电力电子论文文献
电力电子论文文献
电力系统自动化是一项综合性质的技术,包含内容广泛,并且随着时代的发展,经济水平的提高,生活质量的提升,对于电力的需求和利用也就越来越大。下文是我为大家搜集整理的关于电力系统自动化毕业论文范文的内容,欢迎大家阅读参考!
电力系统自动化毕业论文范文篇1
试析电力系统调度自动化
【摘 要】阐述了我国电网的现状、电力系统调度运营所包含的内容、所要实现的目标以及电力系统自动化的组成和目前所存在问题的解决方案,并对电力系统调度自动化的未来进行了展望。
【关键词】电力系统;调度自动化;信息
一、传统配电网实现电力系统自动化研究现状分析
电力系统的自动化发展主要是在配电网的上加强其自动化,因此为了提高其供点质量以及供电的可靠性,在进行电力系统自动化分析的时候,主要从配电网上实现其自动化,使得整个电力系统的发展符合当前的科技要求。目前配电网在实现自动化下,通常在10kv辐射线或者是树状的线路进行重合器以及分段器的方式来构成配电网,由于这种方式在现实自动化的过程中,不需要在配置通道上与主站的系统组成上,需要依靠重合器以及分段器本身的功能来实现电力的隔离和恢复功能,从而到电力系统的自动化,此种方法不仅具备相应容易实施的特点,而且还有节省投资的优点。同时还有其他实现电力系统自动化的接线方式,对于这些配电网的接线方式以及整个系统的构成,都具有一定的缺陷性,因此随着科学技术的提高,目前计算机网络技术正在快速的发展,使得在实现电力系统自动化发展的阶段可以对其进行改进,期改进的状态也在不断的发生着变化。
二、电力系统调度与运营包含的内容和要实现的目标
(一)电力系统调度的任务。
电力系统的调度就是对电力系统中所有的设备及其运行状态进行监控和调节,是一个指挥者。目前电力调度涵盖的范围较大,有自动化系统、继电保护等等。电力系统调度的任务主要是:尽设备最大能力满足负荷需要,使整个电网安全可靠连续供电,保证电能质量,经济合理利用能源,保证发电、供电、用电各方合法利益。
(二)调度自动化的必要。
电力系统是一个庞大而且复杂的系统,有几十个到几百个发电厂、变电所和成千上万个电力用户,通过多种电压等级的电力线路,互相连接成网进行生产运行。电能的生产输送过程是瞬间完成的,而且要满足发电量和用户用电量的平衡。现在电力系统的发展趋势是电网日益庞大,运行操作日益复杂,所以当电网发生故障后其影响也越来越大。另一方面,用户对供电可靠性和供电质量的要求日趋严格,这就对电力系统运行调度人员和电力系统调度的自动化水平提出了更高的要求。电网调度自动化具有较大的经济效益,可以提高电网的安全运行水平。当发生事故时调度员能及时掌握情况,迅速进行处置,防止事故扩大,减少停电损失。地调采用自动化调度系统能减少停电率。当装备有直接监护用户的自动装置以后,可压低尖峰负荷。若采用分时和交换电价自动计量等经济办法管理电网,经济效益更大。因此,电网调度自动化是一项促进电力生产技术进步和有显著经济效益的重要工作,是电力系统不可缺少的组成部分。
(三)电网调度自动化的组成部分及其功能。
电网调度自动化系统,其基本结构包括控制中心主站系统、厂站端(RTU)和信息通道三大部分。根据功能的不同,可以将此系统划分为信息采集和执行子系统、信息传输子系统、信息处理子系统和人机联系子系统。信息采集和执行子系统的基本功能是在各发电厂、变电所采集各种表征电力系统运行状态的实时信息,此外还负责接收和执行上级调度控制中心发出的操作、调度或控制命令。信息传输子系统为信息采集和执行子系统与调度控制中心提供了信息交换的桥梁,其核心是数据通道,它经调制解调器与RTU及主站前置机相连。信息处理子系统是整个调度自动化系统的核心,以计算机为主要组成部分。该子系统包含大量直接面向电网调度、运行人员的计算机应用软件,完成从采集到信息的各种处理及分析计算,乃至实现对电力设备的自动控制与操作。人机联系子系统将传输到调度控制中心的各类信息进行加工处理,通过各种显示设备、打印设备和其他输出设备,为调度人员提供完整实用的电力系统实时信息。调度人员发出的遥控、遥调指令也通过此系统输入,传送给执行机构。
我国调度自动化水平与世界上先进的国家相比,还有一些差距。尽管在近几年新投入运行的变电所采取了比较新的技术,但是总体而言,电网调度系统还存在一些需要解决问题。例如:系统计算机CPU负载率问题,即便是目前计算机容量和运算速度成倍或成几十倍提高的情况下,其负载率仍很高;CDT和Polling远动规约的选用问题,CDT和Polling两类规约在我国得到了广泛应用,并且这两类规约远动装置并存使用的现状将持续下去,选用哪一类规约的远动装置,原则上应视通道的质量与数量及本电网的调度自动化系统现状来决定,不宜盲目追求采用Polling远动;系统的开放性问题,系统应该是开放的,能够支持不同的硬件平台,支持平台采用国际标准开发,所有功能模块之间的接口标准应统一,支持能过户应用软件程序开发,保证能和其他系统互联和集成一体或者方便实现与其他系统间的接口,系统应能提供开放式环境。此外,现在的电力系统由于还依赖高压机械开关(油断路器、六氟化硫断路器、真空开关等)实现线路、设备、负荷的投切,尚不能做到完全可控。这是因为机械的慢过程不可能控制电的快过程引起的。“电网控制”目前只能做到部分控制,本质上仍然是一个调度员的决策支持系统。如果电力系统的高压机械开关一旦被大功率的电子开关取代,则电力系统真正的灵活调节控制便将成为现实
