天文数学论文格式
天文数学论文格式
楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.
这里的一篇是偏向交作业的
下面一个是正式发表的双语版本
张彧典人工证明四色猜想 山西盂县党校数学高级讲师
用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。
最后特别感谢英国兰开斯特大学、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。
附:论文
用“H·Z—CP“求解赫伍德构形
张彧典 (山西省盂县县委党校 045100)
摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。
关键词:H—CP Z—CP H·Z—CP
《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。
为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。
如图1所示:
四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。
在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。
现在具体确立赫伍德构形的不可避免集。
在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。
如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。
其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。
如图3:设图1中有C1-D2链、D1-C2链存在时。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
如图4:设图1中有C1-D2链、B2-A2链存在时。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。
如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。
如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
图9:设图8中有B2-A2链与A1-D1环相交。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。
如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。
对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:
若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。
若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。
下面从理论上证明图2—10组成的不可避免集的完备性。
在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:
B1-A2、B1-D2、B2-C2、B2-A2
B1-A2、B1-D2、B2-C2、D1-C2
C1-D2、B1-D2、B2-C2、B2-A2
C1-D2、B1-D2、B2-C2、D1-C2
而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:
A-B与C-D、A-C与B-D、A-D与B-C;
还有12组可相交组合:
A-B与A-C、A-D、B-C、B-D;
A-C与A-D、B-C、C-D ;
A-D与B-D、C-D;
B-C与B-D、C-D;
B-D与C-D。
我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。
到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。
参考文献:
〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
附英文版
Using H·Z-CP Solves Heawood Configuration
Zhang Yu-dian
Yu Xian Party School, Yu Xian 045100, Shanxi, China
Abstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H·Z-CP.
Key words: H-CP Z-CP H·Z-CP
Introduce
Thesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.
For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.
As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.
In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.
As follows, the detailed Heawood configuration’s inevitable sets is given.
Result
It is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.
As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):
Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.
As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.
Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.
As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.
As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.
In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].
For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.
If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).
If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).
The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.
In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:
B 1-A2、B 1-A2、B2-C2、B2-A2
B 1-A2、B 1-D2、B2-C2、D1-C2
C 1-D2、B 1-D2、B2-C2、B2-A2
C 1-D2、B 1-D2、B2-C2、D1-C2
There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:
A-B and C-D、A-C and B-D、A-D and B-C;
Otherwise there are 12 kinds of intersectant combinations:
A-B and A-C、A-D、B-C、B-D;
A-C and A-D、B-C、C-D ;
A-D and B-D、C-D;
B-C and B-D、C-D;
B-D and C-D。
Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.
By this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.
Bibliography:
〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
请问数学论文的基本格式是?
第部:题
题含标题标题要求直接、具体、醒目、简明扼要(25字内)3号宋体加粗居编排
第二部:提要
提要部含摘要、关键词等别【摘要】、【关键词】(4号楷体加粗)内文用5号楷体各空2字格编排
摘要论文内容高度概要加注释评论简短陈述具独立性自含性其内容应说明论文主要研究内容、研究、研究结论等论文文摘要般3-5行宜
关键词3-5应能反映全文主题、主要内容、主要思想、主要观点等关键词间号隔关键词结束用标点符号
第三部:文
文论文核内容含引言与本论
引言或称引要简要说明论文题缘起、价值与意义、研究等直接引入本论
本论主体部内容须观点明确、论据充、论证严密、逻辑清晰、层明、语言流畅、结构严谨
文应按照内容层节编号要层明用5号宋体各种标题要求:
1.
级标题:阿拉伯数字排序标号数字用英文句号.:1.
…级标题标号与标题采用3号黑体单独行居左顶格编排
2.
二级标题:用阿拉伯数字级标号增第二层标号顺序标注两层标号间用英文句号.割第二层标号使用任何符号:2.3
…二级标题标号与标题采用4号黑体单独行居左顶格编排
3.
