丘成桐论文范文
丘成桐论文范文
数学论文范文参考
数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
( 一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
( 二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
( 一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
( 二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
( 三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献:
〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.
〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.
〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.
浅谈高中数学文化的传播途径
一、结合数学史,举办文化讲座
数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、
二、结合教学内容,穿插数学故事
数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、
三、结合生活实际,例解数学问题
作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、
四、结合其他学科,共享文化精华
科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、
五、结合课外活动,小组合作探究
由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、
六、结合教学评价,纳入数学考试
虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。
关于数学家的故事
学生可以通过数学家的 故事 了解数学的发生和发展,有助于培养兴趣、开阔视野、开拓创新,更深刻体会数学对人类文明发展的作用。今天我在这给大家整理了数学家的 故事大全 ,接下来随着我一起来看看吧!
数学家的故事 ( 一 )
泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算
而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁
道夫数,他死后别人便把这个数刻到他的墓碑上。
瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上
就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
数学家的故事 ( 二 )
丘成桐
丘成桐1949年出生于广东汕头,老家在梅州蕉岭,在香港长大。父亲曾在香港香让学院及香港中文大学的前身崇基学院任教。父教母慈,童年的丘成桐无忧无虑,成绩优异。但在他14岁那年,父亲突然辞世,一家人顿时失去经济来源。尽管丘成桐不得不一边打工一边学习,却仍然以优异成绩考入香港中文大学数学系。
他的父亲在他14岁时去世,家境贫寒。他中学的时候逃学一年,曾经成绩很差,差一点落榜。19岁的时候来到美国伯克利,“21岁 毕业 时就注定要改变数学的面貌”。这不是我的话,这是几年前加州大学洛杉矶分校希望把丘教授聘请过来的时候,系里讨论时一个年纪很大的几何学家引用陈省身先生说的一句话。他10年之后成为数学界的一代天骄。从他入学伯克利到在世界数学家大会做一小时 报告 还不到10年。当年他只有28岁,也是在那一年,陈景润先生被邀请做45分钟的报告。这期间他证明了卡拉比猜想、正质量猜想,开创了一个崭新的领域:几何分析。
1981年,他32岁时,获得了美国数学会的维布伦(Veblen)奖——这是世界微分几何界的最高奖项之一;1983年,他被授予菲尔兹(Fields)奖章——这是世界数学界的最高荣誉;1994年,他又荣获了克劳福(Crawford)奖。
除此之外,他还获得过美国国家科学奖章和加利福尼亚州最优秀的科学家的称号,是美国科学院院士、哈佛大学名誉博士、中国科学院外籍院士、香港中文大学名誉博士…… 大学期间,他以三年时间修完全部必修课程,还阅读了大量课外资料。他的突出成绩和钻研精神为当时的美籍教授萨拉夫所赏识,萨拉夫力荐他到美国加利福尼亚大学伯克利分校攻读博士研究生。七十年代左右的伯克利分校是世界微分几何的中心,云集了许多优秀的几何学家和年轻学者。在这里,丘成桐得到IBM奖学金,并师从著名微分几何学家陈省身。
命运是公平的,奖章、荣誉,授予了那个在教室中坚持到最后的人。这,并没有让丘成桐止步不前,他继续进行着大量繁杂的研究工作,并不断取得成就。
坚韧、坚持、锲而不舍,这就是丘成桐的精神。当然,也不是每个有着这样精神的人都能取得丘成桐一样的成就的。数学需要勤奋,更需要天才。正如著名数学家尼伦伯格所说,丘成桐“不仅具备几何学家的直观能力,而且兼有分析家的才能”。著名数学家郑绍远先生回忆说,对于许多艰深的数学问题,丘成桐已思考近20年,虽然仍未解决,他还是没有轻易放弃思考。
丘成桐对中国的数学事业一直非常关心。从1984年起,他先后招收了十几名来自中国的博士研究生,要为中国培养微分几何方面的人才。他的做法是,不仅要教给学生一些特殊的技巧,更重要的是教会他们如何领会数学的精辟之处。他的学生田刚,也于1996年获得了维布伦奖,被公认为世界最杰出的微分几何学家之一。
