欢迎来到学术参考网
当前位置:发表论文>论文发表

加氢脱硫毕业论文

发布时间:2023-03-07 00:02

加氢脱硫毕业论文

KR法与喷吹法在铁水预脱硫中应用的比较 面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 随着社会经济和钢铁工业的高速发展,社会对钢铁质量的要求越来越高、越来越苛刻,产品的种类也急剧增加,尤其是高品质高附加值钢种的需求不断在增大。面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 近30年来铁水脱硫技术迅速发展,现已经有十几种处理方法,其中应用最广且最具代表性的主要是喷吹法和KR机械搅拌法。它们在技术上都已相当成熟,从两种工艺在实际生产中的应用效果来看,二者是互有长短。虽然喷吹法发展迅速,目前在实际生产中应用更广泛,可KR法在这几年中又有了新发展,呈现出强劲的势头。那么,这两种工艺模式各有什么优劣势?哪种更具有应用前景呢?在国内外冶金界始终没有较统一的看法。为此,本文着重就两种工艺模式的发展、应用和运营成本作了比较,尤其是它们对整个流程影响的比较,希望能对技术人员及企业技术的选择提供参考。

KR法与喷吹法的工艺及特点 在进行比较前,先了解两种方法的工艺及特点是很有必要的,不仅有利于理解两种方法的实质,也是深刻理解对两种脱硫模式分析比较的前提。 KR机械搅拌法,是将浇注耐火材料并经过烘烤的十字形搅拌头,浸入铁水包熔池一定深度,借其旋转产生的漩涡,使氧化钙或碳化钙基脱硫粉剂与铁水充分接触反应,达到脱硫目的。其优点是动力学条件优越,有利于采用廉价的脱硫剂如CaO,脱硫效果比较稳定,效率高(脱硫到≤0.005 %) ,脱硫剂消耗少,适应于低硫品种钢要求高、比例大的钢厂采用。不足是,设备复杂,一次投资较大,脱硫铁水温降较大。 喷吹法,是利用惰性气体(N2或Ar)作载体将脱硫粉剂(如CaO,CaC2和Mg)由喷枪喷入铁水中,载气同时起到搅拌铁水的作用,使喷吹气体、脱硫剂和铁水三者之间充分混合进行脱硫。目前,以喷吹镁系脱硫剂为主要发展趋势,其优点是设备费用低,操作灵活,喷吹时间短,铁水温降小。相比KR法而言,一次投资少,适合中小型企业的低成本技术改造。喷吹法最大的缺点是,动力学条件差,有研究表明,在都使用CaO基脱硫剂的情况下,KR法的脱硫率是喷吹法的四倍。 KR法与喷吹法的发展及现状 从前面分析二者的方法和特点可以知道,它们互有长短、各具特色,这也决定了它们的发展历程和现状必然是不同的。进一步了解它们的发展和现状,将更有利于理解各自技术的特点。 从时间上来看,喷吹法的研发及应用要早于机械搅拌法。喷吹法主要有原西德Thyssen的ATH(斜插喷枪)法、新日铁的TDS(顶吹法)和英国谢菲尔德的ISID法,早在1951年,美国钢厂就已成功地运用浸没喷粉工艺喷吹CaC2粉进行铁水脱硫。直至今日,尽管两种脱硫工艺方法在技术上都已相当成熟,全世界绝大多数钢铁厂广泛采用仍是铁水喷粉脱硫工艺。机械搅拌法有原西德DO (Demag-Ostberg) 法、RS (Rheinstahl) 法和赫歇法, 日本新日铁的KR (Kambara Reactor) 法和千叶的NP 法,其中,以KR法工艺技术最成熟、应用最多。KR法搅拌脱硫是日本新日铁广钿制铁所于1963年开始研究,1965年才实际应用于工业生产,之后迅猛的发展趋势表明,它具有投入生产使用较早的喷吹法无可比拟的某种优势。 在冶金工业中喷吹这种形式应用非常广泛,比如在转炉及精炼工艺中的各种顶吹、底吹和复吹技术等。当铁水预处理时,使用喷吹法把脱硫剂加入铁水中进行脱硫,这显然是可行的且易于人们接受。最早脱硫剂是以氧化钙基为主,辅助添加CaC2,而且喷吹过程也很难获得较好的动力学条件,这时主要面临两个问题:一是,如何保证CaC2的安全存贮运输和脱硫剂的脱硫效果;二是,怎样解决因动力学不足导致的脱硫效率低下,不能实现深脱硫的问题。 第一个问题侧重于开发使用更具有脱硫效率且安全的脱硫剂,于是出现了镁基复合喷吹法,脱硫效果有所改善却成效不大,而且镁粉在运输、储存、使用中同样存在很多的安全隐患,给生产带来诸多不便。然而,新型脱硫剂——钝化颗粒镁的开发成功,使纯镁喷吹脱硫技术得以实现,达到了真正高效安全的工艺目标,目前,镁系脱硫剂已经成为世界铁水预处理中的主导脱硫材料。针对第二个问题,如何才能获得更好的动力学条件呢?从工艺模式着手,技术人员研发出了具有实际应用价值的机械搅拌脱硫法,其中以KR法为典型,在根本上改善了脱硫过程中的动力学条件,并可以在脱硫剂中不加CaC2而主要采用CaO,避免了生产中使用CaC2而带来的不便和危险。然而,在工业应用时却又出现许多技术难题,比较突出的如,搅拌头的使用寿命较短;单工位操作设备导致更换搅拌头的同时无法进行铁水脱硫等。可最终这些难点还是被陆续攻破,解决了搅拌头的寿命问题,使其从原来的几十炉提高到现在的几百炉,而且摸索出了氧化钙基脱硫剂应该有一个最佳的指标要求,可以达到最理想的脱硫效果。目前,KR法已经完全可以达到深脱硫的要求,即把铁水中的硫脱至小于0.005%-0.001%。同时,双工位布置形式的出现克服了单工位的不足,使生产的连续化程度得以提高。很长时间,KR法成本问题(尤其是前期投资)加上其过程时间较长,以及不适应于大型铁水罐,故发展缓慢;直至二十世纪后期,其投资降低后,加上运行费用低廉,所以又受到了重视。