三级标题:用阿拉伯数字二级标号增第三层标号顺序标注各层标号间用英文句号.割第三层标号使用任何符号:1.2.4…三级标题标号与标题采用4号黑体单独行居左顶格编排
各级标题字数均超1行限标题结束处使用任何标点符号
4.定义:定义各级标题顺序标号比第1节第二定义定义1.2
5.结论与说明:定理、引理、推论、注记等结论与说明各级标题按顺序统标号比第2节第3述定理、引理、推论或注记引理则标注引理2.3推论则标注推论2.3
6.教案例示例:各种举例各级标题按顺序统标号比第2节第3例应标注例2.3定义、定理、引理、推论、注记、示例等均空2格编排各字(推论2.3、引理2.3等)4号黑体其空字格其内容采用5号楷体
7.公式:独立数公式要居排列各级标题右边按顺序标号并用括弧括住比第2节第5公式标注(2.5)行公式各行应按照第行第等号齐各行应该等号或其运算符号
第四部:参考文献
参考文献指论文研究写作参考或引证主要文献资料【参考文献】作标题(4号楷体加粗单独行居左顶格编排)文献等用5号楷体列于论文末尾所列参考文献要求:
(1)所列参考文献应式版物便读者考证
(2)所列举参考文献要标明序号、著作或文章标题、作者、版物信息
参考文献标注式按《GB7714-87文参考文献著录规则》进行
文献期刊、著作书写格式别:
[1]
作者(甲乙).
篇名.
杂志[J]卷(期):起始页(P28.30).
[2]
作者(甲乙).
书名[M].
点:版社.
数学论文的格式?
数学论文格式范文
【时间:2010-10-06 10:52 来源:未知】
题目要求:引人注目,一般不超过20个字。字体要求:小2号黑体,居中。空一行写摘要。
页面设置要求:页边距上、下、右都为2.5厘米,左边距为3厘米。装订线位置为左。
中学数学与高等数学的和谐接轨
(小二黑体,不加粗)
摘要(小三黑体,不加粗):从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。领悟到这一点,再结合中学数学的相关知识去学高等数学,就不会觉得艰涩难懂。站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。所以如何实现中学数学和高等数学的和谐接轨,如何在两者之间架一座桥梁是至关重要的。本文从特例分析、数学内容(代数、几何)、数学思想方法等三个方面就接轨问题进行了简要论述。(小四楷体,200字以上)
关键词(小三黑体,不加粗):中学数学 高等数学 数学思想 接轨
(小四楷体,不多于5个)
一般说来,数学史家把数学的发展分成四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期或五个时期(再加上“当代高等数学时期)。
(正文,小四宋体,字数不少于3000字)
参考文献:(小三黑体,不加粗)( 收集整理原创论文)
[1] 唐国庆.湘教版初中数学教案(七年级上册)[M].湖南教育出版社.2008年.
[2] 张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978年.
(小四宋体,参考文献不少于4个)
论文内容必须是有关数学方面的,专业或教学方面的。
西藏大学(初号隶书加黑居中)
本科生毕业论文(设计)
(小初楷体加黑居中)
题目:(字号二号,宋体,加黑,居中,下划线)
----副标题:(字号三号,宋体,加黑,居中,下划线)
院(部) 专业年级
姓 名 学 号
指导教师 职 称
数学论文范文参考
数学论文范文参考
数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
( 一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
( 二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
( 一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
( 二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
( 三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献:
〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.
〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.
〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.
