欢迎来到学术参考网
当前位置:发表论文>论文发表

抗体酶研究的论文

发布时间:2023-03-07 21:58

抗体酶研究的论文

摘要:现代生物技术制药工业始于1971年,现已创造出35个重要治疗药物,全球大约有2500多家公司,

主要产品有重组蛋白质药品、重组疫苗和诊断、治疗用的单克隆机体三大类。我国自80年代开始进行现

代生物技术药品的研究和开发,到1998年7月底,我国已有近200多个现代生物技术制药企业,已有14种

现代生物技术药品和疫苗投产,已经批准进入临床的有近10种药,正在进行临床前研究的有10多种。在

采用现代生物技术改造传统生物技术制药产业方面已取得初步成果。但我国生物技术诊断试剂、酶工程

、动植物细胞工程医药产品、现代生物技术支撑技术、后处理技术和制剂技术等方面与国外还存在差距

。其中不重视中试放大过程是影响我国生物技术产业化发展的一个很重要的原因。

关键词:生物技术制药 生物技术的应用 生物技术发展 生物药物研究进展

生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进

技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子

生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收

获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、

生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。

有些学者认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物

学的成就占主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技术中发展最快的领域似

乎是不争的事实。 科学家预测,生命科学到2015年会取得革命性进展。这些进展可以帮助人类解决很多

目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类

寿命,提高生命质量,为社会安全和刑侦提供新的手段。有些成果还可以帮助人类加速植物和动物的人

工进化以及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得进展。

1.生物制药现状

目前生物制药主要集中在以下几个方向:

1 肿瘤 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7

万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综

合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体

的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白

酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂

,已有3种化合物进入临床试验。

2 神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长

因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌

萎缩硬化症,均已进入Ⅲ期临床。

美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不

可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临

床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

3 自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、

红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这

类疾病。如 Genentech公司研究一种人源化单克隆抗体免疫球蛋白E用于治疗哮喘,已进入Ⅱ期临

床;Cetor′s公司研制一种TNF-α抗体用于治疗风湿性关节炎,有效率达80%。Chiron公司的β-干扰素用

于治疗多发性硬化病。还有的公司在应用基因疗法治疗糖尿病,如将胰岛素基因导入患者的皮肤细胞,

再将细胞注入人体,使工程细胞产生全程胰岛素供应。

4 冠心病 美国有100万人死于冠心病,每年治疗费用高于1 170亿美元。今后10年,防治冠心

病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和

恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。
基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达

到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基

因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果

表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

2.生物制药展望

今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成

新领域。目前热门的药物生物技术如下:

表1 热门药物生物技术

技 术 新颖性 技 术 新颖性
组合化学 成熟领域 前导物综合鉴定技术 新生技术
药学基因组科学 发展领域 核糖酶 新生技术
蛋白质工程 发展领域 抗体酶 新生技术
基因治疗 发展领域 药物设计与人工智能 新生技术
糖类治疗剂 发展领域 功能抗原 新生技术

表2 正在研究开发的生物技术药物类型

领 域 开发药物品种 领 域 开发药物品种
单克隆体 78 人生长激素 5

疫苗 62 组织纤溶酶原激活剂 4
基因治疗 28 凝血因子 3
白介素 11 集落细胞刺激因子 3
干扰素 10 促红细胞生成素 2
生长因子 10 SOD 1
重组可溶性受体 6 其他 56
反义药物 6 总数 284

生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,

例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作

出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面

的进展正在加快。
除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人

体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可

以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。
除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,