KR法与喷吹法的比较 从铁水脱硫工艺倍受人们的重视以来,KR法与喷吹法技术一直处于发展之中,目前虽仍需完善可也已趋近于成熟,这样两者之间才更具备可比性,本文主要从以下几文面进行具体比较。 1 技术与设备 在喷吹法中,单吹颗粒镁铁水脱硫工艺因其设备用量少、基建投入低、脱硫高效经济等诸多优势而处于脱硫技术的主要发展趋势之一,可在相当长的时间我国都是引进国外的技术和设备。到2002年10月国内才首次开发出铁水罐顶喷单一钝化颗粒金属镁脱硫成套技术设备,整套装置中,除重要电器元器件采用进口或合资的外,其余机电产品100%实现了国产化,包括若干最关键的技术设备。喷吹技术和设备的国产化直接降低了建设投资和运行操作的成本,从前期的一次性投资来看,要比KR法略有优势。 虽然搅拌法的技术专利也是国外拥有,可从其设备和技术本身而言并没有难点,机械构成是常规的机械传动和机械厂提升;加料也采用的是常规大气压下的气体粉料输送系统,可以说在系统的机、电、仪、液等方面的技术应用都是十分成熟。尽管如此,KR 法设备仍然是重量大且较复杂,可它的优势是运营操作费用低廉,由此所产生的经济效益完全可弥补前期的一次性高额投资。根据有关推算,一般3~5年即可收回所增加的投资。2000年武汉钢铁设计研究院针对武钢二炼钢厂的情况,对KR 法和喷吹法两种方案的投资进行了估算,KR 法的投资估算比喷吹法投资估算多200万元。 2 脱硫效果 实际生产过程中的铁水脱硫效果,不仅与设备有关,而且受脱硫剂、操作工艺水平、时间及温度等诸多因素影响,本文主要考虑的是纯镁喷吹法和CaO基KR法。一般对铁水预处理的终点硫含量要求是不高于50ppm,工厂生产和实验研究结果表明,喷吹法因其脱硫剂Mg的较强脱硫能力,KR法由于其表现出色的动力学条件,在可以接受的时间内(一般≤15min),它们都能达到预处理要求的目标值。国内各大钢厂的具体脱硫数据可见表1。在喷吹法中,复合脱硫剂使用CaO比例越高,脱硫效果越差,使用纯镁时脱硫率最高;KR法使用CaO脱硫剂,脱硫率只是略低于喷吹纯镁。 处理容器
脱硫剂

脱硫剂消耗/kg·t -1
脱硫率ηS/ %
最低硫/ ppm
纯处理时间
/ min
处理温降/ ℃
铁损/ kg·t-1
钢厂
机械搅拌法- KR 法
100t铁水罐
CaO
4.69
92.50
≤20
5
28

武钢二炼
CaO 基喷吹法
280t混铁车
CaO基
4.30
75
60
18.4
25.5

宝钢一炼
CaC2 + CaO喷吹法
140t铁水罐
50% CaO+
50% CaC2
7.85
81.79
40

31

攀枝花
Mg +CaO混合喷吹
100t铁水罐
20% Mg+
80% CaO
1.68
87.73

7
19.07
13.27
武钢一炼
Mg +CaO复合喷吹
300t铁水罐
Mg + CaO
(1:3)
Mg 0.31
CaO 1.05
79.22
21.3
< 10


宝钢
Mg + CaO复合喷吹
160t铁水罐
Mg + CaO
(1:2~3)
Mg 0.45
CaO 1.48
90
≤50
7.55
8~14

本钢
纯Mg 喷吹
100t铁水罐
Mg
0.33
≥95
≤10
5~8
8.12
7.1
武钢一炼
3 温降 铁水温降的消极影响是降低了铁水带入转炉的物理热,主要体现在转炉吃废钢的能力下降,导致转炉冶炼的能耗和物料消耗升高,直接影响了冶炼的经济成本。KR法因动力学条件好,铁水搅拌强烈,而且CaO的加入量较大,导致温降也大,目前国内KR法工艺应用较成熟的武钢可以使温降控制在28℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。 4 铁损