浅谈高中数学文化的传播途径
一、结合数学史,举办文化讲座
数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、
二、结合教学内容,穿插数学故事
数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、
三、结合生活实际,例解数学问题
作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、
四、结合其他学科,共享文化精华
科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、
五、结合课外活动,小组合作探究
由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、
六、结合教学评价,纳入数学考试
虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。
我们数学老师让写个“数学小论文”,比如生活中的数学。各位高人说说该咋写,写论文是不是还有格式?多谢
合理利用资源 发挥最佳效益
记得是星期六的一天早上,爸爸带我去看望爷爷奶奶,爷爷奶奶生活在农村,生活来源主要靠养鸭为生,平时爷爷奶奶就吃住在鸭场,我到了爷爷奶奶处,免不了要看鸭舍,喂鸭子。鸭场沿河沟而建,其余三面是栅栏,围成一个长方形。我向爷爷喂鸭场地为什么不建成正方形而建成长方形,我还对爷爷说,‘我们老师说过,栅栏的长度一样时,围成的正方形面积要比长方形的面积要大,’爷爷笑呵呵地对我讲,‘你说的情况与我们这个喂鸭场地的情况不一样,你看我的这个场地,一面利用水沟围,三面利用栅栏围,不是四面,’接下我天真地说,‘水沟长着呢,为什么不围更长一些呢,那样面积不就更大了吗?’爷爷说,‘这就不一定了,’爷爷说,‘萍萍呀,听说你们已经学过长方形和正方形的面积计算了,今天正好我来考考你,我这个喂鸭场地,三面栅栏共长40米,你想想看我们这个喂鸭场的面积最大可以围成多大呢?’
带着问题,我陷入深深的思考中,我采用列举的方法,推想:假设宽1米,长是38米,面积就是38平方米;宽2米,长是36米,面积就是72平方米,逐步列举…宽10米,长20米,面积是200平方米;再往下逐步推算面积,面积又逐步减少,另外我又列举了其他的数加以证实看看有什么特点,我从中摸索了这样一个规律,象这样利用一边是河沟围成的长方形面积比正方形面积大,也不是长越长面积越大,而是长的长度是两条宽的和时面积最大。带着成功的喜悦,我跟爷爷说,‘爷爷呀,你考我的问题,我想了一下,不知道对不对,’爷爷让我讲讲看,我说这个喂鸭场地面积最大是200平方米。爷爷高兴地说,‘一点都不错,我孙女是好样的。’
从这个实例中,我感受到,在实际生活中,只有合理地科学地利用资源,才能发挥最大的效益,从中我也感受到,数学会给人们带来智慧创造财富,可以说是,生活中处处包含着数学,生活中处处离不开数学。
切 西 瓜
炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。
小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。
只用动动脑筋,世界上没有什么事可以难住你的。
单价是多少
我和好朋友王心怡一起出去买东西。
来到琳琅满目的商店,我和王心怡直奔文具区。我在商店里买了4块橡皮和3把小刀,共付6.05元;王心怡买了同样的2块橡皮和3把小刀,共付4.45元。买完后,我想考考王心怡,便问她:“你知道一块橡皮和一块小刀的单价吗?”王心怡想了想,便回答说:“一块橡皮0.8元,一把小刀0.95元。”“你光把答案算出来了,过程呢?”这可把王心怡难住了。王心怡过了一会儿对我说:“你等一会儿,我马上想想!”“我来算吧!很简单哦!”我胸有成竹的对王心怡说。“哦?你会?那你先来算算!”王心怡说。
我胸有成竹的对王心怡解释:“4块橡皮和3把小刀共付6.05元,2块橡皮和3把小刀共付4.45元。通过两组条件的对比,可以发现我比你多付6.05-4.45=1.60(元),是因为我比你多买了两块同样的橡皮,可用下列竖式来表示:
4块橡皮的价钱+3把小刀的价钱=6.05元
— 2块橡皮的价钱+3把小刀的价钱=4045元
2块橡皮的价钱 =1.60元
从而找到下列解法:
解:
(6.05-4.45)÷(4-2)
=1.6÷2
=0.8(元) ……… 橡皮的单价
(4.45-0.8x2)÷2
=2.85÷3
=0.95(元) ……… 小刀的单价
你会了吗?王心怡?”
