塑料论文主题
塑料论文主题
生物降解塑料的发展
[摘 要]近年来,世界工业发达国家十分重视生物降解塑料,特别是原料来自可再生资源或产业废气综合利用(如CO2)的生物降解塑料。我国生物降解塑料的研发和生产均得到了发展,尤其是可再生材料的生物降解塑料的发展更是取得了长足进步。
[关键词]生物降解;塑料;发展;微生物;材料
生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑 料[1]。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的高分子材料。纸是一种典型的生物降解材料,而合成塑料则是典型的高分子材料。因此,生物降解塑料是兼有纸和合成塑料这两种材料性质的高分子材料。生物降解塑料又可分为完全生物降解塑料和破坏性生物降解塑料。
1 国内生物降解塑料产业化情况
20世纪90年代中期,在国家禁白令的支持下,国内出现了一百多条各种类型的生物降解塑料生产线。进入21世纪,我国生物降解塑料的研发和生产均得到了显著的发展,尤其是可再生材料的生物降解塑料的发展更是取得了长足进步。武汉华丽环保科技有限公司生产的由葡萄糖组成的可塑淀粉生物降解塑料,可用于千次性餐具、酒店用品、工业包装等领域,市场推广良好;宁波天安生物材料有限公司生产的一种由微生物合成的可降解的聚羟基脂肪酸酯塑料,具有很好的抗热湿气性能,可以在食品包装上应用;内蒙古蒙西分子材料有限责任公司研制开发的二氧化碳聚合物降解塑料,用在农业地膜上效果很好;台湾瑞旗生物科技股份有限公司用玉米等植物淀粉发酵后,再经过聚合制造出的植物塑料聚乳酸特别适用于餐饮用品、服装制造等领域;浙江海正生物材料股份有限公司研制生产的聚乳酸是一种玉米塑料,可制成高性能的一次性碗、盘、杯、叉、刀、勺等;中科院理化所国家工程塑料中心开发的全生物降解塑料柬丁二酸丁二醇酯,产业化势头尤为迅速,目前已形成超过2万t/a的生产能力[2]。
2 生物降解塑料新产品开发情况
通常降解塑料的定义为:在特定环境条件下,其化学结构发生明显变化,并用标准的测试方法能测定物质性能变化的塑料。按原料生物降解塑料可分为天然生物降解、微生物降解塑料和化学合成生物降解塑料几大类。按降解机理可分为光降解塑料、生物降解、光-生物降解塑料。
近年来,世界工业发达国家十分重视发展生物降解塑料,特别是原料来自可再生资源或产业废气综合利用(如CO2)的生物降解塑料。目前全球研发的生物降解塑料品种已有几十种,可批量生产和工业化生产的品种主要有微生物发酵合成的聚羟基脂肪酸酯(PHA、PHB、PHBV等);化学合成的聚乳酸(PIA)、聚己内酯、二元醇二羧酸脂肪族聚酯(PBS)、脂肪族/芳香族共聚酯、二氧化碳/环氧化合物共聚物(APC)、聚乙烯醇(PVA)等;天然高分子淀粉基塑料及其生物降解塑料共混物、塑料合金等。目前已进入中试或批量生产的品种有PHA(PHB、PHBV、PHBHHX等)、PLA、PBS、APC、改性PVA、淀粉基塑料、淀粉/PVA、PLA、PCL等塑料合金及共混物等。
生物降解塑料又分为天然生物降解塑料、微生物降解塑料和化学合成生物降解塑料[3]。
2.1 生物降解塑料
天然生物降解塑料是指以天然聚合物为原料,可通过各种成型工艺制成生物降解塑料制品的一类材料。这类材料包括由淀粉、纤维素、甲壳素、大豆蛋白等天然聚合物及其各种衍生物和混合物。
2.2 微生物合成生物降解塑料
