欢迎来到学术参考网
当前位置:发表论文>论文发表

翟荟博士毕业论文

发布时间:2023-03-09 20:08

翟荟博士毕业论文

 清华大学数理基础科学班自1998年成立以来,已有四届学生219人毕业,其中138人在国内免试攻读硕士或博士学位,39人出国深造。许多同学在本科期间就在世界一流杂志上发表了多篇论文———

一批“准拔尖人才”脱颖而出

和许多怀有科学梦想的学子一样,在结束了难忘的四年清华大学学习生活后,数理基科班01级的戚扬将远赴美国,继续他喜爱的理论物理研究———拿到哈佛、普林斯顿、耶鲁和斯坦福四所顶级大学的录取通知书的他最终选择了哈佛。

和戚扬一样,从基科班02级跳级到01级的金加棋得到了加州理工、柏克利、芝加哥、康乃尔、UIUC、杜克、霍普金斯、宾西法尼亚大学八所美国著名大学的offer.由于加州理工学院在应用物理和天体物理领域在全美排名第一,金加棋选择了加州理工学院。

像戚扬和金加棋一样同时拥有多所世界顶级大学offer的学生,在基科01班还有不少;与此同时,有许多优秀学生选择留在学校或在国内其他相关院所继续基础科学研究。

自1998年成立以来,被称为“拔尖人才培养的试验田”的清华大学数理基础科学班(简称数理基科班)已有四届学生219人毕业,其中138人在国内免试攻读硕士或博士学位,39人出国深造。许多同学在本科期间就在世界一流杂志上发表了多篇论文。在短短七年时间里,数理基础科学班这块“试验田”已有一批“准拔尖人才”脱颖而出。

七年磨得宝剑亮

在办班之初,数理基科班就明确提出了要培养有国际竞争力的优秀人才,并提出“十年磨一剑”的口号,哪怕每年只有三五个苗子,只要长期坚持办下去,也能积累一批在国际学术舞台上显露身手的优秀人才,其中有些人将可能成为杰出的顶级人才。仅仅七年时间,从数理基科班走出的学生在科研上表现出的巨大潜力和良好素质,已经使他们成为世界许多知名大学争相录取的对象。是怎么样的探索与创新,让这块“试验田”七年便磨得宝剑亮?

教务处常务副处长汪蕙教授认为,数理基科班在三个方面值得推介:一是独特的课程设置和良好的师资,使学生打下了扎实的数理基础;二是个性化的培养方案,给学生提供自主选择的空间,使学生真正找到了自己的兴趣所在;三是专题研究课(Seminar)使学生在导师指导下能及早进入自己感兴趣的科研领域,体现了基科班“宽口径,厚基础,强实践”的办学方针。

在数理基科班学习四年,戚扬感受最深的有两点:一是强大而优秀的师资队伍,二是学生可以推迟两年自由选择自己喜欢的专业与导师。

数理基科班创始人之一尚仁成老师认为,给学生两年时间打基础,然后再寻找自己感兴趣的领域,这种“自由”对于拔尖人才培养相当重要。

数理基科班创办者之一、理学院副院长白峰杉教授说,大学对于人的成长而言,是成才的四年,更是成人的四年。每个人都有比其他人强的方面,问题在于是否能让学生有自信,找到自己强的方面。所以,大学里首先要给学生提供一个宽松的环境,实施个性化的培养方案,让学生打好基础后,再依据兴趣确定自己未来的发展方向。白峰杉教授认为,数理基科班是学校教学体制的一种创新和尝试。

为保证这种个性化培养方案的实施,让学生享受充分的自由选择权,基科班在校内外聘请导师指导学生参加专题研究课,学生可以进行几次选择;另外,学生如果在大二就确定了今后的发展方向,他可以到相关院系选课,大大扩展了基科班的选课范围。

“选天下名师而师之”。因获得国际奥林匹克物理竞赛金牌而进入基科班的戚扬本想在大二时转到工科院系,因为教师在课堂上精彩的讲解,让他真正找到了自己对物理和数学的兴趣,最终把物理作为终身奋斗的方向。

从全校甚至全国聘请最好的老师上课,这是数理基科班的一个特色。这些出色的教师,带给学生的不仅仅是知识,更有人格的魅力。正是他们,为数理基科班的优秀学子开启了通往科学殿堂的大门。正像98级翟荟所说的:“在数理基科班,我受到了几乎是现在中国所能给予的最好的基础课教育和扎实的科研训练。”

他的同学曾蓓则感叹:“得到这么多名师的指点和关怀,也许是基科班人最大的幸运。因为,这绝不仅仅是知识上的巨大收益,更多的是一种对事业的热爱和为科学献身精神带给我们的震撼与思索。”