“嗯!我会了!原来我们生活中有这么多数学,看来要把数学学好才行啊!我一定会努力学习的!”王心怡发奋图强说。我说:“我一定要探究数学中的奥秘!加油!”然后,我和王心怡就拿着自己的“战利品”回家了。
妹妹的年龄
其实,生活中处处都是数学,处处都与数学有关。只要我们肯观察,就会发现数学非常奇妙。
星期一傍晚,我正在温习数学和奥数。我突然想起妹妹的生日,在那里喃喃自语:“妹妹的年龄好象是6岁,又好象是5岁,到底是几岁呀?”我便决定去问妈妈。我走进妈妈的房间,好奇的问:“妈妈妹妹今年几岁呀?”妈妈顽皮地说:“聪明的宝贝,让我来考考你吧!”我要强的大声叫道:“考就考!谁怕谁?”妈妈开始一本正经的准备说了:“我给你一些条件,算出妹妹的年龄。你的外公比你的舅舅大26岁,你的舅妈比妹妹大26岁。妹妹一家今年一共126岁,而5年前妹妹一家一共107岁。亲爱的小宝贝快来算一算吧!”
不一会儿,我就将妹妹的年龄算出来了!我学着数学老师的样子,对妈妈说:“看着我的眼睛,妹妹呢她是4岁”妈妈又反问到:“宝贝你能算出外公,舅舅和舅妈的年龄吗?”“哈哈哈,早知道你会留一手,我是何等的聪明,不过我没留那么一手。”我笑着说。之后,妈妈暴笑了半天。过了一会儿,我又算出了答案说:“妹妹的爸爸是33岁,舅妈是30岁,外公是59岁。”妈妈夸我是个聪明的孩子。
亲爱的同学们,你们算出来了吗?在数学中,算年龄的一类问题叫做<<年龄问题>>。刚才我所算出来的思路是:一家四口,一个人5年应长大5岁四个人5年一共20岁,因此现在和5年前应相差20岁。而一家四口现在的和126岁减5年前的和107岁却是19岁,说明5年前有一个人还不在这个家,只有可能是妹妹。所以妹妹的年龄是5-1=4岁,舅妈的年龄自然就是4+26=30岁。舅妈的年龄加上妹妹的年龄与现在的总年龄126岁相减。就能算出舅舅和外公的年龄和,外公比舅舅大26岁,减去26岁,外公和舅舅的年龄就相等了。在除以2就算出舅舅的年龄,66除以2等于33岁,就是舅舅的年龄。外公的年龄就等于33+26岁,就等于59岁。其实,就这么简单。
生活离不开数学,数学离不开生活。因此我们要多多观察,多多学习,多多思考。
月饼盒的学问
今年国庆节,老师布置了一个特殊的作业:中秋节前带张白纸和家人一起到超市看月饼。
我怀着一颗好奇的心情,长假第一天就拉着妈妈到超市去。月饼销售区的月饼竟然有上百种,看得我目不暇接,唯一感叹:包装月饼的大礼盒太精美了!厂家一定在这上面花了很多心思。其它我就看不出有什么名堂,老师究竟让我们看什么呢?我疑惑地把所有月饼又细细观察一翻,发现各个大礼盒里面小月饼盒大多数是6个,8个装的,且都是分两行摆设布置。我指着月饼大礼盒问妈妈:“怎么里面的小盒子都摆成两行呢,为什么不放成一行呢?”“有什么感到奇怪的呢,这样设计不就是为了美观嘛!”妈妈笑着说。在妈妈的笑声中,我的脑海里闪出火柴盒的包装,难道这样设计也是为了节约纸的材料?那就来算算看,老师叫带的纸发挥作用了,然后我就请妈妈帮我到文具销售区找来笔和尺,量了一盒月饼大礼盒的长40厘米,宽28厘米,高4厘米,得出表面积(40×28+40×4+28×4)×2=2784平方厘米。如果里面的小月饼盒排布成一行,大礼盒长就是80厘米,宽14厘米,高4厘米,表面积是(80×14+80×4+14×4)×2=2992平方厘米。我恍然大悟,原来设计者是考虑到节约材料啊!我把我的发现告诉了妈妈,妈妈会心地说:“原来这样设计不仅是为了好看啊!看来你还真会学以致用啊!”