铁水预处理脱硫过程的铁损主要来自于两部分:脱硫渣中含的铁和扒渣过程中带出的铁水。由于两种工艺模式的不同,实际渣中含铁和扒渣带出铁量都有较大的差别,目前没有公开发表的详细对比数据。一方面,较少的脱硫剂产生的脱硫渣少,则渣中含铁量也低,由此颗粒镁喷吹脱硫的铁损要少一些;另外,颗粒镁喷吹脱硫的渣量少,扒净率相对低,而KR法的脱硫渣扒净率相对高。就扒渣的铁损而言,由于还取决于高炉渣残留量及扒渣过程,综合考虑看KR法与喷吹法区别不大。究竟哪个是主要因素,与各钢厂的实际操作有很大的关系,通过换算,得出具体数据可见表2。可见,喷吹法时,采用脱硫剂的CaO含量越高,则扒渣铁损越大;而KR法使用CaO作为主要脱硫剂成分,其铁损只是略高于喷吹镁脱硫铁损。 5 脱硫剂 铁水预处理过程中,脱硫剂是决定脱硫效率和脱硫成本的主要因素之一。根据日本新日铁曾做的计算,脱硫剂的费用约为脱硫成本的80%以上,所以,脱硫剂种类的选择是降低成本的关键。然而,选择时必须得结合考虑不同工艺方法的特点。 基于动力学条件和脱硫效率,目前喷吹法主要采用的是镁基脱硫剂,KR法采用的是石灰脱硫剂。根据理论计算,在1350℃,镁脱硫反应的平衡常数可达3.17×103,平衡时的铁水含硫量可达1.6×10-5%,大大高于CaO的脱硫能力。然而,上文已经把两种脱硫剂在各自工艺中的脱硫效果进行了对比,表明,结合实际生产工艺后它们都能达到用户对脱硫的最高要求。 在脱硫方式选择时还要考虑脱硫剂的一个因素,就是脱硫剂的来源问题。一般而言,大部分钢铁生产企业都要使用石灰石,要么有自己的石灰厂,要么有稳定的协作供货渠道,来源稳定,成本稳定,而且供货及时,不用考虑仓储问题。虽然我国的金属镁资源丰富,可是相对钢铁企业来说,获得搅拌法所需的CaO基脱硫剂更为容易,钝化颗粒镁就不具备这些有利因素。℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。

环境工程毕业论文5000字

随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。因此,发展环境工程意义重大。下文是我为大家搜集整理的关于环境工程5000字 毕业 论文的内容,欢迎大家阅读参考!

浅谈环境工程中的工艺 方法

摘 要:环境工程作为一种现代城市建设的工程,不仅对城市的环境有着非常重要的影响,还关系到城市居民的健康问题。所以,在城市环境工程的建设过程中,有关部门应该加强对工艺方法的选择和研究。

关键词:环境工程工艺;工程法;类比法;对称法;应用分析

随着我国经济的发展,我国的城市环境也有了明显的改善,这种情况下无论是环境工程的质量还是规模都有所变化,所以,为了更好的实现对环境工程的管理,有关部门应该加强对环境工程的工艺和方式的研究,以便更好的实现对现阶段的环境工程的优化。下文中笔者将结合现阶段几种常见的环境工程的施工工艺和技术,对该问题进行分析。

1 价值工程法的现实应用和分析

目前来看,在环境工程的施工过程中,价值工程作为一种非常重要的常见工程技术,对于环境工程的施工质量和效果有着非常重要的影响。尤其是在环境工程的经济效益实现的过程中以及相关的环境工程的产品设计形式的表达上,有着非常重要的作用。一般来说,这些作用可以概括为以下几点:

1.1 环境工程中的价值工程法可以有效的在工程中避免功能过剩的问题。即在现代的环境工程的施工过程中,有关部门可以通过对工程的价值的比较和分析,来实现对环境工程的有效评估,所以,有关部门可以通过价值工程法来实现对环境工程的各种职能的优化和删除,这样就可以将环境工程最大的合理化控制,有助于环境工程的价值的发挥和实现。

1.2 环境工程的价值工程法可以有效的避免价值短缺的现象,也就是说在环境工程的价值分析的过程中,可以根据现有工程的实际情况,对工程的总体成本进行控制,可以有效的平衡工程的成本,避免不必要的功能支出导致的成本增加,因为环境工程的复杂性决定了各种职能之间可能存在相互冲突的状况。所以,采用价值工程法可以有效的规避这种问题。

2 类比法的实际应用和分析

所谓类比法,就是指在环境工程的过程中,对现有的环境工程的各种 实施方案 进行类别,也就是说对有共同点的各种环境工程质检的前提和方式进行分析,这样就可以更好的实现对环境工程的各种具体项目的判断。一般来说,我国的环境工程的类比法的应用主要体现在以下几个方面:

2.1 环境工程中的废气/废水处理工艺类比,指的是在环境工程的开发过程中,应该对各种工程中的废水和废气进行类比,也就是说要实现对其成分和处理的方法进行严格的控制。一般来说,主要体现在以下几个方面:①膜分离技术分析:即在对现有的环境工程的废水和废气进行处理的过程中,要对现有的膜分离技术进行全面的分析,不仅要对其进行盐水淡化处理,还要对其进行严格的废水除盐等技术的使用。这种方式的最大的特点在于能够实现对能源的节约,可以实现施工过程中的有效环保,还能够实现对各种相变反应的有效控制。②吸附技术分析:即在对现有的环境工程进行管理和控制的过程中,还应该要通过类比法来实现对一些特定的流体和固体的分离,也就是说在工程过程中,可以根据具体的环境需要对环境进行有效的处理,这种方式广泛的应用在石油工业废水处理以及相关的大气污染处理中,因为在这种环境工程的操作过程中,会运用到相关的分离性比较高的设备。

2.2 环境工程中垃圾预测的类比法运用:

在环境工程中,常会遇到对生活垃圾的处理问题,因为城市的生活垃圾产生的环境影响是不容忽视的,由于城市生活垃圾的产生量是非常大的,所以如果可以对生活垃圾进行一个全面的预测,就可以事前做好相关的处理方案的设计。一般来说,在采用类比法对现有的环境工程中的垃圾预测时,应该注意以下几个方面的问题:①类比指标的选取:即选择合适的环境工程的对比方案,对现有的各种城市生活垃圾产生的因素进行对比分析,以便更好的实现对该区域的地域性的垃圾产生问题进行分析。②类比城市的选取:在对城市垃圾的预测分析的过程中,应该注意的是要选择一些具有典型的可参考数据的城市作为类比对象和参考对象。③类比方法的实施:即对类比城市生活垃圾人均日产生量的变化发展规律作出合理研究与分析,进而对其进行有效预测。