清华大学高等研究中心主任聂华桐教授说:“首届基科班的翟荟和二届的祁晓亮,都是对物理充满了热诚和爱好的同学,物理直感好、数学演绎力强,十分难得。从国外来访问的多位学者对他们二位都是赞不绝口。拿他们和60年代我自己在哈佛大学作研究生时前后两三届的同学来比,翟、祁二位确实有过之而无不及。”

香港大学物理系主任郑广生教授评价说,数理基科班学生在国际会议上非常活跃,英文非常好,校内的学术活动也很活跃,学术报告中学生提问也很积极。

因材施教,学生为本

强调因材施教,把拔尖人才培养放在首位,是数理基科班成立之初就确立的理念。力图关注每一个学生,让他们充分发挥自己的特点,数理基科班负责人尚仁成、熊家炯、阮东等老师为此倾注了许多心血。尤其到大三学生选择专题研究课时,老师们要从学生角度出发,对每一个学生专题研究课选择的导师和培养方案的确定都进行指导。这种点对点的指导和对学生的诸多心血,引领这些“科学高峰的登山队”队员们克服了许多外在的困难。

在老师和同学眼中,基科01的邵华是物理学“怪才”。他对物理学的执著和表现出来的物理天分让许多老师和同学钦佩不已。尚仁成和阮东两位老师赞赏地说,“邵华在中学时就自学了物理专业的重头课程‘四大力学’,对数理方程的解法也有独到之处,还发表了论文。他是被破格保送到数理基科班的。在大三做专题研究课时,他把微分几何和规范场论中的公式都独自推算过。”诺贝尔奖获得者费曼教授的著作在美国物理学界被称作“物理学界的圣经”,许多人尝试着用他的书作教材,都因为难度太大而最终放弃。费曼教授的《量子电动力学讲义》是一本很难读懂的书,但邵华在大三时,就把该书里的公式全部推导了一遍。

对物理学有如此浓厚兴趣的邵华喜欢自学,常常不去上课。这种违背常规的做法引起了许多人的不同意见。他的考试成绩平平。对这样一位特殊学生,经推荐,他如愿以偿地到中科院理论物理研究所攻读博士学位。“那里很适合邵华发展,相信他将来定能做出成绩。”阮东老师说。

因材施教在学生选做专题研究课时体现得淋漓尽致。基科02的杨桓,跳级到基科01的周一帆,都因为成绩优异,在导师推荐下转学到美国加州理工学院继续本科学习。

从专题研究课跨入科研大门

从大三开始持续三个学期的专题研究课,是数理基科班学生进行科研实践训练、跨入科研大门的第一步。专题研究课是数理基科班独有的教学模式,其目的是培养学生在教师指导下的自学研究,综合与联想能力;培养学生的探索与创新精神;密切教师与学生的联系,并有利于学生向不同方向分流和因材施教。

基本做法是:在校内外聘请专题研究课导师,由导师提出课题,列出必读文献,向学生公布,学生根据自己的兴趣、爱好,报名选择题目和相应的导师。专题研究课课题按内容将学生分成若干小组,课题研究进展定期在小组内报告交流。在第三个暑期进行全班性的专题研究课进展交流,要求每个学生汇报自己的研究工作进展,并报告对所研究领域的学科前沿的理解。

在专题研究课的选择上,学生享有充分的自主权。如果经过一段时间实践,发现自己对所选导师的课题不感兴趣,还可以更换导师。这种充分的自由使学生在摸索中不断寻求和确定自己的兴趣点,对于最后确定的导师和选题,真正是出于自己的兴趣所在。正是由于兴趣使然,学生在做专题研究课时能尽快地进入科研课题,并取得令人瞩目的成绩。

曾蓓是基科班98级学生。由于她对量子力学中的对称性和量子信息、微分几何等很感兴趣,三年级进入专题研究课阶段,选择了清华龙桂鲁教授、北大曾谨言教授、中科院理论所孙昌璞教授为其导师。她在科学研究上的探索精神和能力得到了导师们的高度评价,本科期间与导师等合作者完成的5篇论文中,有4篇发表在SCI上。

翟荟三年级进入专题研究课阶段,他跟随徐湛教授学习和研究玻色-爱因斯坦凝聚和量子力学中的数学方法,本科阶段完成论文4篇。进入研究生阶段后,杨振宁先生把他选为在国内亲自培养的第一位博士生。经过两年多一点的时间,翟荟就取得博士学位,他是第一位获得博士学位的基科班学生。

许岑柯是基科班99级学生,从大三开始的专题研究课阶段,选择了理论物理方向。他不仅数理主干课的成绩优秀,而且在导师指导下,修完了研究生理论物理专业的基础课程,打下了坚实的数理基础。2003年本科毕业出国到美国柏克利大学,他到校后第一学期就参加了资格考试,成绩为全系第一名。到美国几个月后就与导师合作以第一作者身份在SCI上发表一篇影响较大的论文。