我很高兴,更来了探究的兴致,边思索边把这个大礼盒里面的两排小月饼盒垒起来,变成两层高。妈妈立刻制止我的这一举动:“会把下面一层装月饼的包装盒压了变形的。”“这样放,大礼盒的包装纸只要(40×14+40×8+14×8)×2=1984平方厘米,就更节约外包装纸了。”我不解地对妈妈说。妈妈点点头,打开其中一个月饼的小包装盒。一个小小的月饼躺在里面,小月饼盒容积比月饼的体积大多了,原来设计者用空余空间来充当小月饼,是月饼盒子容积大里面月饼小啊!那当然是不能把它们堆成两层,真的会压坏小月饼盒的。细细一比较:少用点做月饼的原料总比多用点外包装纸花的成本要低,我不得不佩服设计者的精心设计。
嘿嘿!原来身边处处都可能藏着数学,关键是我们是不是拥有一双会发现的眼睛。
我的推理
在古代,古人通过在麻绳上打结或用摆石子、划线的方法计数来分配所打的猎物,后来慢慢演变成了今天的数学。数学来源于生活,也应用于生活。生活中处处都有数学,许多问题都是通过数学的方法来解决的。
国庆前夕,派出所的警察叔叔来给我们上法制教育课。在这节课上,警察叔叔给我们讲了一个案例。一次,他们抓到了四个偷窃嫌疑犯:甲、乙、丙、丁。在他们的供词中,只有一个人说的话是真的。甲说:“不是我偷的。”乙说:“就是甲偷的。”丙说:“反正我没偷。”丁说:“是乙偷的。”这四个人中,到底谁是真正的小偷呢?听了这个案例,大家都七嘴八舌地议论开了,答案各不相同。警察叔叔说:“这个问题看似复杂,其实很简单,只要大家运用你们所学的假设法就可以解决,找到真正的小偷。”于是,我仔细地分析了这四个人的话,做了如下的假设:
第一种情况:假设甲是小偷。那么甲说的是假话,乙说的是真话,丙说的也是真话,而丁说的就是假话。
第二种情况:假设乙是小偷。那么甲说的是真话,乙说的是假话,丙说的是真话,丁说的也是真话。
第三种情况:假设丙是小偷。那么甲说的是真话,乙说的是假话,丙说的是假话,丁说的也是假话。
第四种情况:假设丁是小偷。那么甲说的是真话,乙说的是假话。丙说的是真话,丁说的是假话。
通过分析,只有第三种情况符合,由此可以判断丙就是小偷。
警察叔叔听了我的分析,高兴地夸奖我是未来的小侦探,我的心里乐滋滋的!
生活无处无数学!数学,就像一座直插云霄的山峰,只有真正喜欢它的人才会有勇气去征服它!去攀登它!同学们,让我们行动起来吧,做勇敢的登山人!