2.2.1 聚乳酸(PLA)聚乳酸耐水,不能忍受>55 ℃的温度。虽然它不是水溶性的,但是海洋环境中的微生物也能使之降解成二氧化碳和水。这种塑料类似透明的聚苯乙烯,表现出很好的外观(有光泽和透明度),缺点是硬且脆的材料,在大多数实际应用中需要改性。例如,用增塑剂来提高其柔韧性,它可以和许多热塑性塑料一样被加工成纤维、薄膜,热成型或者注塑成型。
2.2.2 聚羟基烷酸酯(PHA)
利用可再生资源得到的生物降解塑料,把脂肪族聚酯和淀粉混合在一起,生产可降解性塑料的技术也已经研究成功。在欧美国家,淀粉和脂肪族聚酯的共混物被广泛用来生产垃圾袋等产品。例如,国际上规模最大、销售最好的是意大利的Novamont公司,其商品名为Mater-bi,公司的产品在欧洲和美国有较大量的应用[4]。
2.2.3 聚己内酯(PCL)
这种塑料具有良好的生物降解性和吸力性能,溶点是62 ℃。分解它的微生物广泛地分布在喜气或厌气条件下。作为可生物降解材料可把它与淀粉、纤维素类的材料混合在一起,或与乳酸聚合使用[5]。
3 生物降解材料发展面临的问题
对适用于医学研究的生物降解材料,人们首先关心的是它的降解产物是否具有毒性,以及如何人为地控制降解速度。因此,生物降解材料合理的工艺配方、准确的降解时控性,用后降解的彻底性以及回收利用等技术的进一步提高和完善显得尤为重要。
在组织工程研究领域,比如研究者选用生物降解材料来构建人体的组织或器官,要求不仅有疗效,而且要保证安全、无毒、无刺激性,与人体有良好的生物相容性。
目前,可生物降解材料存在的主要问题:(1) 天然高分子材料及其改性物没有热塑性,多数加工困难,产品强度不高,还未完全达到实用阶段;(2) 价格昂贵,是通用塑料的5~10倍,不易推广应用;(3)可生物降解材料更合理的工艺配方、准确的降解时控性,用后降解的彻底性以及回收利用等技术还有待进一步提高和完善;(4) 一些可生物降解材料的最大问题是只能部分降解,人工合成生物降解材料大多还存在生产工艺复杂、产品性能不稳定的缺陷;(5) 国内外至今尚无统一认可的评价方法和标准[6]。
4 可降解塑料发展动向
随着塑料工业的迅速发展,当前世界塑料总产量已超过1.8亿t,但因废塑料难于降解,而成为环境垃圾。发展可降解塑料能减少白色污染,有显著的经济效益和社会效益。现生产降解塑料的主要国家有美国、意大利、德国、加拿大、日本、中国等。随着PLA等可降解塑料材料的应运而生,在原有聚乙烯等传统不可降解塑料制品中加入适量PLA等生物材料的塑料制品,既可部分实现生物降解,原有的力学性能又没有改变[7]。
生物塑料的耐热温性能不好,很多生物塑料在50~55 ℃就会变形,其应用领域和适用范围因此受到很大限制。进一步改善生物降解塑料产品的性能,将其推广到电子产品、汽车材料领域,真正使生物降解获得大规模推广应用。美国普立万公司一直在为提高生物塑料的耐高热性能而努力,该公司开发的产品,改善了材料的抗冲击性并可在100 ℃以上加工使用的可生物降解塑料技术。总之,可生物降解塑料的耐高温性能正在逐步提升,进一步推广应用条件正在逐步成熟[8]。
5 建议与展望
近年来,随着原料生产和制品加工技术的进步,生物降解材料备受关注。无论是从能源替代、二氧化碳减少,还是从环境保护以及部分解决“三农”问题,都具有重要意义[7]。目前我国生物降解材料发展的状况,在自主知识产权、创新型产品等方面的研发能力、投入量等均待提高,存在生物降解材料的产业化与市场化规模不大、生物降解材料的回收处理系统不很完善等问题,为了解决这些情况,应制订配套的政策及法规。
急!!求助有关塑料行业的毕业论文 参考文献!!