数学是奇妙的,只有锲而不舍才能探求其中真谛。对于丘成桐这样的数学家来说,这种探求不但是人生的意义,也是人生的乐趣。
丘先生绝对不是一个完人,但绝对是一个伟大的数学家。你可以不喜欢这个人,但你不可能不喜欢他的数学,他证明了许多妙不可言的定理。大家如果学数学,读到研究生的话你就会知道他的定理非常美妙,他的卡拉比猜想毫无疑问是数学中最深刻的定理之一,尤其是在超弦理论中应用之广不可思议,我想当年丘教授自己都没有想到。
他个性坚强,永不服输,永不言弃,著述等身,得奖无数。这些也带给他许许多多的误解。因为少年得志,20几岁就功成名就,有人说他目中无人、傲慢至极。当然,有这样的成就也让他有傲慢的资本。我把他跟陈省身一比。陈省身先生,大家跟他相处久了就知道也傲慢,只是他们以不同的形式表达他们的傲慢,丘成桐是直截了当,数学和为人是他衡量你的标准,他看你的话,你数学不好,他不愿意跟你多谈,你做事情不入他的眼,他不愿意搭理你。
先生是微笑不语,什么人他都可以很平和地相处,但是这微笑中就蕴含着尊敬或者是不屑,你自己可以感觉出来。他们都是真正的君子,都是我最敬佩的伟大的数学家,他们都尊重真正的君子和真正的数学家。我想这是他们真正可贵的地方。
30年来,丘先生不仅时刻把握着数学与物理跳动的脉搏,引导着世界数学发展的潮流,还一直怀着一颗赤子之心,关心和帮助着中国数学的进步。他培养了众多的华人数学家。他的学生和博士后在国外各个重要的大学里都有。
数学家的故事 ( 三 )
数学奇才——耐普尔
记得四大发明吗?它们是印度-阿拉伯记号,十进制小数,对数和计算机。其中的对数是十七世纪由耐普尔发明的。他1550年出生在苏格兰首府爱丁堡,从小喜欢数学和科学,以其天才的四个成果被载入数学史。其中的对数的发明使整个欧洲沸腾了。拉普拉斯认为“对数的发现以其节省劳力而延长了天文学家的寿命。”可以说对数的发现使现代化提前了至少二百年。下面我要给大家讲两个他的小故事:
一次,他宣称他的黑毛公鸡能为他证实:他的哪一个仆人偷了他的东西。仆人们被一个接一个地派进暗室,要他们拍公鸡的背,仆人们不知道耐普尔用烟黑涂了公鸡的背,自觉有罪的那个仆人,怕挨着那个公鸡,回来时手是净的。
还有一次耐普尔因他的邻居的鸽子吃他的粮食而感到烦脑。他恫吓道:如果他邻居不限制鸽子,让它们乱飞,他就要没收些鸽子。邻居认为他的鸽子是根本不可能被捉住的,就告诉耐普尔,如果他能捉住他们,尽管捉好了。第二天,邻居看到他的那些鸽子在耐普尔的草坪上蹒跚地走着,十分惊讶,耐普尔镇静自若地把它们装进一只大口袋。原来,耐普尔在他的草坪上各处撒了些用白兰地酒泡过的豌豆,使这些鸽子醉了。
数学家笛卡儿
笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学 方法 之一。
数学家冯·诺依曼
20世纪最杰出的数学家之一的冯·诺依曼。众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步。鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重。在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁。
数学家的故事 ( 四 )
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。
事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:“天上有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。” 欧拉感到很奇怪:“天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。
回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110),父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形(25+25+25+25=100)。然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。”
父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。
父亲感到,让这么聪明的孩子放羊实在是可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
数学家的故事 ( 五 )
大家可能都听说过“华氏不等式”,华氏不等式是我国著名数学家的杰作,今天就让我们来看一看华罗庚的故事吧~
华罗庚是一位自学成才的数学家。仅仅是初中毕业的他,却在《科学》杂志上发表了一篇论文,也得到了数学家熊庆来的赏识,在各方的帮助下华罗庚进入清华园工作,开始了他的数学研究之路。
1936年,在熊庆来教授的推荐下,华罗庚前往英国 留学 。著名数学家哈代对华罗庚非常的赏识,他对华罗庚说:“你可以在两年之内获得博士学位。”令人惊讶的是,华罗庚却说:“我并不想获得博士学位,我只想做一个求学者,我来剑桥是求学问的,不是为了学位。”在两年研究数学的过程中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。
关于 数学家的故事相关 文章 :
★ 关于数学家的小故事5篇
★ 关于我国数学家的小故事5篇
★ 关于数学家的励志故事大全
★ 关于数学家华罗庚的小故事5篇
★ 数学家的小故事2020最新
★ 数学家励志小故事大全
★ 关于数学的故事有哪些
★ 数学家的小故事2020汇集
★ 数学家的数学小故事
★ 关于数学家的故事手抄报
丘成桐的一生都贡献给了什么?