正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾

君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。

各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质

量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和

药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为

越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用Dennis Noble的虚拟心

脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统

临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行

更为深入的研究。

到下世纪初生物技术药物的种类数目尚不会超过一般药物的总数,但生物技术制药公司总数将超过

前10年的6倍。目前主要生物技术公司多分布在美国,如Amgen,Genetics institute,Genzyme,Genentech

和Chiron,还有Biogen也发展较快。1987年尚没有一种重组DNA药物进入世界药品销售额排名前列表,但

到1996年已有多种生物工程药物榜上有名。经上市的生物技术药物主要含3大类,即重组治疗蛋白质、重

组疫苗和诊断或治疗用的单克隆抗体。

药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美

元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综

合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经

使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使

用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。

这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用

对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

值得注意的是,制药工业的知识产权保护在世界各地是不平衡的。某些地区(例如亚洲)会继续以生

产专利过期药物为主,有些地区(如美国和欧洲)除了继续生产低利润的药物外会不断开发新的药物。

总之,综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇

与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而

为发明新药提供更加广阔的前景。

抗体酶有哪些重要用途

  1946年,鲍林(Pauling)用过渡态理论阐明了酶催化的实质,即酶之所以具有催化活力是因为它能特异性结合并稳定化学反应的过渡态(底物激态),从而降低反应能级。1969年杰奈克斯(Jencks)在过渡态理论的基础上猜想:若抗体能结合反应的过渡态,理论上它则能够获得催化性质。
  所以抗体酶就是一类具有催化能力的免疫球蛋白。
  主要功能
  抗体酶可催化多种化学反应,包括酯水解、酰胺水解、酰基转移、光诱导反应、氧化还原分应、金属螯合反应等。其中有的反应过去根本不存在一种生物催化剂能催化它们进行,甚至可以使热力学上无法进行的反应得以进行。
  抗体酶的研究,为人们提供了一条合理途径去设计适合于市场需要的蛋白质,即人为地设计制作酶。它是酶工程的一个全新领域。利用动物免疫系统产生抗体的高度专一性,可以得到一系列高度专一性的抗体酶,使抗体酶不断丰富。随之出现大量针对性强、药效高的药物。立本专一性抗体酶的研究,使生产高纯度立体专一性的药物成为现实。以某个生化反应的过渡态类似物来诱导免疫反应,产生特定抗体酶,以治疗某种酶先天性缺陷的遗传病。抗体酶可有选择地使病毒外壳蛋白的肽键裂解,从而防止病毒与靶细胞结合。抗体酶的固定化已获得成功,将大大地推进工业化进程。