1、 塑料管应用现状研究 摘要:主要介绍了塑料管应用现状和生产现状。本世纪50年代以后,随着石油化学工业的飞速发展,石油深加工技术日趋完善,塑料制品种类多样化,产量迅速增长,使之逐步发展成为一种新型工程材料。塑料管和传统管材相... 类别:材料工程学 作者::佚名 日期:2008-02-07 [查看详细] 2、 试论各种塑料管道的特点及应用 摘要:简明介绍硬聚氯乙烯管(UPVC)、芯层发泡管(PSP)、硬聚氯乙烯消音管、塑料波纹管、氯化聚氯乙烯管(CPVC)、高密度取乙烯管(HDPE)、交联聚乙烯管(PEX)、钢塑复合管、铝塑复合管(PA... 类别:材料工程学 作者::王乐农 日期:2008-02-07 [查看详细] 3、 塑料光纤传光原理 摘要:塑料光纤POF之所以能传光是因为光纤具有芯皮结构,光在POF中传输是按全反射原理进行的,光在SIPOF中的传输方式为全反射式锯齿型,光在GIPOF中的传输方式为正弦曲线型;子午线就是光线的传播路...
求(废)塑料的回收及利用论文
摘要:系统总结国内外废旧塑料的主要回收利用技术,针对目前我国回收处理废旧塑料的现状,指出提高分类筛选水平,吸收开发关键技术,是我国回收处理废旧塑料的必要途径。由于治理白色污染是个庞大的系统工程,政府部门须在制定法规和加强管理的同时,提高全社会的科技意识、环保意识和参与意识,这样才是减少和消除白色污染,提高资源综合利用水平的根本途径。
关键词:废塑料,白色污染,回收,再生,热解,技术进展
废旧塑料通常以填埋或焚烧的方式处理。焚烧会产生大量有毒气体造成二次污染。填埋会占用较大空间;塑料自然降解需要百年以上;析出添加剂污染土壤和地下水等。因此,废塑料处理技术的发展趋势是回收利用,但目前废塑料的回收和再生利用率低。究其原因,有管理、政策、回收环节方面的问题,但更重要的是回收利用技术还不够完善。
废旧塑料回收利用技术多种多样,有可回收多种塑料的技术,也有专门回收单一树脂的技术。近年来,塑料回收利用技术取得了许多可喜的进展,本文主要针对较通用的技术做一总结。
1 分离分选技术
废旧塑料回收利用的关键环节之一是废弃塑料的收集和预处理。尤其我国,造成回收率低的重要原因是垃圾分类收集程度很低。由于不同树脂的熔点、软化点相差较大,为使废塑料得到更好的再生利用,最好分类处理单一品种的树脂,因此分离筛选是废旧塑料回收的重要环节。对小批量的废旧塑料,可采用人工分选法,但人工分选效率低,将使回收成本增加。国外开发了多种分离分选方法。
1.1 仪器识别与分离技术
意大利Govoni公司首先采用X光探测器与自动分类系统将PVC从相混塑料中分离出来[1]。美国塑料回收技术研究中心研制了X射线荧光光谱仪,可高度自动化的从硬质容器中分离出PVC容器。德国Refrakt公司则利用热源识别技术,通过加热在较低温度下将熔融的PVC从混合塑料中分离出来[1]。
近红外线具有识别有机材料的功能,采用近红外线技术[1]的光过滤器识别塑料的速度可达2000次/秒以上,常见塑料(PE、PP、PS、PVC、PET)可以明确的被区别开来,当混合塑料通过近红外光谱分析仪时,装置能自动分选出5种常见的塑料,速度可达到20~30片/min。
1.2 水力旋分技术
日本塑料处理促进会利用旋风分离原理和塑料的密度差开发了水力旋风分离器。将混合塑料经粉碎、洗净等预处理后装入储槽,然后定量输送至搅拌器,形成的浆状物通过离心泵送入旋风分离器,在分离器中密度不同的塑料被分别排出。美国Dow化学公司也开发了类似的技术,它以液态碳氢化合物取代水来进行分离,取得了较好的效果[2]。
1.3 选择性溶解法