丘成桐
人物生平
求学阶段
1966年入香港中文大学数学系,1969年提前修完四年课程,为美国伯克利加州大学陈省身教授所器重,破格录取为研究生。在陈省身指导下,1971年获博士学位。
美国阶段
1976年,丘成桐被提升为斯坦福大学数学教授。
1978年,他应邀在芬兰举行的世界数学大会上做题为《微分几何中偏微分方程作用》的学术报告。这一报告代表了20世纪80年代前后微分几何的研究方向、方法及其主流。这之后,他又解决了“正质量猜测”等一系列数学领域难题。
1981年,他32岁时,获得了美国数学会的维布伦(Veblen)奖——这是世界微分几何界的最高奖项之一;
1982年,他被授予菲尔兹(Fields)奖章——这是世界数学界的最高荣誉;
1989年,美国数学会在洛杉矶举行微分几何大会,丘成桐作为世界微分几何的新一代领导人出任大会主席。
回港任教
丘成桐
1993年,丘教授返回母校香港中文大学,领导成立中大数学科学研究所,同时担任研究所所长,带领研究工作,并定期回港教学及指导研究生。
1994年,他又荣获了克劳福(Crawford)奖。
2003年,出任香港中文大学博文讲座教授。
2010年,获得沃尔夫数学奖,这是在阿贝尔奖出现前最接近诺贝尔奖的奖项,是数学界的终身成就奖。
2013年,丘成桐教授应邀担任香港中文大学五十周年杰出学人讲座系列的主讲嘉宾,在校园主持“哈佛百年,中大五十——从哈佛百年数学看培育下一代”讲座。
2018年,被授予“马塞尔·格罗斯曼奖”,以表彰其在证明广义相对论中总质量的正定性、完善“准局域质量”概念、证明“卡拉比猜想”,以及在黑洞物理研究等工作中的巨大贡献。这是该物理大奖首次颁给华人数学家。 [1]
主要成就
数学成就
丘成桐
丘成桐是公认的当代最具影响力的数学家之一。他的工作深刻变革并极大扩展了偏微分方程在微分几何中的作用,影响遍及拓扑学、代数几何、表示理论、广义相对论等众多数学和物理领域。
解决Calabi猜想, 即一紧Kahler流形的第一陈类≤0时,任一陈类的代表必有一Kahler度量使得其Ricci式等于此陈类代表。这在代数几何中有重要的应用。
与萧荫堂合作证明单连通Kahler流形若有非正截面曲率时必双全纯等价于复欧氏空间, 并给Frankel猜想一个解析的证明。
在各种Ricci曲率条件下估计紧黎曼流形上Laplace算子的第一与第二特征值。
1984年与Uhlenbeck合作解决在紧Kahler流形上稳定的全纯向量丛与Yang-Mills-Hermite度量是一一对应的猜想,并得出陈氏的一 个不等式。
丘成桐正研究的镜流形, 是Calabi-丘流形的一特殊情形, 与理论物理的弦理论有密切关系, 引起数学界的广泛注意等等。[2]
其他领域
丘成桐在物理学和工程学上都有非常重要的影响,他也因此被聘为哈佛大学物理学的终身教授,成为哈佛大学有史以来兼任数学系教授和物理系教授的唯一一人。丘成桐教授在工程学的各个分支做出了很重要的贡献,这些学科包括控制论、图论(应用到社会科学)、数据分析、人工智能和三维图像处理,丘成桐在这些方面已经发表了几十篇重要的论文,多次被工程学大会邀请做重要演讲和大会报告。
对中国贡献
丘成桐
丘成桐教授是第一位荣获菲尔兹奖的华裔人士。他热心于帮助发展中国的数学事业。
自1979年以来多次到中国科学院进行高质量的讲学。由科学出版社出版了专著《微分几何》,内容主要是他的研究结果。他还直接指导培养中国的数学博士生,至今已有10余人,成绩显著。
1994年6月8日当选为首批中国科学院外籍院士。
在二十世纪七十年代中国对外开放后,丘成桐受到中国著名数学家华罗庚的邀请,于1979年访问中国。
丘成桐建立的第一个数学研究所是1993年成立的香港中文大学数学研究所。第二个是1996年建立的北京晨兴数学中心。中心建立与运作的大部分经费都是丘成桐从香港晨兴基金会筹得的。第三个是建立于2002年的浙江大学数学科学中心。 第四个2009年建立的清华大学数学研究中心。
1997年,他受台湾新竹清华大学校长刘炯朗邀请,作为讲席教授访问一年。若干年后,他建议已是台湾国家科学委员会主席的刘炯朗,建立理论科学中心。正式成立是在1998年。他担任理论科学中心顾问委员会主任直到2005年。
为了激发中学生对于数学研究的兴趣和创造力,培养和发现年轻的数学天才,2004年,丘成桐首先在香港成立了面向香港中学生的两年一届的“恒隆数学奖”。
2008年,丘成桐中学数学奖正式成立。
上一篇:名利场题论文题目
下一篇:水浒传研究性论文