在一些交叉学科领域,数理基科班学生也表现得相当出色。基科班99级的赵福同学通过在经管学院的专题研究课训练后,参加了世界最大的投资银行之一摩根斯坦利2003年的招聘竞争。亚洲地区具有资格的应聘者超过300人,经过十分严格的层层挑选和该银行亚洲总部的5位高层领导长时间的严格面试,赵福最终成为该公司唯一一名在亚洲地区招收的成员。他们对赵福的评价是:既有数学物理方面的基础,又有经济金融方面的学习和研究训练,思维方式有其独特性。

由于数理基科班学生数理基础好,思维活跃,进入课题快。每学期都有多位教授主动希望学生去他们那里做专题研究课。几年来,已有不少学生被专题研究课导师推荐到国外大学相关院系做专题研究课或毕业论文或读博士。如基科98级的孙乐非和马登科被他们在生物方向的专题研究课导师饶子和院士推荐到荷兰鹿特丹大学做毕业论文,本科毕业后又被推荐到美国霍普金斯大学攻读生物学博士。

专题研究课小组交流和班级交流活动,不仅使同学们相互了解到不同院校和院系做专题研究课的情况,还在同学们中间形成了一种自发跨学科的学术讨论氛围。就感兴趣的研究题目组成一组,由一人主讲,大家再围绕主题进行深入讨论,这种自发性的学术讨论是许多学生都十分热衷的。基科班的这种研究与讨论的氛围也带动了许多物理系和数学系的同学加入进来。

良好的科研氛围,独特的专题研究课科研实践训练,使基科班学生在科学研究的瀚海里自由驰骋,取得了不俗的佳绩。例如,在天体物理中心学习的40名左右研究生和高年级本科生中,胡剑(基科98)、林锦荣(基科98)、郑琛(基科99)和另两位研究生被称为“五虎上将”,他们每人都在国际上影响很大的APJ和APJLetter发表了1—2篇论文。林锦荣的研究工作还被NewScientist杂志作了专门报道。近两年几次国际会议上,他们都十分活跃。据不完全统计,仅分流到物理方向的基科班学生2001年—2004年间发表SCI论文18篇,其中12篇发表在包括顶尖期刊PRL在内的国际著名杂志上;在国际会议上作报告15人次。

