极限论文外国文献
极限论文外国文献
船舶与海洋工程结构极限强度分析论文
船舶的总体结构状态时一个非常复杂的过程。下面是我收集整理的船舶与海洋工程结构极限强度分析论文,希望对您有所帮助!
摘要: 当轮船受到外部冲击载荷时,轮船整体结构就会变形,当这个变形达到最大极限状态,这时的极限状态叫做极限弯矩。轮船整体构架承受全部抗击的最强能力是极限强度。本文对船舶结构极限强度。进行了分析和研究,提出了有限元分析方法进行强度和极限分析。
关键字: 极限强度,船舶,结构,船舶与海洋工程
随着科学技术的不断进步,轮船结构以及轮船使用的材料都有很大的进步。船体的整体结构和材料成为当今社会研究的主要对象。随着计算机技术的日益成熟,船体整体结构和承受的。屈服力都可以采用软件仿真来快速精确的计算。
1.引言
船体的整体结构和承受的能力是保证轮船安全的重要保障,它关系到轮船是否安全出航和安全返航。随着先进的设计技术的进步,计算机相关设计软件已经可以。设计整体结构和仿真测试船体的整体结构。分析船体结构和整体强度是一个复杂的非线性过程,必须进行合理的划分,采用好的分析方法才能得出精确的数值。新材料的不断出现使船体材料耗费变的越来越经济合理,同时船体结构屈服强度也变的越来越理想。
在分析船舶整体结构变形和极限强度的时候,我们所研究的绝大多数问题都是属于线性的微弱形变问题。在微弱整体的结构中,位移和应变可以被线性化,等效于正比关系。但是,在实际中,不规则物体所受的应力和应变都不是线性的,常见的有悬臂梁的弯曲,U形梁的变形等等。
2.总体结构状态
船舶的总体结构状态时一个非常复杂的过程。总体结构的崩溃在过去几年是一个非常普遍的现象,它是船体结构所受冲击超过了材料本身的极限,这时候支撑梁不能够支撑船体整体结构。以上情况不足为奇,在飞机和潜艇外体上也经常出现类似情况。目前,中国的船体分析技术的研究还处于起步阶段,与国外发达国家。先进水平仍有很大的差距。为了进一步研究分析,我国投入资金和人力,在实际工程中,建立一个比较完善的船体分析系统,包括原动机转速控制系统,同步船体结构系统,轮船控制系统管理相关技术的研究,实验研究了一系列模拟各种恶劣的条件下,容易控制船体结构的一些关键技术,并做了可行性分析。船舶具有非常重要的作用,特别是对船体分。析屈服强度的分析,轮船安全可谓海军舰艇的生命线。动力和结构形成一个整体轮船系统,为船体结构极限强度分析的发展。指明了方向。
3.极限强度分析法
如何分析船舶结构的极限强度是一个复杂而且非常有意义的过程。分析这种复杂的船体结构没有一种比较准确的分析方法。在分析极限强度的时候,我们通常采用复杂问题简单化,采用线性和非线性结合的方法,有限元和边界元分析相结合的方法。
3.1逐步破坏分析法
上世纪末,美国物理学家的在基于对悬臂梁、加筋板在轴向压缩载荷作用下结构失效问题的研究成果中提出了逐步破坏的分析方法。船体结构破坏不是一个迅速变化的过程,是一个一步一步的程序,同时也不会一下子超过屈服极限,随着应力的增大逐渐的增大的逐渐破坏。在进行破坏分析的时候,首先建立屈服应力和位移的曲线关系。
3.2非线性分析法
分线性分析方法必须。对船体分析采用模块化分析,必须充分考虑如何进行分段,分段之后逐个段进行非线性分析。在这个工程中,一个段的结构有自己的不同,针对不同结构进行线性化分析和非线性化分析。每个分段包含一个骨架间距内的所有主要构件,选择或者利用发生崩溃概率最大的情况进行分析的原则,对所承受的分段骨架进行全面的分析和仿真。这种分析方法需要对每一段进行模型建立,然后一个模型模型的分析。船体总体结构的弯曲和抗屈服能力不同导致分析结果不同。
3.3有限元分析法
有限元分析方法是结构分析的简单方法,它能把复杂问题简单化,分析整体结构的节点和网格。在进行有限元分析的时候,通常对船体结构进行网格划分,然后进行网格施加约束,在均匀网格上施加可变的。激励,观察整体结构的响应。采用这种方法能模拟船体的边界条件和整体约束。有限元分析方法综合考虑。船体的形状和材料的'不同,通过不同载荷的约束,我们可以分析出结构极限(包括最大应力,最大屈服极限)。最近几年,有限元分析方法被应用在船舶整体分析和部分结构分析的案例非常多。这种分析方法有两个个缺点。一是。不能很好的模拟真实环境,不能考虑周围环境对整体结构形变的影响。第二对于结构复杂的构件,有限元分析方法对于复杂的结构不太实用,设置相关算法时间太长,不能在有效的时间完成任务。这种分析方法的优点有以下几个方面:
(1)对船体建模方式直观明了。在分析结构的时候可以采用线性划分和非线性划分网格。采用相关软件完全可以分析所有动态结构的模型和仿真。利用有限元分析模块的可视化建模窗口,动态结构的框图和模型可迅速地建立和仿真研究。用户需要选择元件库(对应的子模块程序模块)中选出比较合适的模块,然后并改变需要的形式,拖放到新建的建模窗口,鼠标点击或者画线连接都可以搭建非常可观的结构模型。他的标准库拥有的模块远远大于一百五十多种,可用于搭建和仿真各种不同的、种类变化的动态结构。模块包。括输入信号源子模块、动力学元件子模块、代数函数和非线性函数子模块、数据显示子模块模块等。模块可以被设定为触发端口和使能的端口,能用于模拟大模型结构中存在条件作用的子模型的行为。
