分数计算研究论文
分数计算研究论文
我长期在乡村小学任教,在教学过程中发现,分数的初步认识既是教学中的一个重点也是一个难点,小学生很难接受和理解。
因此,我探索了教授此教学点的一种方法,与同仁共勉。
分数的初步认识是学生关于数的认识的一次扩展,分数与整数在意义、书写形式和计算法则等方面都有较大差异,而且农村学生在生活中接触分数的地方比较少,所以学生在学习分数时要比学习整数困难得多。在教学时,我考虑到小学生的年龄特点和接受能力,充分利用小学生已有的知识经验和生活经验,让学生通过平均分物体来认识分数。简单思路是:
第一步,让学生从熟悉的简单的数学事实出发,一个苹果平均分给两个人,每个人分到一半苹果,这个“一半”让学生讨论用什么样的形式和方式表示出来。这个讨论过程一方面是让学生意识到原来学过的整数不能表示这个“一半”;另一方面是让学生参与创造表示“一半”的方式。这样在这个基础上引进分数的概念,即“一半”可以用1/2来表示,从而体会到学习分数的必要性和重要性。
第二步,给学生点明,分数实际上是表示整体的一部分,整体概念的内涵是十分丰富的,从而引导学生运用分数来描述现象。
以我们班为例,我们班一共有20人,把我们班看做一个整体,那么每个人就是我们班的一部分,即每个人是我们班的1/20,还可以发挥学生的思路,叫每个学生举出现实生活中分数的例子,从而加深他们对分数的理解和印象。
学习分数以后,学生对比较分数的大小接触起来有点困难,笔者同样运用现实生活中的实例来讲解这个问题。例如比较1/2和1/3的大小,对于比较分数的大小,学生往往容易受到整数大小的干扰,认为后者比前者大,因为在小学生的头脑中,3比2大,而对分数的概念又处于刚刚接触阶段,停留在直观意识上。于是,我让每个学生拿出一张长方形的纸来,分别让他们折出1/2和1/3来,通过操作和比较,使学生从中进一步体会将一个物体均分后,其
中的一份或者几份可以用分数来表示,而通过直接观察1/2和1/3的大小,使学生意识到分数的大小和整数比较大小不是一个概
念,同时,使学生更加深刻地理解同样的物体,平均将一个物体分的份数越多,每一份就越少。
这只是我在长期的教学中发现和运用的点滴教学思路和方法,作为新时期的教师,在新课改的大环境下,也只有不断地发现和创新自己的教学思路和方法,才能适应不断发展的教学形势和小学生发展的实际情况。
(来源于网络)
若是不够,请点击:
小学数学分数论文&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_hit=1
希望我能帮助到你,望您采纳!
评职称发表论文的分数是怎么计算的
在参加职称参聘时,对参聘人员的各种环境进行量化,其中发表论文是一项重要的内容。参评人员总的评价分数为100分,其中发表论文最高为10分(各个专业的最高分数不同)。
有关规定:
(1)所有论文应为任现职以来所撰写并发表或交流的本专业或相近专业(包括著作、译文、译著),以证书及原文为准。其中:
国际权威检索学术刊物是指被sci、ssci、ei、istp四大国际索引所收录的国外期刊;
国外期刊是指带有国际标准刊号(issn)的国外期刊;
专业焦点期刊是指依据中国科技信息探究所、北京大学图书馆与北京高校图书馆期刊工作探究会提供的检索报告肯定的本专业领域刊物;
国家学术刊物是指带有国际标准刊号(issn)和国内统一刊号(cn)的期刊;
一般刊物包括省部级学术会议论文、论文集、《增刊》、科普类刊物;
技术报告(论文)则主要是指个人从事专业技术工作某一领域的报告(论文),包括技术业务方案、规划计划、调研报告、技术规范标准、专业技术管理规章制度等。
(2)论文(著作)及其发表的刊物(会议交流论文)级别由油田公司职改办组织专家认定。
(3)论文得分,应为该论文(著作)对应级别评分除以作者人数所得分数。例如:在国家级刊物上发表论文一篇,该论文对应级别评分为7分,借使是独著,则论文得7分,借使为2人合写,那么得分应为3.5分。
(4)若多篇论文发表或交流,以论文最高得分为基础分,累加其余各篇论文得分后×10%并与基础分相加即为论文总得分。例如:某参评人员共有三篇论文发表(交流),其中第一篇由2人合写并在国家学术刊物上发表,第二篇为个人独写并在一般级刊物上发表,第三篇论文为2人合写并在一般刊物上发表,则该同志第一篇论文得分为3分,第二篇论文得分为6分,第三篇论文得分为3分,那么该同志论文得分总分为6+(3+3)×10%=6.6分。
(5)同篇论文在不同刊物上发表不重复加分:与获奖成果相似的论文不重复加分。
工程技术研发类专业初级职称的论文量化评价标准及评分等级
如何提高分数乘除法计算正确率论文
在小学数学教学中,如何提高计算正确率是一个不可忽视的问题,尤其是许多小学生进入中高年级后,计算的正确率大大下降。多年来,常常听到一些教师说这样的话:“我班的学生太粗心了,计算题又被扣掉了不少分,这么简单的题目都做错了,气死我了!”每当听到这样的话,我就会反思学生计算错误的原因到底是什么?怎样才能提高学生计算的正确率呢?根据我近几年的经验浅谈几点做法,和大家共同探讨。一、分析错误原因,提高计算正确率根据学生作业情况分析,学生出现计算错误的原因主要有以下几点:计算法则没能正确掌握发生错误的仅占一小部分,而书写马虎、计算不认真的占大多数。比如,横式上是加号到了竖式就变成了减号,把数字“8”看成数字“3”,竖式数位没有对齐等。更有些学生计算时不论数的大小,能口算的全口算,不能口算的,也懒于动手,凭空口算,思想上不重视,导致计算上经常出错。有些优等生学习过于自信,计算后从不检验;中等生只想尽快完成作业,根本就不想检验;成绩差的学生大多数等到老师批改后,有错误再检查纠正,这样便养成了计算后不检验的习惯,从而影响了计算的正确率。
小学数学小论文300字
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
我也不知道你是几年级的,就给你弄了好多,你自己看看,删减删减,不过小学写论文?!我们初中还没写呢……o()^))o 唉,现在的教育水平开始抓学生了。。。
初一数学小论文1500字。谢谢啦。
初一数学小论文
浅谈多媒体技术在教学中的作用
一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用:
一、调整学生情绪,激发学习兴趣
兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。
如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。
二、形象导入新课,创设学习情景
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。
三、突出学习重点,突破学习难点
传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。
如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。
四、增强训练密度,提高教学效果
在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。
总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。
上一篇:车四轮检测论文
下一篇:车辆本科毕业论文