3 环境工程中的对称法应用分析

对称法可以说是研究环境工程工艺的最基本性方法,它能够针对客观事物的基本属性及性质、结构运动特征,在事物内部构件一一对应的交互关系,从而在相类似事物当中找到相似点所在。从其在环境工程工艺中的应用角度上来说,对称法的应用可以分为内部对称与外部对称这两个方面,具体而言可作如下归纳。

3.1 内部对称法在环境工程中的应用分析:在当前技术条件支持下,内部对称法在环境工程中的应用价值主要体现在以下几个方面:①首先,是氧化与还原反应。我们可利用还原剂自身的还原特性对固体废弃物进行处置作业,并对城市工业建设中所产生的各类废气与废水进行净化处理;与此同时,我们还可以借助于氧化剂自身的氧化特性同样实现上述相关处理目的,以此缓解环境压力;②其次,是上浮与沉淀反应。

我们知道,大部分存在于废水水体当中的杂质在密度分布与大小参数上均有着较为显著的差异,对于那部分密度部分高于水体且尺寸较大的杂质而言,我们可采取重力沉降的方式对其进行去除处理,而对于那部分密度低于水体且尺寸较小的杂质而言,可利用杂质本身的上浮反应达到去除杂质的目的。现阶段上浮处理工艺方法广泛应用于餐饮废水的处理以及污泥原材的浓缩工作当中,而沉淀处理工艺方法则多适用于工业及生活污水/废水的处理工作当中;③最后,是好氧与厌氧反应。好氧微生物与厌氧微生物差异性的反应特征决定了其在环境工程中不同的应用价值。对于好氧微生物而言,其在氧气含量充分的条件下发挥处理特性,在氧化分解与沉淀处理的配合作用之下将废水/污水中大量的有机污染物物质进行去除处理。

3.2 外部对称法在环境工程中的应用分析:在现阶段技术条件支持下,外部对称法在环境工程中的应用价值主要体现在以下几个方面:①旋风除尘器及沉砂池装置:物体在高速旋转的过程当中会产生一定的离心力,进而导致物体气固相分离。上述两种装置基于流体力学对称性特征进行应用,除尘效果显著;②生物法:现阶段城市工业废水及生活污水的处理多以生物法方式进行,配合相应的脱硫与脱氮技术确保环境工程质量的稳定性。

4 结束语

综上所述,环境工程不仅关系到城市的发展和建设,也对城市居民的健康和城市的定位和规划问题有着非常重要的影响。环境工程的核心在于防治环境污染,提高环境质量。在人类活动不断深化发展的背景作用之下,环境污染形势的日益研究要求环境工程对其做出控制与改善。如何将环境工程相关职能发挥到最大限度,确保环境质量提升的高效性与稳定性,已成为现阶段相关工作人员最亟待解决的问题之一。

参考文献

[1]张燕,陈进.水环境保护工程的经济评价方法[J].水利经济,2003.21.(05).46-47.

[2]王虎虎.加强环境保护推进科学发展的思考[J].品牌,2011.(08).43.

[3]王晓晶.环境保护工程[J].黑龙江科技信息,2010.(03).201.

试论房屋建筑工程施工与环境保护

摘要:随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。人口剧增、资源过度消耗、气候变异、环境污染和生态破坏等问题威胁着人类的生存与发展。在严峻的现实面前,人们逐渐认识到,人类本身是自然系统的一部分,与环境息息相关。在房屋建筑工程施工过程中,我们必须优先考虑生态环境问题,并将其置于与经济和社会同等重要的地位上才能实现社会繁荣。

关键词:建筑工程 施工与环保 环保 措施

现代建筑是一种过分依赖有限能源的建筑。能源对于那些大量使用人工照明和机械空调的建筑意味着生命,而高能耗、低效率的建筑,不仅是导致能源紧张的重要因素,并且是使之成为制造大气污染的元凶。为了减少对不可再生资源的消耗,环保建筑主张调整或改变现行的设计观念和方式,使建筑由高能耗方式向低能耗方向转化,依靠节能技术,提高能源使用效率以及开发新能源,使建筑逐步摆脱对传统能源的过分依赖,实现一定程度上能源使用的自给自足。

1 房屋建筑施工的技术组织措施

1.1 平面管理

总平面管理是针对整个施工现场监理的管理,其最终要求是:严格按照各施工阶段的施工平面布置图规划和管理,具体表现在:

①施工平面图规划具有科学性、方便性、施工现场严格按照文明施工的有关规定管理。

②在明显的地方设置工程概况、施工进度计划、施工总平面图、现场管理制度、防火安全保卫制度等标牌。

③供电、给水、排水等系统的设置严格遵循平面图的布置。

④所有的材料堆场、小型机构的布设均按平面图要求布置,如有调整将征得现场监理或业主的同意。

⑤在做好总平面管理工作的同时,经常检查执行情况,坚持合理的施工顺序,不打乱仗,力求均衡生产。

1.2 文明施工管理

1.2.1 在过往行人和车辆密集的路口施工时,与当地交警部门协商制定交通示意图,并做好公示与交通疏导,交通疏导距离一般不少于50m。封闭交通施工的路段,留有特种车辆和沿线单位车辆通行的通道和人行通道。