(2)可以构建动态结构模型。可动结构的模型可以修改并进行仿真。有限元分析还可以作为一种图形化的、数字的仿真工具,用于对动态结构模型建立和操作改变规律的研究制定。
(3) 模块元件与用户代码的增添和定制。已有模块的图标都可以被用户修改,对话框的重新设定。用户完全可以把自己编写的C代码、FORTRAN代码、Ada代码直接植入模型中,此外模块库和库函数都。是可定制的,扩展以包容用户自定义的结构环节模块。。
(4)设计船舶结构模型的快速、准确。他拥有优秀的积分和微分算法,这样给非线性结构仿真带来了极大的方便,同时也带来了相对较高的计算精度。可以选择比较先进的常微分方程求解器和偏微分方程求解器,还可用于求解力学刚性的和非刚性的结构,还可以求解具有事件触发的逻辑结构,求解或不连续状态变量的结构和具有代数环和参数环的结构。软件的求解器可以确保连续结构或离散结构的仿真高速、准确的进行。
(5)复杂结构可以分层次地表达。根据个人需要,若干子结构可以由各种模块组织。按照自顶向下(从元器件到结构)或自底向上(从实现的每一个细节到整体结构)的方式搭建整个结构模型。这种分级建模能力能够使得代码丰富的、体积庞大的、结构非常复杂的模型可以简便易于行动的构建。结构子模型的层次数量和子子模块的分层次数量完全取决于所搭建的结构,软件本身不会限制到搭建的模型。有限元还提供了模型和子。模块结构浏览的功能。这样更加方便了大型复杂结构结构的操作。
(6) 仿真分析的交互式。该软件显示的示波器可以图形显示和动画的形式显示出来,数据也可以动作的形式显示,What-if分析运行中可调整参数模型进行,监视仿真结果能够在仿真运算进行时。可帮助用户不同的算法可以快速评估,进行参数优化这种交互式的特征。
由于有限元模块是全部融合于有限元,一次在有限元模块下所有的计算的结果都完全可保存到有限元软的工作空间中,因而就能使用有限元所具有的众多分析、可视化及工具箱工具操作数据。
4.船舶在军事上的发展状况
在军事上的应用:在上世纪90年代,以美国为首的国家海军大力发展海军轮船性能优化,整体结构和性能得到优化。于93年提出了水面舰艇先进机械项目计划(提前海洋表面计划ASMP)。
美国的目的是建立一个国家的最先进的舰艇推进系统,能够实现远程作战和抗高撞击的能力。美国海军采用先进的智能设备,同时采用电气控制和机械控制系统。在同一时间满足指定的性能,在分析极限强度上加大了投资,军用船舶的其他方面投资也有显着的减少。随着ASMP计划进一步研究,权力一体化“和”模块化“的方法来研究船舶电力发电、运输、转化、分配。利用共享设置海军的推进装置用电、日常的用电。各种武器装备输电发电和配电系统构成的综合电力系统,美国海军相当重视电力在船舰上的应用。
我国海军在研究这方面也不逊色,国内有先进设计理论和分析方法。对船舶承载能力和撞击能力做过实验分析。
5.总结
本文介绍了船舶结构极限分析的三种不同的方法,并进行了对比分析,最后得出结论:有限元分析方法耗时比较长,但是能够很高的分析和仿真船舶结构极限。
参考文献
[1]祁恩荣,彭兴宁.破损船体非对称弯曲极限强度分析首届船舶与海洋工程结构力学学术讨论会论文集,江西九江:1999.136-143
[2]徐向东,崔维成等.箱型粱极限承载能力试验与理论研究.船舶力学,2000,4(5):36-43
[3]朱胜昌,陈庆强.大型集装箱船总纵强度计算方法研究.船舶力学,2001,5(2):34--42
[4]郭昌捷,唐翰岫,周炳焕.受损船体极限强度分析与可靠性评估.中国造船,1998(4):49—56
说明极限思想中国与国外的萌芽时间,主要人物是谁。简述极限思想形成过程
论文题目:极限思想的产生与发展
二.选题依据:
随着社会的飞速发展,数学并不是自我封闭的学科,它与其他学科有着千丝万缕的联系。数学不仅是一种方法,一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系。在探求极限起源与发展的过程中,我发现数学确实是一个美丽的世界,享受数学是一个美妙的过程。
三.相关理论研究综述:
本文综述了极限思想的产生和发展历史。极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。
四.研究方法:查阅教材、图书馆查相关资料书。
五.论文结构:
1摘 要 2关键词 3引 言 4内 容 5小结 6参考文献
六.撰写计划:
2013 年 1月10日选题
2013 年 1月15日搜索材料
2013年 3 月 5 日开始撰写
2013年 4 月 2 日修改完稿
目
文中未直接提到的参考文献
关于论文中参考文献的问题:
1】文末所写的参考文献均应在文中直接引用.正文中没有直接引用但研究过程中参考的不必写上并编号.
2】所引用的参考文献最好是原话,也可转述及归纳.
3】论文中所需要涉及的一些如欧几里得的《几何原本》、康托尔的“集合论”等一些原论文出处可以不标出,因为这些成果众所周知.
三次数学危机论文
数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下面我给你分享三次数学危机论文,欢迎阅读。