美国凯洛格公司和Rensselaser工学院共同开发了一种利用溶剂选择性溶解分离回收废塑料的技术。将混合塑料加入二甲苯溶剂中,它可在不同的温度下选择性溶解、分离不同的塑料,其中的二甲苯可循环使用,且损耗小[1,3]。
比利时Solvay SA公司开发了Vinyloop技术,采用甲乙酮作溶剂,分离回收PVC,回收到的PVC与新原料密度相差无几,但颜色略呈灰色。德国也有溶剂回收的Delphi技术,所用的酯类和酮类溶剂比Vinyloop技术少得多。
1.4 浮选分离法
日本一家材料研究所采用普通浸润剂,如木质素磺酸钠、丹宁酸、Aerosol OT和皂草甙等,成功地将PVC、PC(聚碳酸酯)、POM(聚甲醛)和PPE(聚苯醚)等塑料混合物分离开来[4]。
1.5 电分离技术[5]
用摩擦生电的方法分离混合塑料(如PAN、、PE、PVC和PA等)。其原理是两种不同的非导电材料摩擦时,它们通过电子得失获得相反的电荷,其中介电常数高的材料带正电荷,介电常数低的材料带负电荷。塑料回收混杂料在旋转锅中频繁接触而产生电荷,然后被送如另一只表面带电的锅中而被分离。
2 焚烧回收能量
聚乙烯与聚苯乙烯的燃烧热高达46000kJ/kg,超过燃料油的平均值44000 kJ/kg,聚氯乙烯的热值也高达18800 kJ/kg。废弃塑料燃烧速度快,灰分低,国外用之代替煤或油用于高炉喷吹或水泥回转窑。由于PVC燃烧会产生氯化氢,腐蚀锅炉和管道,并且废气中含有呋喃,二恶英等。美国开发了RDF技术(垃圾固体燃料),将废弃塑料与废纸,木屑、果壳等混合,既稀释了含氯的组分,而且便于储存运输。对于那些技术上不可能回收(如各种复合材料或合金混炼制品)和难以再生的废塑料可采用焚烧处理,回收热能。优点是处理数量大,成本低,效率高。弊端是产生有害气体,需要专门的焚烧炉,设备投资、损耗、维护、运转费用较高。
3 熔融再生技术
熔融再生是将废旧塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。简单再生主要回收树脂厂和塑料制品厂的边角废料以及那些易于挑选清洗的一次性消费品,如聚酯饮料瓶、食品包装袋等。回收后其性能与新料差不多。
复合再生的原料则是从不同渠道收集到的废弃塑料,有杂质多、品种复杂、形态多样、脏污等特点,因此再生加工程序比较繁杂,分离技术和筛选工作量大。一般来说,复合回收的塑料性质不稳定,易变脆,常被用来制备较低档次的产品。如建筑填料、垃圾袋、微孔凉鞋、雨衣及器械的包装材料等。
4 裂解回收燃料和化工原料
4.1 热裂解和催化裂解技术
由于裂解反应理论研究的不断深入[6-11],国内外对裂解技术的开发取得了许多进展。裂解技术因最终产品的不同分为两种:一种是回收化工原料(如乙烯、丙烯、苯乙烯等)[12],另一种是得到燃料(汽油、柴油、焦油等)。虽然都是将废旧塑料转化为低分子物质,但工艺路线不同。制取化工原料是在反应塔中加热废塑料,在沸腾床中达到分解温度(600~900℃),一般不产生二次污染,但技术要求高,成本也较高。裂解油化技术则通常有热裂解和催化裂解两种。
日本富士循环公司的将废旧塑料转化为汽油、煤油和柴油技术,采用ZSM-5催化剂,通过两台反应器进行转化反应将塑料裂解为燃料。每千克塑料可生成0.5L汽油、 0.5L煤油和柴油。美国Amoco公司开发了一种新工艺,可将废旧塑料在炼油厂中转变为基本化学品。经预处理的废旧塑料溶解于热的精炼油中,在高温催化裂化催化剂作用下分解为轻产品。由PE回收得LPG、脂肪族燃料;由PP回收得脂肪族燃料,由PS可得芳香族燃料。Yoshio Uemichi等人[13]研制了一种复合催化体系用于降解聚乙烯,催化剂为二氧化硅/氧化铝和HZSM-5沸石。实验表明,这种催化剂对选择性制取高质量汽油较有效,所得汽油产率为58.8%,辛烷值94。
