱汞处理,使水含量小于1ppm,汞含量小于0.01μg/m3。目的是可防止天然气中的水分析出,在液化时结冰,使管道和仪表阀门出现冰堵,发生事故;因液态水的存在,未脱除的酸性组份会对压力管道和容器造成腐蚀。若汞含量超标将会严重腐蚀铝制设备,降低设备使用寿命,且将造成环境污染以及检修过程中对人员的危害。

2 脱碳工艺方法介绍

a)脱碳工艺方法

脱碳工艺方法分为干法脱碳和湿法脱碳两大类。

1)干法脱碳

主要有固体吸附和膜分离法。固体吸附CO2与分子筛脱水类似,天然气中的CO2被吸附在多孔状固体上(如分子筛),然后通过加热使CO2脱除出来。该方法工艺流程较简单,而且可以与脱水分子筛布置在同一个塔中,从而达到减少单元数量、简化流程的目的。但受固体吸附剂吸附容量较小的限制,比较适合含硫,特别是有机硫的原料。

膜分离是将天然气通过某种高分子聚合物薄膜,在高压条件下,薄膜对天然气中不同组份的溶解扩散性的差异,形成了不同组份渗透通过膜的速率不同,从而选择性将CO2与其它组份进行分离。该方法投资较高,更适合CO2浓度较高的天然气脱碳工艺。

2)湿法脱碳

分为物理吸收法和化学吸收法。物理吸收法是基于有机溶剂如碳酸丙烯脂、聚乙二醇二甲醚和甲醇等作为吸收剂,利用CO2在这些溶剂中的溶解度随着压力变化的原理来吸收CO2。其特点是在高压及低温的条件下吸收,吸收容量大,吸收剂用量少,且吸收效率随着压力的增加或温度的降低而增加。而在吸收饱和后,采用降压或常温汽提的方式将CO2分离使吸收剂再生。

化学吸收法是以可逆的化学反应为基础,以碱性溶剂为吸收剂的脱碳方法。溶剂与原料气中的CO2反应生成某种化合物,然后在升高温度、降低压力的条件下,该化合物又能分解并释放CO2,解析再生后的溶液循环使用。化学吸收主要有碳酸钾吸收法、醇胺吸收法和氢氧化钠吸收法等。

b)工艺路线比选

目前在天然气脱碳工业上主要运用以下工艺。

1)膜分离工艺

膜分离的基本原理就是利用各气体组份在高分子聚合物中的溶解扩散速率不同,因而在膜两侧分压差的作用下导致其渗透通过纤维膜壁的速率不同将不同气体分离。推动力(膜两侧相应组份的分压差)、膜面积及膜的分离选择性,构成了膜分离的三要素。依照气体渗透通过膜的速率快慢,可把气体分成渗透系数较大的“快气”和渗透系数相对较小的“慢气”。常见气体中,H2O、H2、He、H2S、CO2等称为“快气”;而称为“慢气”的则有CH4及其它烃类、N2、CO、Ar等。膜分离器内配置数万根细小的中空纤维丝,中空纤维丝的优点就是能够在最小的体积中提供最大的分离面积,使得分离系统紧凑高效,同时可以在很薄的纤维壁支撑下,承受较大的压力差。天然气进入膜分离器壳程后,沿纤维外侧流动,维持纤维内外两侧一适当的压力差,则气体在分压差的驱动下“快气”(H2O、CO2)选择性地优先透过纤维膜壁在管内低压侧富集导出膜分离系统,渗透速率较慢的气体(烃类)则被滞留在非渗透气侧,以几乎跟原料气相同的压力送出界区。

2)活化MDEA(甲基二乙醇胺)工艺

活化MDEA工艺于20世纪60年代开发,第一套活化MDEA工业装置于1971年在德国巴斯夫的一座工厂中被投入生产应用。活化MDEA法采用45~50%的MDEA水溶液,并添加适量的活化剂以提高CO2的吸收速率。MDEA不易降解,具有较强的抗化学和热降解能力、腐蚀性小、蒸汽压低、溶液循环率低,并且烃溶解能力小,是目前应用最广泛的气体净化处理溶剂。该工艺应用范围广泛,可以用来从合成氨厂的合成气中去除CO2,也可净化合成气、天然气,及高炉气等专用气体。目前活化MDEA工艺已成功运用于全世界超过250个气体净化工厂中,其中包括80个天然气处理厂。且该工艺可应用到现有工厂的技术改造上,近年来,国外的大型化肥装置已有采用活化MDEA水溶液改造热钾碱脱CO2的趋势。