清华数理基础科学院的基本培养模式

1. 统一按照数理基础科学专业招生;进校后按同学的兴趣取向编班;2. 聘请校内外优秀教师授课;3. 前两年主要依托理学院加强数理基础培养、实施学生管理;强调打好数学和物理学基础,培养学生既具有数学的高度抽象思维能力,又具有现代物理学的理论素养和实验技能;实施因材施教,提供多层次、多风格的数学、物理基础课程,供有不同兴趣和特长的同学选择。4. 二年级末按照学校规模控制、院系和学生双向选择的原则完成专业分流,分流专业方向包括:数学与应用数学,物理学,数理基础科学专业(基科应用)等。学生分流后由各院系负责后续培养和管理。分流过程充分顾及学生的志愿和兴趣。5. 分流以后,学生按照所在专业的培养方案完成后续学习任务,在学业结束时根据该专业培养方案进行毕业资格和学士学位授予资格审查,合格者可获得所在院系(专业)的毕业证书和学士学位证书。数理基础科学专业培养模式介绍数理基础科学专业继承原基础科学班的培养模式。科研训练(Seminar)从三年级开始,为数理基础科学专业学生开设连续三学期的科研实践(seminar)课(定为必修课),从校内有关院系以及校外相关研究所和其他大学,聘请富有研究经­验的教授、院士担任导师,提出研究题目。学生可根据自己的兴趣和意愿,选择导师和研究题目,导师也可选择学生。学生在做seminar的同时,根据导师的建议,可选修4-6门所在院系的专业核心课程,作为所选专业的课程,并记入毕业总学分中。在三年级结束后的暑期小学期还将进行全班的seminar交流,每个同学结合自己的科研实践,介绍所在学科的前沿。科研训练帮助学生找到适合自己的研究方向,也帮助学生学会在科研中渗透式学习,培养其创新能力。从1998年基础科学班建立以来,对每届学生进行的调查表明,学生对seminar普遍反映很好,认为收获很大或较大的学生达90%以上。毕业论文选择数理基础专业的学生,可根据自己的学科兴趣和意愿选择在本校或到校外有关高校和研究所做毕业论文或毕业设计。几年的实践表明,虽然有些学生毕业论文方向不是其主修方向,但由于数理基础扎实,大多数入门较快,毕业论文的优秀比例大大高于全校平均水平。出国及免试推研通过seminar的训练,许多数理基础科学专业的学生对相关学科有了较好的了解,在此基础上,可根据自己的兴趣、爱好和志向选择出国或在国内不同的学科方向攻读研究生,进一步深造。选择国内读研,除可以选择数学系和物理系继续深造外,还可到清华其他院系攻读自己感兴趣的学科领域的研究生,还有部分学生可以推荐到中国科学院的相关研究所或国内著名大学攻读研究生。基础科学班在培养拔尖人才方面的成功,使其在国内外的影响逐年增大。近年来,基科班数理基础学毕业的学生越来越受到国外一流大学的青睐。对于那些希望出国继续深造的学生,数理基础科学是一个很好的选择。理学院物理系全职院士人数占全系教师总人数超过10%全国唯一拥有物理学两个基地的院系招生专业 数理基础科学基本概况清华大学物理系始建于1926年,著名物理学家叶企孙先生担任首位系主任。吸引了多位著名物理学家.如吴有训、萨本栋,周培源、赵忠尧、任之恭等在清华物理系任教,培养了以王淦昌、钱伟长、钱三强、林家翘、彭桓武.赵九章、王竹溪等一大批卓越的物理学家,不到十年就成为国内最好的物理系。抗日战争期间.清华大学、北京大学、南开大学组建成国立西南联合大学,培养出杨振宁、李政道、黄昆、张守廉、邓稼先、朱光亚等一大批杰出人材。1952年全国高校院系调整清华物理系的绝大多数教师和全部学生并入北京大学。中断30年之后,清华大学于1982年重新恢复物理系,由清华物理系杰出校友周光召院士出任复系后的第一任系主任。在清华物理系学习过或任教过的系友中有中国科学院、中国工程院两院院士84人。1999年受到中央表彰的23位两弹一星元勋中,有7位本科毕业于清华物理系, 2位本科毕业于西南联大物理系,还有1位是联大物理系研究生。师资力量物理系现有教职工115人,教师80人,其中有李家明、王崇愚、李惕碚、陈难先、顾秉林、邝宇平、范守善、朱邦芬、薛其坤等9位在职的中科院院士,长江特聘教授7人,国家杰出青年基金获得者10人。诺贝尔物理奖获得者杨振宁教授现任物理系顾问委员会成员、高等研究中心名誉主任。最近还有多位国外一流大学的正教授全时到清华工作。科学研究物理系的研究方向涵盖物理学和天文学2个一级学科,含理论物理、粒子物理与原子核物理、凝聚态物理、原子分子物理、光学、声学、等离子体物理、天体物理等八个二级学科,其中前4个二级学科是全国重点学科,而物理学一级学科是全国重点学科。近年来还生长出量子信息、纳米科学等新兴交叉学科。清华物理系在上述领域取得了一大批优秀的学术成果,获得了多项国家、省部委的科技成果奖。其中,碳纳米管的应用研究、表面物理和拓扑绝缘体的研究、高温超导滤波器的应用研究、以及天体物理研究,在国际上颇有影响。人才培养1991年清华物理系被国家教委批准为全国物理学专业第一批两个“国家理科基础科学研究与教学人才培养基地(物理)”之一。1996年我系又首批被国家教委批准为国家“工科物理教学基地”。在2004年教育部组织的评估中,这两个基地都被评为全国优秀基地。