秋游中的数学
在实际生活中的其实有许多数学问题,许多熟悉的数学知识都可以运用在生活中,就像老师说的“数学就在自己身边、身边到处存在着数学问题”。很多时候,生活中的数学比课堂上的数学更加生动有趣,不像书本上的数学枯燥无味。在生活中能够用所学的数学知识去解答问题能使我更加热爱数学,更加主动地去学习数学。
秋游是一件快乐的事情。在秋游前老师提出的问题,“要去秋游了,你们想做的第一件事是什么?”我们都异口同声的说明:“到商店去买吃的!”于是,一场别开生面的购物方案设计开始了。我们兴趣盎然,纷纷设计着方案,计算着钱数。在有趣的活动中体验着数学的价值和学习的乐趣。当秋游购物方案设计在我们的兴奋之中落下帷幕时,老师又说:“同学们,你们为秋游购物作出了不同方案的选择,其实,大家说的、做的、算的都离不开两个字,那就是“数学”!我恍然大悟,原来数学就在我们的身边,生活中处处有数学。
老师又提出问题:“如果你是一个旅行家,有500元要到三个旅游点去旅游,怎么样安排可以既经济又实惠。”当星期一在课堂上讨论这题时,我们都很兴奋。因为我们利用双体日,有的去旅行社询问旅游价格;有的打电话询问火车与轮船的价格;有的询问住宿的价格;……。这些都是我们平时从不关心的问题,但现在却成了我们交谈的热点。有时我们在具体讨论线路时,常常为线路的合理与价格的优惠而争得面红耳赤。在这一活动中,我们不仅要将已学应用题知识应用到实际中去,又要考虑实际生活中的各种问题,不仅提高了自己解决简单问题的能力,同时也让我们能从中了解了社会。
老师曾说过要体会“数学之美”,是的在数学中我们发现了数学的严密之美,感受到数学图形的对称之美,更体会到生活中数学的无处不在,能够把所学的知识应用到生活中能够学有所用让我真正发现了数学的美。
瓦屋的秘密
我有许多秘密,说个给你听听——瓦房的秘密,嘿嘿,失望吧?我的秘密保密。
瓦房的秘密是我在前些日子发现的,学校组织我们六年级学生到横溪秋游。让同学们认识大棚里许多反季节的蔬菜,还亲身体验了劳动的辛苦。劳动过后,大家在一起小憩时发现了一间又老又旧的瓦房。屋里有好多我们从未瞧见过的旧物,从标签上我们才知道了它们的名称:土灶,竹碗橱,木制织布机,木踏,凤凰床……我们觉得一切都是那么新奇,摸摸这,摸摸那。这时,我看见老师抬着头在朝屋顶上看,我的好奇心也想看个究竟:屋内顶不是平的,是用木头和柴帘搭成。这怎么能撑得住屋外顶上的瓦呢?
“大家快出去,这屋顶不安全!”我慌忙地叫道。大家也惊慌起来,不知所措。
老师安抚大家说:“同学们,不要慌,屋顶现在不会塌的,屋顶上的木头还完好无损呢?”
“老师,木头好好的也不一定就能撑得住啊?”我不解地说。
“大家仔细看看中间的木头是怎么搭的?”同学们听了老师的话,一个个都睁大眼睛向上看去,并异口同声地说:“三角形。”
“对,三角形。三角形具有稳定性,因此屋顶不易变形,安全性也就高了。对吧,老师?”我不禁问道。
“建筑者就是充分利用三角形这一稳定性,来加强屋顶的稳固性的。”
原来瓦屋保存到现在的秘密就在这儿啊!
细细观察我们还会发现:自行车的脚撑,空调室外机的安装等等都是利用三角形的稳定性,是三角形给它们投了一份份不易倒塌的安全保险。数学的作用还真不小,它与我们的生活形影不离,我可得努力学好数学,让生活更丰富多彩。
奇妙的图形密铺
在生活中,我们常常会在生活中遇见数学.如窨井盖为何是圆形?伸缩门为什么是平行四边形等等。今天,我要给大家举一个图形密铺的例子。
丽丽搬新家了,她见她家的地砖有的是长方形,有的是正方形,有的是三角形,可是却没有漂亮的三角形,这是为什么呢?原来是因为长方形和正方形的四个角合起来是一个360度的,可以平铺在一起来,没有漏缝,而圆形它没有角度,所以不可以密铺.聪明的蜜蜂会做一个美丽的房子-----用六边形拼的房子,.因为六边形的一个内角是60度,所以1个六边形便可以密铺.
图形密铺如此奇妙使家变得更美丽.生活中我们还会遇见更多的生活中的数学,希望大家去观察,去发现,去思考.
上一篇:毕业论文写得滚则
下一篇:第二学位毕业论文