1.2.2 因施工造成沿街居民出行不便的,设置安全的便道、便桥;施工中产生的沟、井、槽、坑应设置防护装置和警示标志及夜间警示灯。如遇恶劣天气应设专人值班,确保行人及车辆安全。

1.2.3 在进行地下工程挖掘前,向施工班组进行详细交底。施工过程中,与管线产权单位提前联系,要求该单位在施工现场设专人做好施工监护。并采取有效措施,确保地下管线及地下设施安全。

如因施工需要停水、停电、停气、中断交通时,采取相应的措施,并提前告之沿线单位及居民,以减少影响和损失。

2 房屋建筑工程施工环境保护措施

为了保护和改善施工现场的生活环境,防止由于建筑施工造成的作业污染,保障施工现场施工过程的良好生活环境是十分重要的。切实做好建筑施工现场的环境保护工作,主要采取以下措施:

2.1 建筑垃圾及粉尘控制的技术措施

①对施工现场场地进行硬化和绿化,并经常洒水和浇水,以减少粉尘污染。

②装卸有粉尘的材料时,要洒水湿润或在仓库内进行。

③建筑物外脚手架全封闭,防止粉尘外漏。

④严禁向建筑物外抛掷垃圾,所有垃圾装袋运出。现场主出入口外设有洗车台位,运输车辆必须冲洗干净后方能离场上路行驶;对装运建筑材料、土石方、建筑垃圾及工程渣土的车辆,派专人负责清扫及冲洗,保证行驶途中不污梁道路和环境。

⑤严格执行工程所在地有关运输车辆管理的规定。

2.2 噪音控制的技术措施

①施工中采用低噪音的工艺和施工方法。

②建立定期噪音监测制度,发现噪音超标,立即查找原因,及时进行整改。

③建筑施工作业的噪音可能超过建筑施工现场的噪音限值时,应在开工前向建设行政主管部门和环保部门申报,核准后再施工。

④调整作业时间,混凝土搅拌及浇筑等噪音较大的工序禁止夜晚作业。

2.3 施工期间振动污染的防治措施

①在可供选择的施工方案中尽量选用振动小的施工艺及施工机械。

②将振动较大的机械设备布置在运离施工红线的位置,减少对施工红线外振动的影响。

③对振动较大的施工机械,在中午(12时~14时)及夜间(20时~次日7时)休息时间内停机,以免影响附近居民休息。

2.4 施工期间水污染(废水)的防治措施

①加强对施工机械的维修保养,防止机械使用的油类渗漏进入地下水中或市政下水道。

②施工人员集中居住点的生活污水、生活垃圾(特别是粪便)要集中处理防治污染水源,厕所需设化粪池。③冲洗集料或含有沉淀物的操作用水,应采取过滤沉淀池处理或其他措施,使沉淀物不超过施工前河流、湖泊的随水排入的沉淀物量。

2.5 施工期间固体废物的防治措施

①注意环境卫生,施工项目用地范围内的生活垃圾应倾倒至围墙内的指定堆放点,不得在围墙外堆放或随意倾倒,最后交环保部门集中处理。

②对施工期间的固体废弃物应分类定点堆放,分类处理。

③施工期间产生的废钢材、木材,塑料等固体废料应予回收利用。

④严禁将有害废弃物用作土方回填料。

2.6 施工现场周围的环境保护

施工过程中积极对现场周围的环境进行保护。在整个工程的施工过程中特别是土方工程施工阶段对进出现场的车辆进行冲洗,严防污染路面。施工时如果现场出现古树、文物等阻碍施工情况时,应立即停止施工并采取隔离措施,报有关单位治理完后再恢复施工。

2.7 其他环保措施

①建立环境保护管理小组,由项目经理主管,成员由专业骨干组成,做好日常环境管理,并建立环保管理资料。

②建立健全环境工作管理条例,施工组织设计中应有相应环保内容。

③对地下管线应妥善保护,不明管线应事先探明,不允许野蛮施工作业。施工中如发现文物应及时停工,采取有效封闭保护措施,并及时报请业主处理,任何人不得隐瞒或私自占有。

④建立公众投诉电话,主动接受群众监督。

⑤施工期间应防止水土流失,做好废料石的处理,做到统筹规划、合理布置、综合治理、化害为利。

3 房屋建筑施工环境保护的意义

3.1 保护和改善施工环境是保证人们身体健康和社会文明的需要

采取专项措施防止粉尘、噪声和水源污染,保护好作业现场及其周围的环境,是保证职工和相关人员身体健康、体现社会总体文明的一项利国利民的重要工作。

3.2 保护和改善施工现场环境是消除对外部干扰保证施工顺利进行的需要

随着人们的法制观念和自我保护意识的增强,尤其在城市中,施工扰民问题反映突出,应及时采取防治措施,减少对环境的污染和对市民的干扰,也是施工生产顺利进行的基本条件。

3.3 保护和改善施工环境是现代化大生产的客观要求

现代化施工广泛应用新设备、新技术、新的生产工艺,对环境质量要求很高,如果粉尘、振动超标就可能损坏设备、影响功能发挥,使设备难以发挥作用。

3.4 节约能源、保护人类生存环境、保证社会和企业可持续发展的需要

人类社会即将面临环境污染和能源危机的挑战。为了保护子孙后代赖以生存的环境条件,每个公民和企业都有责任和义务来保护环境。良好的环境和生存条件,也是企业发展的基础和动力。

参考文献:

[1]张建国.建筑施工的环境影响分析[J].中国住宅设施,2009,(04).