近年来,物理系有多位教师获得国家级教学名师奖、北京市高等学校教学名师奖:多门课程获得国家级精品课程、北京高等学校市级精品课程、国家理科基础科学研究与教学人才培养基地名牌课程。物理系的实验物理教学中心被评为国家级实验教学示范中心。【我系的物理学专业入选高等学校特色专业建设点。系主任朱邦芬院士领衔的基础物理教学团队入选国家级教学团队。】物理系十分关心学生,为每个物理系本科学生配备导师。物理系十分重视创新人才的培养,对学生因材施教,尽可能实施小班教学,例如,对低年级物理课程,既有中国传统的普通物理和原汁原味的美国大学物理,又有费曼物理学,还有实验与理论同步进行同一位教师传授的“基础物理学理论与实验”课程。物理系为每个学生提供多次选择方向的机会,也提供进入教授研究组在研究中学习的机会,使每个学生有条件依据自己兴趣自主发展。对于志在攀登基础科学研究的优秀学生,属于教育部“基础学科拔尖学生培养试验计划”的“清华学堂物理班”创造了理想环境,帮助他们成材。近几年物理系本科毕业生中,在国内攻读硕士和博士研究生的人数和出国深造的人数比例都在45%左右。其中不乏哈佛大学、斯坦福大学、麻省理工学院、加州大学伯克利分校等世界顶尖大学。专业介绍物理系办学的指导思想是:在清华大学多学科群的环境下,培养出具有扎实理论基础和较强科学实验能力的一流物理人才。物理系毕业生,既能在物理学和其他基础科学的前沿领域开拓创新,也能将现代物理学的知识及技术,创造性地应用于科学技术的各个领域和国家现代化建设中。物理系设置“物理学”和“基础科学应用【数理基础科学】”两个本科专业。本科学制一般为四年,在学分制的基础上对学生实行分流培养。物理学专业(基科物理)着重培养能从事物理学研究的人才和应用物理学的人才,基础科学应用专业数理基础科学专业(基科应用)则培养学生具有扎实的数理基础、能在科学技术各个领域开拓创新的应用型人才。全系统一按“数理基础科学”专业招生,进校后实行宽口径培养。学生在本科阶段前两年将按“数理基础科学”的教学计划重点学习数学和物理的基础课程,从本科二年级第二学期起开始分流培养。物理学专业学生按物理系的培养方案学习物理专业的专业基础课和专业课。基础科学应用专业数理基础科学专业(基科应用)学生除继续学习数理基础课外,还将在所选择的专业方向学习研究。物理系的教学计划统筹考虑本科、硕士和博士研究生各阶段的衔接。物理系在制订本科教学计划时注重学生知识结构的合理性及全面素质的培养。合理安排课程,给学生充分的自主选择自由。物理系鼓励学生根据本人的志向和兴趣选择学科方向,尽早进入相关的科研实验室,找到适合自己的研究领域,也学会在科研中渗透式学习,培养其创新能力。联系方式网址:http://166.111.26.11理学院数学科学系孕育了陈省身、华罗庚、许宝禄、吴大任、柯召、庄圻泰等近代数学大家“数学与应用数学“专业是国家级和北京市特色专业点清华数学中心,以培养学生为工作重点招生专业:数理基础科学基本概况在清华园天文台小山坡的四周,绵延铺开的绿草地托起栋栋红楼,这就是清华理学院的新楼。常青藤爬满了石柱拱门,罗马式的阶梯广场环绕着长廊,呈现出一派静谧的学术殿堂。清华大学数学科学系(以下简称数学系)诞生于1927年,它迅速发展为当时国内的数学中心。先后在此任教的有熊庆来、杨武之、华罗庚、陈省身、许宝禄、段学复、冯康、徐利治、程民德、万哲先等著名数学家, 孕育了华罗庚、陈省身这样的世界级数学大师。1952年全国高校院系调整时撤消了清华大学数学系。改革开放之后, 清华逐渐向综合性大学转型, 于1979年建立了应用数学系。1993年清华大学确立了创建世界一流大学的战略目标,1999年将我系改名为数学科学系。学校在政策与资金两方面均给予数学系强有力的支持, 从而使数学系再次快速发展,重新成为我国数学方面科学研究和人才培养的一个重要基地。经过多年的努力, 数学系已建立起一支学科齐全, 年龄结构合理, 高水平的师资队伍,于2000年获得数学一级学科博士学位授予权,2002年数学系的“基础数学”和“应用数学”双双被评为国家重点学科,2007年我系的数学学科被教育部评为一级重点学科。数学系还设有全国工科数学教学基地和工业应用数学中心。2009年成立清华数学科学中心,聘请丘成桐教授担任中心主任,负责指导清华数学学科发展,从国内外招聘选拔数学人才,以及数学方面拔尖创新人才培养等多方面的工作。清华数学迎来了新的发展契机,在与国际数学教育和科研前沿接轨方面迈出了新的步伐。师资力量目前数学系有教师77人,其中教授35人,副教授29人,讲师12人,绝大多数有博士学位。其中有2位教育部长江特聘教授、8位国家杰出青年基金获得者,以及多位其他学术荣誉获得者。教师按照教学、科研、公共服务三个方面考核,每位教师平均每学年教学工作量不少于两门课,以保证每位教师都在教学一线工作。科研成果清华数学系在许多领域的研究中具有很强的实力, 在代数和数论、 动力系统、拓扑和几何、 应用数学、数学物理等方面科研成绩尤为突出。国际交流数学系聘请巴黎第十一大学讲习教授团在代数几何与数论、分形几何与几何测度论开展了合作,同时还与包括哈佛大学、麻省理工学院在内的许多国际一流大学有密切的合作交流。