摘要:本文主要通过数学史上的三次危机的产生与消除,针对它们的本质浅谈自己的认识,实际导致这三次危机原因在与人的认识。第一次数学危机是人们对万物皆数的误解,随着无理数的发现,把第一次数学危机度过了。第二次数学危机是人们对无穷小的误解,微积分的出现产生了一种新的方法,即分析方法,分析方法是算和证的结合。是通过无穷趋近而确定某一结果。罗素悖论的发现,给数学界以极大的震动,导致了数学史上的第三次危机。为了探求其根源和解决难题的途径,在数学界逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
关键词:危机;万物皆数;无穷小;分析方法;集合
一、前 言
数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。
二、数学史上的第一次“危机”
第一次数学危机是发生在公元前580-568年之间的古希腊。那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物旨数”。所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。在那个时期。上述思想是绝对权威、是“真理”。但是不久人们发现即使边长为1的正方形对角线不是可比数。这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。
三、第二次数学危机
第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后。牛顿和莱布尼兹开辟了新的天地――微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
四、数学史上的第三次危机
1.悖论的产生及意义
(1)什么是悖论
悖论来自希腊语,意思是“多想一想”。这个次的意义比较丰富,它包括一切与人的知觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论是自相矛盾的命题,即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出原命题成立。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,他们震撼了逻辑学和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
(2)悖论产生的意义
疏忽学悖论是在数学学科理论体系发展到相当高的阶段才出现的。它是对数学学科理论体系可能存在的内在矛盾的揭示。虽然暂时引起人们的思想混乱,对正常的科学研究可能会形成一定的冲击,但它对于揭露原有理论体系中的逻辑矛盾,对于揭露原有理论的缺陷或局限性,对于这一步深入理解,任何和评价原有科学理念,对于原有的科学概念或理论的进一步充实完善和促进科学管理的产生都有相当重要的意义,同时也为科学研究提供新的课题和研究方向。
2.第三次数学危机的产生与解决
(1)第三次数学危机的产生
第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有RR。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
(2)第三次数学危机的解决
罗素的悖论产生后,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zF公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来的。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。
三次数学危机是我们数学史发展中的一个奠基,他为我们日后更详细、深入的研究数学做了很好的铺垫,我我想以后也许会有第四次数学危机,但数学家也会把它化解掉,只有出现危机,才能使我们的数学研究达到更高的境界。
数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的教育价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。
一、集合论的诞生
一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(Julius Wilhelm Richard Dedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇文章标志着集合论的诞生。
二、集合论成为现代数学大厦的基础
康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。
集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(Jules Henri Poincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊!