求一篇关于 免疫的 论文

一、基因疫苗的诞生
自1796年英国医生琴娜(Jener)首次采用牛痘苗以来,疫苗已在世界范围内被广泛应用,200多年来各种疫苗已经帮助人类战胜了包括天花在内的多种传染病.然而,现有的疫苗主要有两种:第一种疫苗是传统疫苗,即弱毒活苗和灭活苗,如鸡新城疫弱毒苗,猪瘟灭活苗,它是直接将无毒或减毒的病原体作为疫苗接种到人或动物体内,刺激机体免疫系统产生特异性免疫应答,从而预防疾病的发生;第二种疫苗是基因工程苗,它是通过基因工程,先分离得到具有强烈免疫原性但无毒性的抗原蛋白的编码基因,然后导入表达载体中,再在宿主细胞表达出重组抗原蛋白,经分离纯化后的重组抗原蛋白作为疫苗接种如重组乙肝疫苗。但它存在一些不可忽视的缺陷如:灭活疫苗难以诱发细胞免疫,需多次免疫注射;亚单位疫苗免疫原性差;减毒活疫茵存在毒性回升的危险等问题.因此,现在对一些传染病仍缺乏相应的安全有效的疫苗. 第三代疫苗基因疫苗的问世,为解决这些难题带来了希望.
基因疫苗(genetic vaccine)又称核酸疫苗(nucleic acid vaccine)或DNA疫苗,是在基因治疗(genetic therapy)技术的基础上发展而来的。基因治疗是从20世纪80年代发展起来用于预防和治疗疾病的最具革命性的生物医学医疗技术,其原理是将人或动物的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞以纠正基因的缺陷或发挥治疗作用,从而达到治疗疾病目的。1990年Wolff JA等在进行基因治疗试验时,以裸DNA注射作对照,结果意外发现裸DNA可被骨骼肌细胞吸收并表达出外源性蛋白。1992年Tang 、 DC等首次证明经基因免疫产生的外源性蛋白质——人生长激素可刺激小鼠免疫系统产生特异性抗体,而且加强免疫后抗体效价增加,从而宣告基因疫苗的诞生。(注:1)
概括起来,基因疫苗就是指将编码外源性抗原的基因插入到含真核表达系统的载体上,然后直接导入人或动物体内,让其在宿主细胞中表达抗原蛋白,该抗原蛋白可直接诱导机体产生免疫应答。抗原基因在一定时限内的持续表达,不断刺激机体免疫系统产生应答反应,从而达到预防疾病的目的。
二、核酸免疫的作用机理
目前对核酸免疫作用机理的认识主要还仅限于理论推测,且多数资料来自基因治疗试验,二者在作用机理上很相似。在基因免疫中,含病原体抗原基因的核酸疫苗被导入宿主细胞,被周围的组织细胞、APC细胞或其它炎性细胞摄取,并在细胞内表达。表达产物作为抗原可能的呈递途径是:肌细胞直接摄入或经T小管和细胞样内陷摄取进入,在外源基因启动子作用下使外源基因表达,使产物在胞内水解酶的作用下分解成长短不一的多肽,其中的一部分被hsp70运到内质网,经网膜上的TAP分子转入膜内与主要组织相容性复合物(MHC)I类结合,最终在细胞膜表面被CDS十细胞识别;另一部分短肽进入溶酶体,与(MHC)Ⅱ分子结合,运到细胞表面被 CD4+细胞识别。这些多肽含有不同的抗原表位,它们将诱导细胞毒性T淋巴前体、B细胞和特异性辅助T细胞,产生细胞免疫和体液免疫。同时,基因表达可以通过细胞分泌和分裂的方式进入组织细胞间隙,以天然折叠方式被B淋巴细胞识别。核酸免疫后,还可以使肌细胞和抗原递呈细胞被感染,从而使CD4+和CD8+细胞亚群活化,产生特异的免疫应答。 CorrM等(1996)的研究表明,从转染DNA得肌肉组织释放出的抗原被APC摄入,运送到管状淋巴结中,在B淋巴细胞和T淋巴细胞表达, I类MHC限制的CTL应答可能主要以这种方式产生。以前曾认为该过程需要内源抗原的表达,但现在的研究表明,只要有外源抗原的存在,也能有效地引起I类MHC限制的CTL应答。
三、基因疫苗质粒载体的构建
获得准确的抗原编码基因并将它插入到合适的载体DNA上,是发展基因疫苗的主要工作。
1、编码抗原蛋白基因的分离
制备DNA疫苗首先要获得编码抗原的基因,一般选择编码病原体表面糖蛋白的基因。抗原蛋白产生后可在宿主体内正确糖基化,从而诱导对病原体的免疫应答反应;对于易变异的病原体,最好选择各种变型都具有的核心蛋白保守的DNA序列,这样可对各种变异的病原体产生免疫应答反应,避免因病原体变异产生的免疫逃避问题。
2 目的基因质粒的载体构建
基因疫苗大多采用质粒作载体。一般说来,基因疫苗质粒载体至少包括5个主要的部件:(1)细菌复制子,以便质粒DNA在细菌体内复制扩增,得到大量的拷贝,但不能在宿主细胞(真核细胞)中复制;(2)原核生物选择性标记基因,如抗生素抗性基因,以筛选含有质粒DNA的阳性细菌克隆(菌株);(3)真核生物的启动子、增强子、终止子、内含子等转录调控元件;(4)编码抗原蛋白的目的基因序列;(5)多聚核苷酸信号序列,以保证mRNA翻译时适时终止。另外,基因疫苗质粒载体通常含有一段未甲基化的CpG序列,其具有刺激Th1细胞的免疫活性。
四、严重创伤后全身性炎症反应综合征及免疫调节治疗
严重创伤后机体免疫功能表现为双向性改变。一方面表现为以吞噬功能和白细胞介素-2(IL- 2)等产生降低为代表的免疫受抑状态;另一方面表现出以全身性炎症反应综合征为特征的过 度炎症反应。正是这二方面共同作用构成了创伤后机体免疫功能紊乱,诱发多器官功能不全综合症(Multiple Organ Dysfunction Syndrome,MODS)。下面就全身性炎症反应综合征和免疫调节治疗作一综述。

上一篇:微信如何论文查重

下一篇:听素材积累论文