新近成立的清华数学中心聘请美国哈佛大学数学系主任丘成桐教授担任主任,该中心与数学系密切合作,以数学人才培养为工作重点,邀请大量国外一流数学家来中心讲授基础和前沿课程,为我系师生提供了直接接触国际数学前沿提供了一个平台。人才培养成果随着信息社会的到来,人们越来越认识到严格的数学训练能提供坚实的发展基础,渊博的数学知识能提供广阔的发展空间。目前数学系已毕业本科生中百分之七十以上选择直接攻读研究生,其中相当一部分获本系推荐免试直接攻读硕士或博士学位,也有部分同学去校内诸如计算机、自动化、经济管理等专业或校外诸如中国科学院等单位读研。另外还有一部分直接出国留学并取得了较好成绩,尤其是在欧美高校深造的数学系的优秀毕业生成绩显著,博士毕业以后在哈佛大学、普林斯顿大学、哥伦比亚大学等著名大学开始工作,获得了“新世界数学论文金奖”等奖励。专业介绍清华数学系本科专业齐全, 具有教育部规定的两大专业: 数学与应用数学、信息与计算科学。数学系采取相对灵活的本科培养模式,按数理基础科学班招生,进校分流到数学系后实行宽口径培养,在本科最初的两年重点学习数学基础课, 在学有余力的情况下可强化物理基础。本科三年级确定专业,可以选择基科数学或基科应用的专业方向,也可分流到基科物理,或者到其它同意接收的院系学习。数学系高年级开设基础数学、应用数学、计算数学、运筹学、统计学等方向的专业课程,以适应不同的职业需求。清华学堂数学班项目为有志于以数学研究为职业的成绩优异的同学提供专业指导和职业发展帮助,同时其课程对全体同学开放。三年级开始本科生可以选修数学讨论班课程,获得数学方面科研的初步经验。数学与应用数学专业本专业旨在培养数学与应用数学的高素质拔尖人才,培养现代数学顶峰的攀登者,培养在我国现代化建设中担当大任的数学和应用数学领军人物。在课程设置上,尤其在一、二年级,强调正规扎实的数学基础训练,为学生将来成才和多方向的发展奠定坚实宽广的根基。同时引导学生深入到数学最重要的分支,接触现代数学思想和框架,拓宽知识领域,激发求知和探索兴趣。除开设国内一流的、标准的本科数学课程之外,在现代数论、代数、几何、分析、微分方程、概率统计及计算机科学等方面的研究生课程和清华数学中心由国外来访学者开设的数学课程,也对高年级本科生开放。信息与计算科学专业我系本专业以培养计算数学方面的人才为主,以数学为基础、计算机为工具,研究应用数学、工程数学等应用学科中复杂数学问题的计算方法的理论和算法。一、二年级在主要学好基础数学课程的同时,熟练掌握计算机编程和数学软件的使用;三、四年级在进一步加强数学基础的同时主要学习大规模科学计算、运筹、优化理论和方法等方面的课程。学生活动及奖助学金我系学生活动丰富多彩,包括学生节,师生运动会,足球赛,主体班会等等。我系除了校级的各类奖助学金外,为成绩优异的同学提供以下奖学金:华罗庚奖学金,熊庆来计算数学奖学金,李欧教授数学奖学金,孙念增教授数学分析奖学金。入选清华学堂数学班的同学享受清华学堂奖学金。清华大学数理基础科学班自1998年成立以来,已有四届学生219人毕业,其中138人在国内免试攻读硕士或博士学位,39人出国深造。许多同学在本科期间就在世界一流杂志上发表了多篇论文———一批“准拔尖人才”脱颖而出和许多怀有科学梦想的学子一样,在结束了难忘的四年清华大学学习生活后,数理基科班01级的戚扬将远赴美国,继续他喜爱的理论物理研究———拿到哈佛、普林斯顿、耶鲁和斯坦福四所顶级大学的录取通知书的他最终选择了哈佛。和戚扬一样,从基科班02级跳级到01级的金加棋得到了加州理工、柏克利、芝加哥、康乃尔、UIUC、杜克、霍普金斯、宾西法尼亚大学八所美国著名大学的offer.由于加州理工学院在应用物理和天体物理领域在全美排名第一,金加棋选择了加州理工学院。像戚扬和金加棋一样同时拥有多所世界顶级大学offer的学生,在基科01班还有不少;与此同时,有许多优秀学生选择留在学校或在国内其他相关院所继续基础科学研究。自1998年成立以来,被称为“拔尖人才培养的试验田”的清华大学数理基础科学班(简称数理基科班)已有四届学生219人毕业,其中138人在国内免试攻读硕士或博士学位,39人出国深造。许多同学在本科期间就在世界一流杂志上发表了多篇论文。在短短七年时间里,数理基础科学班这块“试验田”已有一批“准拔尖人才”脱颖而出。七年磨得宝剑亮在办班之初,数理基科班就明确提出了要培养有国际竞争力的优秀人才,并提出“十年磨一剑”的口号,哪怕每年只有三五个苗子,只要长期坚持办下去,也能积累一批在国际学术舞台上显露身手的优秀人才,其中有些人将可能成为杰出的顶级人才。仅仅七年时间,从数理基科班走出的学生在科研上表现出的巨大潜力和良好素质,已经使他们成为世界许多知名大学争相录取的对象。是怎么样的探索与创新,让这块“试验田”七年便磨得宝剑亮?教务处常务副处长汪蕙教授认为,数理基科班在三个方面值得推介:一是独特的课程设置和良好的师资,使学生打下了扎实的数理基础;二是个性化的培养方案,给学生提供自主选择的空间,使学生真正找到了自己的兴趣所在;三是专题研究课(Seminar)使学生在导师指导下能及早进入自己感兴趣的科研领域,体现了基科班“宽口径,厚基础,强实践”的办学方针。