[2]熊士斌.建筑施工中的环境保护措施分析[J].现代商贸工业,2008,(11).

[3]刘岩.建筑行业环境保护与绿色施工[J].内蒙古环境科学,2007,(02).

[4]张健.建筑施工环境因素分析及污染防治[J].低温建筑技术,2007,(05).

[5]吴柏松.试论建筑施工的环境保护[J].重庆环境科学,1988,(03).

清洁柴油加氢技术的技术综述

Albemarle Catalyst技术(a)STARS技术。STARS技术,Co-Mo型的K-757和Ni-Mo型的K-88是最早采用STARS技术的两个催化剂。KF-757适用于中间馏分油超深度加氢脱硫,中、低压条件下,生产硫含量<50μg/g的ULSD,视原料和操作苛刻度不同,其活性比KF-756高25%-60%。KF-848适用于加氢裂化预处理,其加氢脱氮活性比KF-843高60%;中、高压条件下,其加氢脱硫活性高于KF-757,因而也适于在中、高压装置上生产ULSD。2003年开发了KF-760(KF-757H)催化剂,该催化剂提高了原料适应性,适用于在不同原料中交替操作的装置。与KF-757相比,KF-760提高了加氢脱氮活性,使加氢脱硫活性得到提高。2004年开发出新一代专门为生产硫含量<10μg/gULSD设计的KF-767催化剂,大幅度提高了加氢脱氮和加氢脱硫活性,适合于氢分压3.0 MPa以上的装置。已有1000吨/年的KF-767催化剂用于4套工业装置,其中1套活性比上一周期使用的KF-757几乎高20℃。(b)NEBULA技术。采用Nebula技术催化剂,其活性至少是任何其他加氢处理催化剂活性的3倍。Nebula与常规催化剂的区别在于其活性组分和全新载体的设计,载体不是氧化铝,骨架密度较高。Nebula-1是第一个采用该技术的催化剂,堆积密度比常规催化剂高约50%,具有远高于常规催化剂的加氢脱硫、加氢脱氮和加氢脱芳烃活性,特别适合于中、高压条件下的加氢裂化预处理和超低硫柴油的生产。中试结果显示,脱硫至10μg/g,Nebua-1的活性比K-88高18℃。2003年,推出了新一代的Nebua-20催化剂。继承了Nebua-1在轻油方面的卓越性能,更适合于处理VGO。同时,堆积密度显著降低,而活性没有降低。Nebula催化剂的高活性使原设计生产含硫<500μg/g低硫柴油的中、高压装置不需要增加额外的催化剂体积,即可生产含硫<10μg/g的ULSD。2005年,应用Nebula催化剂的装置中有2/3是用于ULSD生产等的馏分油加氢。 Nebula催化剂价格昂贵,并且其超高的加氢活性导致氢耗很高,在用于中间馏分油加氢处理时,Albemale推荐使用Nebula/STARS复配装填方式。中试及工业结果显示,使用Nebula -20和KF-757或KF-760进行复配时,对于中间馏分油的加氢脱硫活性比单纯的STARS高(15-18),而氢耗不显著增加。已有2套使用NebulaSTARS复配装填的工业ULSD加氢装置开工,另有4套煤油加氢装置准备应用。Crterion Catalyst & Technology技术CENTINEL系列催化剂是Criteron公司主要的高活性加氢处理催化剂,以CENTINEL专利技术制备,活性大大高于传统催化剂。该技术通过锁定位置的浸渍方法,使金属组分获得更好地分散,因而金属组分可以更充分的被利用,更有利于金属氧化态催化剂向具有活性的硫化态转化。 采用CENTINEL技术催化剂,Co-Mo型的DC-2118、Ni-Mo型的DN-3100、DN-311及DN- 3120等。其中DC-2118和DN-310特别适合于生产ULSD,已经有60多套柴油加氢装置使用CENTINEL催化剂。DC-218为最大程度加氢脱硫设计,适于低压和高空速等苛刻条件下的操作,是柴油馏分超深度加氢脱硫的首选。而当需要进行深度加氢,如生产硫含量25%)的重质原料。ASCENT催化剂适合于中、低压装置,主要用于加工相对较低含量的裂化组分的原料。 CENTINEL GOLD是CENTINEL技术的升级,可进一步提高活性金属负载量和分散度,使催化剂获得100%的II型金属硫化物活性中心,大幅度提高了加氢活性,更容易脱除柴油原料中的多芳环含硫化合物。采用CENTINEL GOLD技术的催化剂有Co-Mo型的DC-2318和Ni-Mo型的DN-3330,其活性都比前一代有较大提高。试验结果表明,对于不同来源的柴油原料,在生产含硫<10μg/g的ULSD时,DC-2318的活性比D-2118高(7-12℃),而DN-3330的活性比DN-3110高(7-16)℃。使用DC-2318生产ULSD时,比Ni-Mo催化剂减少5%-15%的氢耗,而使用常规方式再生的 DN -3330催化剂活性相当于新鲜DN-310。与CENTINEL GOLD不同,ASCENT技术通过调整载体的物理结构以提高活性组分的分散度,活性中心为I型和II型的混合物,提高了低压下的加氢脱硫活性。ASCENT催化剂具有非常高的机械强度,并且可用常规方法再生。