3)Selexol工艺

Selexol工艺是美国Allied化学公司(现归属Norton公司)在20世纪60年代研发成功。该工艺所使用的吸收剂(聚乙二醇二甲醚混合物)具有极低的蒸汽压、无腐蚀性耐热降解和化学降解等特点,适用于合成气和天然气的净化处理。目前全球采用Selexol工艺装置的数量超过55套,但Selexol工艺存在很多问题,如聚乙二醇二甲醚混合物的溶液粘度较大,增加了传质阻力,不利于吸收过程,同时聚乙二醇二甲醚混合物溶解和夹带天然气中的少量烃类物质等。

4)冷甲醇工艺

冷甲醇工艺是由德国Linde AG公司和Lurgi公司于20世纪50年代联合开发的气体净化工艺。该工艺采用甲醇作为溶剂,依据甲醇溶剂对不同气体溶解度的显著差别来脱除H2S、CO2和有机硫等杂质。由于所使用的甲醇因蒸气压较高,需在低温下(-55℃~-35℃)操作。该工艺目前多用于渣油或煤部分氧化制合成气的脱硫和脱碳,而在其它项目单独用于脱除CO2的工业应用实例很少。

5)低温分离工艺

低温分离工艺是利用原料气中各组份相对挥发度的差异,通过冷冻制冷,在低温下将气体中组份按工艺要求冷凝下来,然后用蒸馏法将其中各类物质依照沸点的不同逐一加以分离。该方法应用较多的工艺主要是美国的Rayn-Holmes工艺,目前全世界工业装置超过8套。该方法适用于天然气中CO2含量较高,以及在CO2含量和流量出现较大波动的情形。但工艺设备投资费用较大,能耗较高。

3 脱水脱汞工艺介绍

a)概述

天然气的脱水方法主要有三种:冷却法、甘醇吸收法及固体(如硅胶、活性氧化铝、分子筛等)吸附法。

1)冷却脱水时利用当压力不变时,天然气的含水量随温度降低而减少的原理实现天然气脱水。此法只适用于大量水分的粗分离。若冷却脱水过程达不到作为液化厂原料气中对水露点的要求,则还应采用其它方法对天然气进行进一步的脱水。

2)吸收脱水是用吸湿性液体(或活性固体)吸收的方法脱除天然气中的水蒸气。用作脱水吸收剂的物质应具有以下特点:对天然气有很强的脱水能力,热稳定性好,脱水时不发生化学反应,容易再生,粘度小,对天然气和液烃的溶解度较低,起泡和乳化倾向小,对设备无腐蚀性,同时价格低廉,容易得到。实践证明二甘醇及其相邻的同系物三甘醇是常用的醇类脱水吸收剂。(1)甘醇胺溶液:优点:可同时脱除水、CO2和H2S,甘醇能降低醇胺溶液起泡倾向。缺点:携带损失量较三甘醇大,需要较高的再生温度,易产生严重腐蚀,露点小于甘醇脱水装置,仅限于酸性天然气脱水。(2)二甘醇水溶液:优点:浓溶液不会凝固,天然气中有硫、氧和CO2存在时,在一般操作温度下溶液性能稳定,高的吸湿性。缺点:携带损失比三甘醇大,露点降小于三甘醇溶液,投资高。(3)三甘醇水溶液:优点:浓溶液不会凝固,容易再生,携带损失量小,露点降大。缺点:投资高,当有轻质烃液体存在时会有一定程度的起泡倾向,运行可靠。

甘醇法适用于大型天然气液化装置中脱除原料气所含的大部分水分。

4 结语

通过以上对天然气净化工艺的综合介绍及对比,旨在为今后液化天然气装置技术选用提供借鉴和设计参考。

参考文献

[1] 徐文渊、蒋长安等,天然气利用手册,中国石化出版社,2001.

[2] 顾安忠,液化天然气技术,机械工业出版社,2003.

点击下页还有更多>>>天然气学术论文

上一篇:农村法制论文范文

下一篇:学年毕业论文小结