三、罗素(Bertrand Russell,1872-1970)悖论导致第三次数学危机
1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。
罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。
罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。
四、消除悖论,化解危机
罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。
在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,Ernst Friedrich Ferdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。
解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔(el)和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。
五、危机的启示
从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。
矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。”
参考文献:
1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社
2.胡作玄,《第三次数学危机》
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,以下是我搜集的一篇关于三次数学危机探讨的论文范文,供大家阅读参考,
从我国数学的发展看三次数学危机。
1 引言
数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
2 三次数学危机
第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.
19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个着名悖论用故事通俗地表述出来。
它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。
3 从我国数学的发展看三次数学危机
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,这是我们国家社会主义建设的需要,也是我们党和国家非常重视科学技术的结果,
数学论文《从我国数学的发展看三次数学危机。中国科学院于1950年开始筹建数学研究所,1952年正式成立。全国各高等院校普遍设置了数学系,《数学学报》和《数学通报》复刊。1958年~1960年的大跃进时期,在极左思潮影响下,数学基础理论研究受到很大冲击,积极的一面是明确了向世界先进水平看齐的奋斗目标,也重视理论联系实际,线性规划得到大力推广并创造了切实可行的图上作业法,运筹学由此在我国发展起来。在发展我国高科技过程中,例如1965年9月17日,我国科学工作者在世界上首次用人工方法合成结晶牛胰岛素。
我们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。
4 总结
综上所述三次数学危机对数学的发展影响是巨大的。第一次数学危机中产生的欧几里德几何对树立天文学的发展起了很大的推动作用,第一次数学危机使古希腊数学基础发生了根本性的变化,使古希腊的数学基础转向几何。第二次数学危机中波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西指出无穷小量和无穷大量都是变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义;美国数理逻辑学家罗宾逊又利用无穷小量引进超实数的概念,建立了非标准分析,同样也能精确的描述微积分,解决无穷小悖论。第三次数学危机建立了实数理论,且在此基础上建立了极限的基本定理,使数学分析建立在实数理论的严格基础之上,康托尔创立了集合论。而且还产生了公理化方法论和数理逻辑等一批新颖学科。我国以至世界各国的数学发展也都依赖于三次数学危机中产生的数学的新内容。整个数学的发展是一个层层深入、层层递进的过程。
参考文献:
[1]人民教育出版社中学数学室着.现代数学概论[M].北京:人民教育出版社,2003.
[2]张光远.现代化知识文库:二十世纪数学史话[M].知识出版社,1984.2
[3]袁小明.数学史话[M].山东教育出版社,1985.
[4]于寅.近代数学基础[M].华中理工大学出版社,1999.3.
软件开发论文参考文献
软件开发论文参考文献(汇总)
你知道软件开发论文参考文献有哪些吗?下面是我为大家收集的关于软件开发论文参考文献,欢迎大家阅读借鉴!
[1]周金陵.张鹏.丛于 CMMI 的软件过程改进研究[J].计算机工程与设计,2003,2400:60-62.
[2]龚波,于自跃.小型软件企业实施 CMMI 过程改进研究和分析[J].计算机应用研究,2004,21(8):64-67.
[3][美] 施瓦尔贝.IT项目管理[M].王金玉,时郴,译.北京:机械工业出版社,2002.
[4]刘佰忠.项目管理是 IT 项目灵魂[J].湖南制造业信息化,2004(4): 9-10.
[5]段琳琳.敏捷方法在需求工程中的研究与应用[[D].长沙:湖南大学,2008.1.
[6]段琳琳.王如龙.极限编程在软件项目开发中的研究与应用[J].计算技术与自动化.2008. 27 (l):127-130.
[7]唐爱国,王如龙.软件项目范围变更流程与过程控制研究[J].项目管理技术,2006. 4(9):71-73.
[8]唐艳.教捷方法在数据库设计中的应用.牡丹江教育学院学报,2005 年 02 期.
[9]林锐.软件工程与项目管理解析[M].北京:电子工业出版社,2003.
[10]ROBERT C. MARTIN.敏捷软件开发[M].北京:机械工业出版社,2008:388.
[11]伯克温.项目管理艺术[M].南京:东南大学出版社,2007: 342.
