数列求和毕业论文
数列求和毕业论文
你好啊,你的数列求和的方法探讨开题报告选题定了没?开题报告选题老师同意了吗?准备往哪个方向写?
开题报告学校具体格式准备好了没?准备写多少字还有什么不懂不明白的可以问我,希望可以帮到你,祝开题报告选题顺利通过,毕业论文写作过程顺利。
先说下开题报告的内容
1、课题的来源及选题的依据。主要是研究生对其研究方向的历史,现状和发展情况进行分析,着重说明所选课题的经过,该课题在国内外的研究动态,和对开展此课研究工作的设想,同时阐明所选课题的理论意义、实用价值和社会经济效益,以及准备在哪些方面有所进展或突破。
2、对所确定的课题,在理论上和实际上的意义、价值及可能达到的水平,给予充分的阐述,同时要对自己的课题计划、确定的技术路线、实验方案、预期结果等做理论上和技术可行性的论证。
3、课题研究过程,拟采用哪些方法和手段,目前仪器设备和其他各方面条件是否具备。
4、阐述课题研究工作可能遇的困难和问题,以及解决的方法和措施。
5、估算论文工作所需经费,说明经费来源。
再谈下开题报告的要求
1、开题时间:开题报告至迟应于第三学期末完成。凡未按时开题着,可酌情在论文成绩中减1至5分。
2、研究生要进行系统的文献查阅和广泛的调查研究,写出详细的文献综述,并进行现场考察和初步的试验研究,然后写出5000字左右的书面开题报告,并制定出详细的论文工作计划,经导师审阅、修改后进行开题报告。开题前研究生应将有关的参考文献和已做过的作为开题依据的各种理论分析、试验数据,事先印发给参加会议的有关人员。
3、开题报告必须在学院或教研室(研究室)中进行,组成3至5人的开题报告审查小组,并邀请本专业的教师、学生参加,听取多方面的意见。审查小组成员应事先审阅提交的开题报告及有关资料,为开会做好准备。
会议应发扬学术民主,对研究生的开题报告进行严格审核和科学论证。对选题适当、论据充分、措施落实的,应批准论文开题;对尚有不足的,要限期修改补充,并重做开题报告。若再次开题不能通过。则取消研究生学籍,终止培养。
4、开题通过后,应将开题报告与论文工作计划经导师、教研室主任和学院院长签字后交校学位办公室。研究生、导师、学院各存一份开题报告和论文工作计划的复印件,以便定期检查论文工作。
5、开题通过后,一般不得改变研究课题。确有特殊情况需要更改课题者,由导师写出书面报告说明理由,经教研室主任、学院院长、研究生教育学院院长批准后,方可另做开题报告,改换研究课题,更改研究课题后仍不能进行下去的,则对研究生取消学籍,并取消指导教师指导研究生的资格。
大学数学系本科毕业论文题目参考
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
1、导数在不等式证明中的应用
2、导数在不等式证明中的应用
3、导数在不等式证明中的应用
4、等价无穷小在求函数极限中的应用及推广
5、迪克斯特拉(Dijkstra)算法及其改进
6、第二积分中值定理“中间点”的性态
7、对均值不等式的探讨
8、对数学教学中开放题的探讨
9、对数学教学中开放题使用的几点思考
10、对现行较普遍的彩票发行方案的讨论
11、对一定理证明过程的感想
12、对一类递推数列收敛性的讨论
13、多扇图和多轮图的生成树计数
14、多维背包问题的扰动修复
15、多项式不可约的判别方法及应用
16、多元函数的极值
17、多元函数的极值及其应用
18、多元函数的极值及其应用
19、多元函数的极值问题
20、多元函数极值问题
21、二次曲线方程的化简
22、二元函数的单调性及其应用
23、二元函数的极值存在的判别方法
24、二元函数极限不存在性之研究
25、反对称矩阵与正交矩阵、对角形矩阵的关系
26、反循环矩阵和分块对称反循环矩阵
27、范德蒙行列式的一些应用
28、方阵A的伴随矩阵
29、放缩法及其应用
30、分块矩阵的应用
31、分块矩阵行列式计算的若干方法
32、辅助函数在数学分析中的应用
33、复合函数的可测性
34、概率方法在其他数学问题中的应用
35、概率论的发展简介及其在生活中的若干应用
36、概率论在彩票中的应用
37、概率统计在彩票中的应用
38、概率统计在实际生活中的应用
39、概率在点名机制中的应用
40、高阶等差数列的通项,前n项和公式的探讨及应用
41、给定点集最小覆盖快速近似算法的进一步研究及其应用
42、关联矩阵的一些性质及其应用
43、关于Gauss整数环及其推广
44、关于g-循环矩阵的逆矩阵
45、关于二重极限的若干计算方法
46、关于反函数问题的讨论
47、关于非线性方程问题的求解
48、关于函数一致连续性的几点注记
49、关于矩阵的秩的讨论 _
50、关于两个特殊不等式的推广及应用
51、关于幂指函数的极限求法
52、关于扫雪问题的数学模型
53、关于实数完备性及其应用
54、关于数列通项公式问题探讨
55、关于椭圆性质及其应用地探究、推广
56、关于线性方程组的迭代法求解
57、关于一类非开非闭的商映射的构造
58、关于一类生态数学模型的几点思考
59、关于圆锥曲线中若干定值问题的求解初探
60、关于置信区间与假设检验的研究
61、关于周期函数的探讨
62、函数的一致连续性及其应用
63、函数定义的发展
64、函数级数在复分析中与在实分析中的关系
65、函数极值的求法
66、函数幂级数的展开和应用
67、函数项级数的收敛判别法的推广和应用
68、函数项级数一致收敛的判别
69、函数最值问题解法的探讨
70、蝴蝶定理的推广及应用
71、化归中的矛盾分析法研究
72、环上矩阵广义逆的若干性质
73、积分中值定理的再讨论
74、积分中值定理正反问题‘中间点’的渐近性
75、基于高中新教材的概率学习
76、基于最优生成树的'海底油气集输管网策略分析
77、级数求和的常用方法与几个特殊级数和
78、级数求和问题的几个转化
79、级数在求极限中的应用
80、极限的求法与技巧
81、极值的分析和运用
82、极值思想在图论中的应用
83、几个广义正定矩阵的内在联系及其区别
84、几个特殊不等式的巧妙证法及其推广应用
85、几个重要不等式的证明及应用
86、几个重要不等式在数学竞赛中的应用
87、几种特殊矩阵的逆矩阵求法
"运用放缩思想解数列求和问题的研究"用英语怎么说?不要在线翻译哦
Series summation problem is that the basic contents of series one of the hot spots and focus on college entrance examination. In recent years, the college entrance examination in volume, the sum of the test series of new, more emphasis on capacity, which requires us to address a number of different issues out to master a certain sum of methods and techniques. But the students to deal with such questions is a commonly used method of mathematical induction and the general inequality of the zoom is often done on the half-way up. Inspired by the author in order to form series and prove that the inequality is not only flexibility in the use of sum test methods, but also to examine the proof of the zoom
Skills. The use of recursive formula for general term for the analysis to be passed out for a few and, it is the students have mastered the method; to be passed to a reasonable zoom, can be transformed into the form of summation series to prove that inequality is the author of this article attempts to explore problems. Analysis of this paper gives several examples of effective solutions, to enable students to permit such practice in the solution when communication and flexibility in the use of the school series knowledge, clever series will be passed zoom appropriate, purposeful, "Ben to "These" target ", the sum of its easy, fast solution of the problem was.就是这样了,累死
上一篇:发表论文题目为
下一篇:论文查重怎么算钱