国内李梅等[14]报道废旧塑料在反应温度350~420℃,反应时间2~4s,可得到MON73的汽油和SP-10的柴油,可连续化生产的工艺。李稳宏等[3]进行了废塑料降解工艺过程催化剂的研究。以PE、PS及PP为原料的催化裂化过程中,理想的催化剂是一种分子筛型催化剂,表面具有酸性,操作温度为360℃,液体收率90%以上,汽油辛烷值大于80。刘公召[15]研究开发了废塑料催化裂解一次转化成汽油、柴油的中试装置,可日产汽油柴油2t,能够实现汽油、柴油分离和排渣的连续化操作,裂解反应器具有传热效果好,生产能力大的特点。催化剂加入量1~3%,反应温度350~380℃,汽油和柴油的总收率可达到70%,由废聚乙烯、聚丙烯和聚苯乙烯制得的汽油辛烷值分别为72、77和86,柴油的凝固点为3,-11,-22℃,该工艺操作安全,无三废排放。袁兴中[16]针对釜底清渣和管道胶结的问题,研究了流化移动床反应釜催化裂解废塑料的技术。为实现安全、稳定、长周期连续生产,降低能耗和成本,提高产率和产品质量打下了基础。
将废料通过裂解制得化工原料和燃料,是资源回收和避免二次污染的重要途径。德国、美国、日本等都有大规模的工厂,我国在北京、西安、广州也建有小规模的废塑料油化厂,但是目前尚存在许多待解决的问题。由于废塑料导热性差,塑料受热产生高黏度融化物,不利于输送;废塑料中含有PVC导致HCl产生,腐蚀设备的同时使催化剂活性降低;碳残渣粘附于反应器壁,不易清除,影响连续操作;催化剂的使用寿命和活性较低,使生产成本高;生产中产生的油渣目前无较好的处理办法等等。国内关于热解油化的报道还有很多[43-54],但如何吸收已有的成果,攻克技术难点,是我们急需要做的工作。
4.2 超临界油化法
水的临界温度为374.3℃,临界压力为22.05Mpa。临界水具有常态下有机溶液的性能,能溶解有机物而不能溶解无机物,而且可与空气、氧气、氮气、二氧化碳等气体完全互溶。日本专利有用超临界水对废旧塑料(PE、PP、PS等)进行回收的报告,反应温度为400~600℃,反应压力25Mpa,反应时间在10min以下,可获得90%以上的油化收率。用超临界水进行废旧塑料降解的优点是很明显的:水做介质成本低廉;可避免热解时发生炭化现象;反应在密闭系统中进行,不会给环境带来新的污染;反应快速,生产效率高等。邱挺等[17]总结了超临界技术在废塑料回收利用中的进展。
4.3 气化技术
气化法的优点在于能将城市垃圾混合处理,无需分离塑料,但操作需要高于热分解法的高温(一般在900℃左右)。德国Espag公司的Schwaize Pumpe炼油厂每年可将1700t废塑料加工成城市煤气。RWE公司计划每年将22万吨褐煤、10万吨塑料垃圾和城镇石油加工厂产生的石油矿泥进行气化。德国Hoechst公司采用高温Winkler工艺将混合塑料气化,再转化成水煤气作为合成醇类的原料。
4.4 氢化裂解技术
德国Vebaeol公司组建了氢化裂解装置,使废塑料颗粒在15~30Mpa,470℃下氢解,生成一种合成油,其中链烷烃60%、环烷烃30%、芳香烃为1%。这种加工方法的能量有效利用率为88%,物质转化有效率为80%。
5 其他利用技术