[1]陆恩锡,涨慧娟,尹清华.化工过程模拟及相关高新技术[J],化工进展,1999,18(4): 63-64.
[2]王之瑛.改进高效浓密机工艺和设备是降低生产成本的有效途径[J],湖南有色金属,1995,24-27.
[3]钱学森.关于思维科学[M],上海:上海人民出版社,1987,3-12.
[4]黄向华.控制系统仿真[M],北京:北京航空航天大学出版社,2008,1-5.
[5]刘晓东.沉降槽泥层界面检测仪的应用[J],自动化仪器与仪表,2007(3):52-53.
[6]杨慧,陈述文.0>50m大型浓密机的自动控制[J],金属矿山,2002,318(12):38-40.
[7]杨榛,浦伟光等.化工流程工业计算机的应用技术与进展[J],计算机与应用化学,2010, 27(2): 139-143.
[8]韩虹,李朝明.关于浓缩池设计的探究[J],新疆化工,2007,20(3):12-14.
[9]孙红先,赵听友,蔡冠梁.化工模拟软件的应用与开发[J],计算机与应用化学,2007,24(9): 1285-1288.
[10]耿增显,柴天佑,岳恒.浓密机生产过程自动化系统[J],控制工程,2008,19(9): 353-363.
[11]刘学言.多级逆流洗漆系统洗涤动力数的提出及其应用[J],湿法冶金,1993,7(3): 25-31.
[1]陈友洪,G 公司 SAP 质量管理系统应用研究[D],甘肃,兰州大学硕士学位论文,2009,7-9.
[2]栾跃,软件开发项目管理[M],上海,上海交通大学出版社,2005,20-40.
[3]黄佳,SAP 业务数据传输指南[M],北京,人民邮电出版社,2006,234-238.
[4] 卢俊,SAP 行业解决方案[M],北京,东方出版社,2008,5-10.
[5]石坚燕,SAP NetWeaver--SAP 新一代业务平台[M],北京,东方出版社,2005,1-37.
[6] 胡险峰,SAP 及 mySAP 商务套件[M],北京,东方出版社,2006,12-15.
[7] Raymond McLeond,Jr. George Schell 着,张成洪,顾卓珺等译,管理信息系统(第10 版)[M],北京,电子工业出版社,2007,19-33.
[8]Peter S. Pande et al,Robert P. Neuman,Roland R. Cavanagh,The Six Sigma Way:How GE,Motorola,and Other Top Companies are Honing Their Performance[M],McGraw-Hill,2000,1-67.
[9]David M. Levine,Statistics for Six Sigma Green Belts with Minitab and JMP[M],FT Press,2006,1-22.
[10]王天杨,王斌峰,倪寅凌,左贝合着,SAP 最佳业务实践[M],北京,东方出版社,2005,17-19.
[11]Christian Kramer,Sven Ringling,Song Yang,Mastering HR Management with SAP[M],SAP Press,2006,19-22.
[12]Andreas Vogel,Ian Kimbell,mySAP ERP For Dummies[M],For Dummies,2005,1-80.
[1]姜新.嵌入式控制系统软件平台的研究与实现[D],武汉:华中科技大学,2003.
[2]向立志,谭杰等.先进控制算法软件的`设计与开发[J],计算机工程,2003,29(18):41-43.
[3]刘x,周建宏,刘宏民.电熔法提纯氧化镁电极的自动控制[J],电气传动自动化,2000,22(1): 18-20.
[4]吴志伟,吴永建,张莉等.一种基于规则推理的电熔镁炉智能控制系统[J],东北大学学报(自然版),2009, 30(11): 1526-1529.
[5]吴新军.PLC在电溶镁炉集中控制系统中的应用[J],冶金设备,2003,4(2):67-68.
[6]孙鹤旭,林涛.嵌入式控制系统[M],北京:清华大学出版社,2007,3-4.
[7]齐国超,张卫军.电熔镁电弧炉炉体优化设计[J],冶金能源,2010,29(4):34-36.
[8]吴永建,吴志伟,柴天佑等.电熔镁炉智能优化仿真实验平台[J],系统仿真学报,2011, 23(4):676-680.
[9]倪晓明,孙菲.电熔镁石炉的计算机控制及节能改造[J],冶金能源,2002,21(1): 60-61.
[10]葛伟.基于虚拟仪器的电溶镁炉监测系统[D],大连:大连理工大学,2005.
上一篇:论文查重报告几份
下一篇:胡杨毕业论文