采用ASCENT技术的催化剂是Co-Mo型的DC-2531,该催化剂适合中、低压装置特别是H2供应有限的装置,对于Si、Na和As等有良好的抗中毒能力。试验表明,DC-2531在生产ULSD时,活性远高于传统催化剂,比II型高活性催化剂略高或与之相当。DC-2531催化剂优异的再生性能使其通过常规再生方式可恢复90%以上的活性,在生产含硫< 10μg/gULSD时,活性仅比新鲜催化剂低2℃。Haldor TopsФe技术TopsФe用于馏分油加氢处理催化剂是其TK400和TK500系列,各有Co-Mo、Ni-Mo和Co--Mo-Ni等不同类型的催化剂。(a)TK-576BRIM技术。T-576BR技术的进展主要表现在BRM催化剂制备技术及采用此技术开发的新型高活性催 化剂。认为MoS2片层顶部存在着实现通过预加氢途径脱硫或脱氮的活性中心,称为brim sites,该活性中心对脱除带强烈位阻的含杂原子物种非常重要。BRIM技术增加并优化了催化剂的brim中心以提高加氢活性,还通过提高II型活性中心的数量来提高直接脱硫活性,采用该技术的催化剂有用于FCC预处理的Co-Mo型TK-558、Ni-Mo型TK-559和用于ULSD生产的Co-Mo型TK-576。中试结果显示,用于生产ULSD时,以直馏或含50%LCO的混合原料,在(2.0-3.0)MPa的低压条件下,TK-576的加氢脱硫活性比上一代TK-574高(7 -8)℃,显示出优良的活性稳定性。(b)深度脱硫脱芳两段联合工艺。TopsФe的深度脱硫脱烃两段联合工艺是低压工艺,用于生产超低硫、低芳烃的清洁柴油。其两段可以分别单独使用,也适用于对现有装置进行改造。第一段为脱硫段,采用Ni-Mo催化剂,第二段采用耐硫贵金属催化剂,最终产品几乎无硫,芳烃含量可降低到5%以下。已有5套工业装置采用 深度脱硫、脱芳烃两段工艺生产无硫和低芳清洁柴油。TopsФe目前有三个耐硫贵金属催化剂可用于深度加氢脱芳烃。TK-907是工业应用的标准贵金属催化剂,TK-91是贵金属负载量与TK-907相同的新的高活性催化剂,TK-915是新高活性催化剂,其活性比TK-907高4倍。使用TK-915可以便现有装置充分增加处理能力,或者减少新建装置的反应器体积。Axens技术Axens的高活性加氢处理催化剂是HR400和HR500系列,各有Co-Mo、Ni-Mo和Co-Mo-Ni等不同类型的催化剂。HR400系列于1998年工业化,已应用于150套馏分油加氢装置,大部分用于生产硫含量<350μg/g的低硫柴油,30套以上用于生产硫含量<50μg/g的ULSD,其余用于FCC预处理和中、高压加氢裂化预处理等。新一代HR500系列于2003年面世,该系列催化剂的开发采用了ACETM(Advanced Catalytic Engineering) 技术。Axens认为,高加氢脱硫活性的实现需要一种混合型活性中心,需要Mo原子与助剂原子(Co或者Ni)充分地接近以发挥协同作用。ACE技术充分提高了这种混合中心的数量。 ACE技术通过2条途径提高加氢脱硫活性:(a)混合中心数量的增加直接提高加氢脱硫活性; (b)高活性中心的增加同时也提高了加氢脱氮活性,并促进加氢脱硫活性进一步提高。 HR500系列在其他方面进行了改进: (a)新型氧化铝载体的开发,提高了表面积和孔容,优化孔分布,并根据加氢处理的需要进行酸性调变;(b)提高了金属负载量,比HR400系列催化剂活性高约20%。在用于生产含硫<50μg/g的ULSD时,Co-Mo型催化剂的HR526活性比HR426至少高5℃,而氢耗两者相当。Co-Mo-Ni型的HR568催化剂进一步提高了原料适应性。对于含有10%-20%二次加工柴油的原料,在生产ULSD时,其加氢脱硫活性比HR426催化剂高5℃以上,加氢脱氮活性则比HR426催化剂高15℃以上。以SRGO和LCO混合为原料油,对HR-526和HR-568催化剂的对比试验表明,两者的氢耗差别在5%以内Ni-Mo型的HR538和HR548催化剂用于具有较高处理难度的原料,如高氮及二次加工原料。以含硫15%、15%大于360℃的含25%LCO的混合原料进行对比评价,在产品含硫<10μg/g时活性比HR-448高5℃。在大部分情况下,其加氢脱氮活性比HR-448催化剂高(5~10)℃。法国石油研究院的加氢技术法国石油研究院开发了2种深度脱硫和超深度脱硫新催化剂HR-416和HR-4480HR-416是加有助剂的Mo-Co催化剂,脱硫活性高于其前身HR-316催化剂。HR-448是加有助剂的Mo-Ni催化剂,脱硫和脱氮活性都高于其前身HR-348催化剂。生产超低硫柴油和加工直馏柴油,推荐使用HR-416催化剂。深度脱硫、脱芳、改善稳定性和提高十六烧值,在加工催化裂化柴油或焦化柴油时,建议使用HR-448催化剂。反应器顶部要分级装填一些其他催化剂,以改善物料分布,降低床层压降,延长运转周期。