欢迎来到学术参考网
当前位置:发表论文>论文发表

幻方史研究论文

发布时间:2023-03-07 19:17

幻方史研究论文

  1、论文题目:要求准确、简练、醒目、新颖。
  2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
  3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
  4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
  主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
  5、论文正文:
  (1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
  〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:
  a.提出-论点;
  b.分析问题-论据和论证;
  c.解决问题-论证与步骤;
  d.结论。
  6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
  中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:
  (1)所列参考文献应是正式出版物,以便读者考证。
  (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

数学研究性报告—探究学习幻方或制作一个无盖的长方形盒子

幻方分有三阶、四阶等,是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法,最早起源于中国。

对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)

⑴ N 为奇数时,最简单:

⑴ 将1放在第一行中间一列;

⑵ 从2开始直到n×n止各数依次按下列规则存放:

按 45°方向行走,如向右上

每一个数存放的行比前一个数的行数减1,列数加1

⑶ 如果行列范围超出矩阵范围,则回绕。

例如1在第1行,则2应放在最下一行,列数同样加1;

⑷ 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,

则把下一个数放在上一个数的下面。

⑵ N为4的倍数时

采用对称元素交换法。

首先把数1到n×n按从上至下,从左到右顺序填入矩阵

然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对

称交换,即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。

(或者将对角线不变,其它位置对称交换也可)

⑶ N 为其它偶数时

当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。

按上述奇数阶幻方给分解的4个子方阵对应赋值

上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)

即4个子方阵对应元素相差v,其中v=n*n/4

四个子矩阵由小到大排列方式为 ① ③

④ ②

然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(jn-t+2),

a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换

其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。

其实你要做研究性学习报告研究三阶就好啦!下面给个报告模板:

研究背景:幻方也称纵横图、魔方、魔阵,它是科学的结晶与吉祥的象征,发源于中国古代的洛书——九宫图。公元前一世纪,西汉宣帝时的博士戴德在他的政治礼仪著作《大戴礼·明堂篇》中就有“二、九、四、七、五、三、六、一、八”的洛书九宫数记载。洛书被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。同时,洛书以其高度抽象的内涵,对中国古代政治伦理、数学、天文气象、哲学、医学、宗教等等都产生了重要影响。在远古传说中,于治国安邦上也具有积极的寓意

小组分工:

内容:(上面抄一堆下来)+幻方公式:我们通常所说的幻方是平面和幻方。n阶幻方就是在n×n的方格中填上n^2【n的平方】个数,行、列和对角线的和值相等为完美幻方,行、列和值相等为不完美幻方。这一和值叫幻和值。

一个n阶幻方幻和值公式为:

Nn=1/2xn(n2+1)

感想:培养了对数学的兴趣,提高了解题能力,增加了对数学历史的了解等等。

最后来个总结。

顺便给张图:

要采纳哦!谢谢!

大神,最近在写有关三阶幻方的论文

能组成三阶幻方的数组所构成的三阶幻方,有且只有一个基本解、8种形式,其余的7种都是基本解的同解异构,是由基本解旋转和镜像而得。

在幻方制作数量的统计中,通过旋转和镜像后而一致的,就只能算作一种。

围绕河图洛书+幻方+中国数学史+如何学习高等数学写一篇论文?

那你没思路的话,去看看理论数学和应用数学进展期刊上的相关文献 哦

急求魔方的数学论文 300~400字

魔方变幻 惊人的天文数字

魔方有多少种可以达到的状态?答案是 43252003274489856000 约 4000 亿亿。

算法: 8 个角方块排列在 8 个位置, 12 个棱方块排列在 12 个位置,共有 8! × 12 !种。又每个棱方块有 2 个朝向,每个角方块有 3 个朝向, 共 3^8 × 2^12 种。因此魔方的状态数是 8! × 12 !× 3^8 × 2^12 = 519024039293878272000 种,51902亿亿以上。

但在 20 个方块中, 18 个位置确定,另外 2 个位置也就确定了。因此要去掉因子 2 !。在 8 个角方块中, 7 个朝向确定,第 8 个朝向也就确定了;在 12 个棱方块中, 11 个朝向确定,第 12 个朝向也就确定了。这样要再去掉 3 × 2 因子,实际是上面数的 1/12 ,即总数 8! × 12 !× 3^7 × 2^11/2=43252003274489856000 .

从另一个角度考虑上面的除数 12 .如果我们确定了 6 种颜色,每种颜色涂在魔方的1 个表面上的9个小方块上。然后然后我们拆开魔方,再打乱了重新拼装起来,那么并不是所得到的每个魔方都能还原为初始状态。具体说, 有519024039293878272000 种拼法,可以分为 12 类,每类 43252003274489856000 种。同类里任何两个状态可以相互转换,而不同类间不能转换。

上一篇:戏曲党校论文题目

下一篇:论文中表格题目