在数理基科班学习四年,戚扬感受最深的有两点:一是强大而优秀的师资队伍,二是学生可以推迟两年自由选择自己喜欢的专业与导师。数理基科班创始人之一尚仁成老师认为,给学生两年时间打基础,然后再寻找自己感兴趣的领域,这种“自由”对于拔尖人才培养相当重要。数理基科班创办者之一、理学院副院长白峰杉教授说,大学对于人的成长而言,是成才的四年,更是成人的四年。每个人都有比其他人强的方面,问题在于是否能让学生有自信,找到自己强的方面。所以,大学里首先要给学生提供一个宽松的环境,实施个性化的培养方案,让学生打好基础后,再依据兴趣确定自己未来的发展方向。白峰杉教授认为,数理基科班是学校教学体制的一种创新和尝试。为保证这种个性化培养方案的实施,让学生享受充分的自由选择权,基科班在校内外聘请导师指导学生参加专题研究课,学生可以进行几次选择;另外,学生如果在大二就确定了今后的发展方向,他可以到相关院系选课,大大扩展了基科班的选课范围。“选天下名师而师之”。因获得国际奥林匹克物理竞赛金牌而进入基科班的戚扬本想在大二时转到工科院系,因为教师在课堂上精彩的讲解,让他真正找到了自己对物理和数学的兴趣,最终把物理作为终身奋斗的方向。从全校甚至全国聘请最好的老师上课,这是数理基科班的一个特色。这些出色的教师,带给学生的不仅仅是知识,更有人格的魅力。正是他们,为数理基科班的优秀学子开启了通往科学殿堂的大门。正像98级翟荟所说的:“在数理基科班,我受到了几乎是现在中国所能给予的最好的基础课教育和扎实的科研训练。”他的同学曾蓓则感叹:“得到这么多名师的指点和关怀,也许是基科班人最大的幸运。因为,这绝不仅仅是知识上的巨大收益,更多的是一种对事业的热爱和为科学献身精神带给我们的震撼与思索。”清华大学高等研究中心主任聂华桐教授说:“首届基科班的翟荟和二届的祁晓亮,都是对物理充满了热诚和爱好的同学,物理直感好、数学演绎力强,十分难得。从国外来访问的多位学者对他们二位都是赞不绝口。拿他们和60年代我自己在哈佛大学作研究生时前后两三届的同学来比,翟、祁二位确实有过之而无不及。”香港大学物理系主任郑广生教授评价说,数理基科班学生在国际会议上非常活跃,英文非常好,校内的学术活动也很活跃,学术报告中学生提问也很积极。因材施教,学生为本强调因材施教,把拔尖人才培养放在首位,是数理基科班成立之初就确立的理念。力图关注每一个学生,让他们充分发挥自己的特点,数理基科班负责人尚仁成、熊家炯、阮东等老师为此倾注了许多心血。尤其到大三学生选择专题研究课时,老师们要从学生角度出发,对每一个学生专题研究课选择的导师和培养方案的确定都进行指导。这种点对点的指导和对学生的诸多心血,引领这些“科学高峰的登山队”队员们克服了许多外在的困难。在老师和同学眼中,基科01的邵华是物理学“怪才”。他对物理学的执著和表现出来的物理天分让许多老师和同学钦佩不已。尚仁成和阮东两位老师赞赏地说,“邵华在中学时就自学了物理专业的重头课程‘四大力学’,对数理方程的解法也有独到之处,还发表了论文。他是被破格保送到数理基科班的。在大三做专题研究课时,他把微分几何和规范场论中的公式都独自推算过。”诺贝尔奖获得者费曼教授的著作在美国物理学界被称作“物理学界的圣经”,许多人尝试着用他的书作教材,都因为难度太大而最终放弃。费曼教授的《量子电动力学讲义》是一本很难读懂的书,但邵华在大三时,就把该书里的公式全部推导了一遍。对物理学有如此浓厚兴趣的邵华喜欢自学,常常不去上课。这种违背常规的做法引起了许多人的不同意见。他的考试成绩平平。对这样一位特殊学生,经推荐,他如愿以偿地到中科院理论物理研究所攻读博士学位。“那里很适合邵华发展,相信他将来定能做出成绩。”阮东老师说。因材施教在学生选做专题研究课时体现得淋漓尽致。基科02的杨桓,跳级到基科01的周一帆,都因为成绩优异,在导师推荐下转学到美国加州理工学院继续本科学习。从专题研究课跨入科研大门从大三开始持续三个学期的专题研究课,是数理基科班学生进行科研实践训练、跨入科研大门的第一步。专题研究课是数理基科班独有的教学模式,其目的是培养学生在教师指导下的自学研究,综合与联想能力;培养学生的探索与创新精神;密切教师与学生的联系,并有利于学生向不同方向分流和因材施教。基本做法是:在校内外聘请专题研究课导师,由导师提出课题,列出必读文献,向学生公布,学生根据自己的兴趣、爱好,报名选择题目和相应的导师。专题研究课课题按内容将学生分成若干小组,课题研究进展定期在小组内报告交流。在第三个暑期进行全班性的专题研究课进展交流,要求每个学生汇报自己的研究工作进展,并报告对所研究领域的学科前沿的理解。在专题研究课的选择上,学生享有充分的自主权。如果经过一段时间实践,发现自己对所选导师的课题不感兴趣,还可以更换导师。这种充分的自由使学生在摸索中不断寻求和确定自己的兴趣点,对于最后确定的导师和选题,真正是出于自己的兴趣所在。正是由于兴趣使然,学生在做专题研究课时能尽快地进入科研课题,并取得令人瞩目的成绩。曾蓓是基科班98级学生。由于她对量子力学中的对称性和量子信息、微分几何等很感兴趣,三年级进入专题研究课阶段,选择了清华龙桂鲁教授、北大曾谨言教授、中科院理论所孙昌璞教授为其导师。