对直馏瓦斯油和轻循环油的脱硫脱芳烃技术进行了较系统的研究,认为直馏分瓦斯油可以采用新一代Mo-Co催化剂进行深度脱硫,使硫含量从3000μg/g降到500μg/g,而单独对轻循环油进行脱硫需要提高氢分压,如果两者混合加氢脱硫,也可以达到硫含量<500μg/g,以芳烃<10% μg/g以硫含量1310,16.7%的中东直馏分柴油(217-358)℃为原料,在氢分压7.6MPa和空速2.0h-1条件下,HR-448催化剂加氢后柴油的硫含量<50℃,以芳烃< 10%,该技术有多套装置实现了工业应用。国内常规柴油加氢精制催化剂中国石化抚顺石油化工研究院(FRIPP)针对国产二次加工柴油精制需要开发了柴油加氢精制技术。用FH-98处理中东直馏柴油,在氢分压(5.0~6.0)MPa,空速(1.8~2.0)h-1、氢油体积比(400~500):1和反应温度(350-360)℃条件下,可生产符合世界燃油规范II类标准的柴油;对焦化和催化混合柴油,在氢分压6.5 MPa、空速0.7 h-1、氢油体积比500:1和反应温度360℃的条件下,可生产世界燃油规范II类标准的柴油。但随着进口原油量的增长,柴油质量要求不断提高,以降低直馆柴油硫含量为目的的加氢技术迅速得到发展;在系统压力6.5MPa、反应温度355℃、空速1.7 h-1和氢油体积比500:1的条件下,用FH-DS催化剂可以将焦化柴油和催化柴油混合原料油的硫含量由2.3μg/g降低至300μg/g ,符合欧II标准硫含量要求的柴油;用FH-UDS催化剂可以生产出硫含量<50μg/g的符合欧IV标准硫含量要求的柴油。改善劣质柴油十六烷值MCI技术FRIPP开发的MCI技术,可较大幅度提高柴油十六烧值,柴油收率较高。该技术采用加氢精制和加氢改质双剂一段串联工艺,精制段使用的催化剂一般为FH-5、FH-SA和FH-98等精制剂,改质段使用的是MCI专用的3963催化剂。MCI技术已在中国石油吉林化学工业公司炼油厂20万吨/年柴油加氢装置、中国石油大连石化公司80万吨/年柴油加氢装置和中国石油大港石化40万吨/年柴油加氢装置等装置上成功进行了工业应用,产品十六烷值提高10-12个单位,收率95%以上。第二代MCI技术开发成功,使用适于单段单剂工艺工艺流程的FC -18催化剂,该催化剂在3963催化剂的基础上提高抗积炭和抗氮能力。该技术于2002年4月在中国石化广州分公司进行工业应用, 2002年10月进行标定,在高分压6.9 MPa、平均温度360℃和空速10h-1的条件下,柴油收率96.6%,产品硫含量由7000μg/g降低到5.8μg/g,十六烷值提高10.9个单位。两段法柴油深度脱硫脱芳FDAS技术FRIPP利用现有常规非贵金属加氢催化剂开发了FDAS技术,通过优化工艺条件可知,在氢分压(5.5-7.0) MPa、氢油体积比(350-500):1和空速(1.5-2.0)h-1等条件下,处理硫含量10200μg/g、氮含量747μg/g和芳烃质量分数43.1%的催化裂化柴油,生产符合欧III排放标准的清洁柴油。该技术也可处理硫含量13000μg/g、氮含量580μg/g、芳烃质量分数32.7%的直馏柴油和催化柴油混合油,通过优化工艺条件,柴油收率大于99%,符合欧IV排放标准的清洁柴油,因此,FDAS工艺是直接生产低硫、低芳和高十六烷值清洁柴油较好的技术。汽提式两段法柴油深度脱硫脱芳FCSH技术FRIPP开发的FCSH技术有单段逆流操作方式和一反并流、二反逆流的一段串联方式2种,同时环 烷烃发生适当的开环反应,提高产品的十六烷值。该技术可用于加工馏程(154-420)℃、硫含量小于15000μg/g和芳烃含量35%-60%的原料油,可生产硫含量(5-50)μg/g和芳烃含量50%-20%的清洁柴油。生产超低硫柴油的RTS技术中国石化石油化工科学研究院( RIPP)的RTS技术用于超深度加氢脱硫生产超低硫柴油。在相同的氢分压、平均反应温度和氢油体积比条件下,目标产品为超低硫柴油,在达到相同产品硫含量时,RTS工艺的空速为常规工艺的1.88倍,即催化剂体积装填量可以减少近一半;当采用相同催化剂体积,在空速相同时,常规加氢脱硫工艺的平均反应温度要高37℃。单段深度加氢处理SSHT技术RIPP开发的单段深度加氢处理SSHT技术具有高加氢脱氮、高芳烃饱和活性的催化剂(RN系列催化剂等),在较高氢分压和较低空速条件下,对柴油馏分原料进行处理加氢反应中芳烃脱除需要较高耗氢。在氢分压6.10MPa和平均反应温度356℃条件下。总芳烃含量满足世界燃油规范II类柴油标准。深度加氢处理RICH技术RIPP根据催化裂化柴油的特点,依据脱硫、脱氮和催化裂化柴油加氢改质的机理,开发了RICH技术。RICH技术在中等压力下操作,采用单段单剂和一次通过的工艺流程。所选用的主催化剂专门针对劣质催化裂化柴油特点,具有加氢脱硫、加氢脱氮、烯烃和芳烃饱和以及开环裂化等功能。该催化剂对氮中毒不敏感,操作上具有良好灵活性。RICH技术2000年在中国石化洛阳石化分公司80万吨/年柴油加氢装置工业应用。工业应用结果表明,催化裂化柴油除十六烷值可提高10个单位左右,密度及硫、氮等杂质含量也得到大幅度降低,柴油收率约97%。

上一篇:英文论文格式大纲

下一篇:毕业论文低分