废旧塑料还有着广泛的用途。美国得克萨斯州立大学采用黄砂、石子、液态PET和固化剂为原料制成混凝土,Bitlgosz [18] 将废塑料用作水泥原材料。解立平等[19]利用废旧塑料与木料、纸张等制备中孔活性炭,雷闫盈等[20报道应用废旧聚苯乙烯制涂料,李玲玲[21]报道塑料可变成木材。宋文祥[22]介绍了国外用HDPE作原料,通过一种特殊的方法,使长度不同的玻璃纤维在模具内沿着物料流向的轴向同向,从而生产高强度塑料枕木。蒲廷芳[23]等使用废旧聚乙烯制高附加值的聚乙烯蜡。李春生等[24]报道,聚苯乙烯与其他热塑性塑料相比,具有熔融粘度小,流动性大的特点,因此熔融后可以很好地浸润所接触的表面而起到良好的粘接作用。张争奇等[25]用废塑料改性沥青,将某一种或几种塑料按一定比例均匀溶于沥青中,使沥青的路用性能得到改善,从而提高沥青路面质量,延长路面寿命。
结束语
治理白色污染是个庞大的系统工程,需要各部门,各行业的共同努力,需要全社会在思想上和行动上的共同参与和支持,有赖于全民科技意识、环保意识的提高。政府部门在制定法规加强管理的同时,可把发展环保技术和环保产业作为刺激经济和扩大就业的重要渠道,使废塑料的收集、处理及回收利用产业化。目前我国回收和加工企业分散,规模小,很多国内外塑料回收与加工的新技术和新设备无法推广实施,回收加工产品质量低下,因此对塑料回收企业应进行规范化管理,以提高其科技含量和经济效益。在回收利用的同时,更需研究开发可环境消纳塑料,寻求切实可行的替代品。
塑料模具设计论文
大型塑料托盘浇注系统的优化设计
摘 要:塑料托盘的结构复杂、体积庞大,致使模具浇注系统设计难度增大,只凭模具工程师经验,已经很难把握浇注系
统设计的合理性。因此,借助模流分析软件Moldflow,对塑料托盘浇注系统进行模拟仿真分析,优化浇口的数目、位置和
流道尺寸等,使其达到流道平衡,降低成型托盘制品的体积收缩率等相关缺陷,最终确立最佳的浇注系统设计方案,提高
一次试模成功率。
关 键 词:托盘;Moldflow软件;浇注系统;优化设计
0 前言
托盘是一种重要的集装器具,它是在物流领域中
适应装卸机械化而发展起来的。由于塑料托盘的性能
要求较高,相应地对其设计和制造也提出了较高的要
求。由于大型托盘模具的结构复杂,制造成本高,生产
周期长,具有一定风险,在国外主要由专业模具厂家进
行设计和制造,而且在模具设计中普遍地采用了CAE
技术。
1 塑料托盘模具的浇注系统
由于塑性流体在大型模具中的流程比(L/t)较大,
所以浇注系统的设计是否合理,将直接影响到塑料熔
体压力和温度的损失、流程、保压补料、产品残余、熔接
痕、内应力等很多方面,同时也会影响到产品的内外质
量和模具使用的刚度、强度。所以浇注系统常常成为
大型注射模具优先考虑的主要对象。在浇注系统中,
主要要优化[1]浇口的数目、位置和主、分流道的尺寸、
形状等几方面的设计。
1.1 建立有限元模型
根据三维实体模型(如图1),建立有限元模型。
网格类型为双层面模型[2],并在Moldflow中进行网格
自动划分。划分结束后,对网格进行相应的修补,所得
的网格模型如图2所示,包含5 204个节点和10 568
个单元,网格匹配率达到了91%,模型网格质量很好。
1.2 浇注系统设计方案
浇注系统是熔体从注射机喷嘴进入模具型腔的通
道。它的位置、尺寸、形状会直接左右塑件的内在质量
与外观质量。如果设计不当,容易导致填充不良、熔接
痕、气穴、变形、密度不均匀、内应力过大,甚至于填充
不足的弊病。
根据托盘的结构特征和企业模具工程师的经验,
浇注系统设计[3-4]了3种方案,如图3所示。借助模流
分析软件Moldflow进行充填模拟[5],考察最佳设计
方案。
有图,需要全文与我索取免费
上一篇:用药分析论文范文
下一篇:论文期刊有哪些简