她在科学研究上的探索精神和能力得到了导师们的高度评价,本科期间与导师等合作者完成的5篇论文中,有4篇发表在SCI上。翟荟三年级进入专题研究课阶段,他跟随徐湛教授学习和研究玻色-爱因斯坦凝聚和量子力学中的数学方法,本科阶段完成论文4篇。进入研究生阶段后,杨振宁先生把他选为在国内亲自培养的第一位博士生。经过两年多一点的时间,翟荟就取得博士学位,他是第一位获得博士学位的基科班学生。许岑柯是基科班99级学生,从大三开始的专题研究课阶段,选择了理论物理方向。他不仅数理主干课的成绩优秀,而且在导师指导下,修完了研究生理论物理专业的基础课程,打下了坚实的数理基础。2003年本科毕业出国到美国柏克利大学,他到校后第一学期就参加了资格考试,成绩为全系第一名。到美国几个月后就与导师合作以第一作者身份在SCI上发表一篇影响较大的论文。在一些交叉学科领域,数理基科班学生也表现得相当出色。基科班99级的赵福同学通过在经管学院的专题研究课训练后,参加了世界最大的投资银行之一摩根斯坦利2003年的招聘竞争。亚洲地区具有资格的应聘者超过300人,经过十分严格的层层挑选和该银行亚洲总部的5位高层领导长时间的严格面试,赵福最终成为该公司唯一一名在亚洲地区招收的成员。他们对赵福的评价是:既有数学物理方面的基础,又有经济金融方面的学习和研究训练,思维方式有其独特性。由于数理基科班学生数理基础好,思维活跃,进入课题快。每学期都有多位教授主动希望学生去他们那里做专题研究课。几年来,已有不少学生被专题研究课导师推荐到国外大学相关院系做专题研究课或毕业论文或读博士。如基科98级的孙乐非和马登科被他们在生物方向的专题研究课导师饶子和院士推荐到荷兰鹿特丹大学做毕业论文,本科毕业后又被推荐到美国霍普金斯大学攻读生物学博士。专题研究课小组交流和班级交流活动,不仅使同学们相互了解到不同院校和院系做专题研究课的情况,还在同学们中间形成了一种自发跨学科的学术讨论氛围。就感兴趣的研究题目组成一组,由一人主讲,大家再围绕主题进行深入讨论,这种自发性的学术讨论是许多学生都十分热衷的。基科班的这种研究与讨论的氛围也带动了许多物理系和数学系的同学加入进来。良好的科研氛围,独特的专题研究课科研实践训练,使基科班学生在科学研究的瀚海里自由驰骋,取得了不俗的佳绩。例如,在天体物理中心学习的40名左右研究生和高年级本科生中,胡剑(基科98)、林锦荣(基科98)、郑琛(基科99)和另两位研究生被称为“五虎上将”,他们每人都在国际上影响很大的APJ和APJLetter发表了1—2篇论文。林锦荣的研究工作还被NewScientist杂志作了专门报道。近两年几次国际会议上,他们都十分活跃。据不完全统计,仅分流到物理方向的基科班学生2001年—2004年间发表SCI论文18篇,其中12篇发表在包括顶尖期刊PRL在内的国际著名杂志上;在国际会议上作报告15人次。

物理学博士论文

物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。

《 物理学在科技创新中的效用 》

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=9.11×10-31kg,电子荷电e=-1.602×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为21.4千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在0.1-0.2mm;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(-land),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,2012.1-10.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,2006.I-V1.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,2002.138-139.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,1979.182-183.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,2001.10-11.

《 应用物理学专业光伏技术培养方案研究 》

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、 总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

有关物理学博士论文推荐:

1. 有关物理学论文

2. 物理学论文范文

3. 物理学论文

4. 物理学教学专业毕业论文

5. 物理学实验本科毕业论文

6. 物理学本科毕业论文

上一篇:文献占论文多少

下一篇:人格小论文范文