三、电力系统调度自动化存在问题的解决方法
(一)管理方面
统一思想,加强调度管理,提高认识。必须杜绝人为的一切误调度、误操作事故以及不服从调度指令擅自投停运设备。抓好防治误操作的思想教育工作,增强广大调度人员的安全意识、责任心和技术素质,最大限度避免误操作事故的发生。加大奖惩力度,严格考核,加强安全监督检查。认真落实各级安全生产责任制;严格执行“两票三制”制度,严把安全关。加强调度专业培训,提高调度员业务水平。
(二)技术方面
积极开发更高级实用的装置和软件,努力提高自动化水平和保证通信的清晰畅通,避免工作中出现因电话不清楚、自动化画面显示不正确而造成的错误。
随着计算机技术、通信技术的发展以及电力系统控制技术的不断进步,在不远的将来,电力系统调度自动化将会取得飞速的发展。以这些科学技术的进步为依托,能更好地维持供需平衡,保证良好的电能质量。
电力系统自动化毕业论文范文篇2
浅析电力系统自动化技术
【摘 要】随着电力电子技术、微电子技术沟迅猛发展,原有的电力传动(电子拖动)控制的概念已经不能充分概抓现代生产自动化系流中承担第一线任务的全部控制设备。而且,电力拖动控制已经走出工厂,在交通、农场、办公室以及家用电器等领域获得了广泛运用。它的研究对象已经发展为运动控制系统,下面仅对有关电气自动化技术的新发展作一些介绍。
【关键词】电力自动化;现场总线;无线通讯技术;变频器
0 引言
现今,创新的自动化系统控制着复杂的工艺流程,并确保过程运行的可靠及安全,为先进的维护策略打造了相应的基础。
电力过程自动化技术的日新月异和控制水平的不断提高搜企网版权所有,为电力工业解决能源资源和环境约束的矛盾创造了条件。随着社会及电力工业的发展,电力自动化的重要性与日剧增。传统的信息、通信和自动化技术之间的障碍正在逐渐消失。最新的技术,包括无线网络、现场总线、变频器及人机界面、控制软件等,大大提升了过程系统的效率和安全性能。
电力系统自动化系统一般是指电工二次系统,即电力系统自动化指采用各种具有自动检测、决策和控制功能的装置并通过信号系统和数据传输系统对电力系统各个元件、局部系统或全系统进行就地或远方自动监视、协调、调节和控制以保证电力系统安全稳定健康地运行和具有合格的电能质量[1]。
1 电力自动化的发展
我国是从20世纪60年代开始研制变电站自动化技术。变电站自动化技术经过数十年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
2 电力自动化的实现技术
现场总线(Fieldbus)被誉为自动化领域的计算机局域网。信息技术的飞速发展,引起了自动化系统结构的变革,随着工业电网的日益复杂工业自动化网版权所有,人们对电网的安全要求也越来越高,现场总线控制技术作为一门新兴的控制技术必将取代过去的控制方式而应用在电力自动化中。
3 无线技术
无线通讯技术因其不必在厂区范围内进行繁杂、昂贵的布线,因而有着诱人的特质。位于现场的巡视和检修维护人员借此可保持和集中控制室等控制管理中心的联系,并实现信息共享。此外,无线技术还具有高度灵活性、易于使用、通过远程链接可实现远方设备或系统的可视化、参数调整和诊断等独特功能。无线技术的出现及快速进步,正在赋予电力工业领域以一种崭新的视角来观察问题,并由此在电力流程工业领域及资产管理领域,开创一个激动人心的新纪元。
尽管目前存在多种无线技术汉阳科技,但仅有几种特别适用于电力流程工业。这是因为无线信号通过空间传播的过程、搭载的数据容量(带宽)、抗RFI(射频干扰)/EMI(电磁干扰)干扰性、对物理屏障的易感性、可伸缩性、可靠性,还有成本,都因无线技术网络的不同而不同。因此,很多用户都倾向于“依据具体的应用场合,来选定合适的无线技术”。控制用的无线技术主要有GSM/GPRS(蜂窝)、9OOMHzRadios、wi-Fi(b/g)、WIMAX(802.16)、ZigBee(802.15.4)、自组织网络等,其中尤以Wi-Fi和WIMAX应用增长速度最快,这是因为其在带宽和安全性能方面较优、在数据集中和网络化方面具备卓越的安全框架、具有主机数据集成的高度灵活性、高的鲁棒性及低的成本。
4 信息化技术
电力信息化包括电力生产、调度自动化和管理信息化两部分。厂站自动化历来是电力信息化的重点,大部分水电厂、火力发电厂以及变电站配备了计算机监控系统;相当一部分水电厂在进行改造后还实现了无人值班、少人值守。发电生产自动化监控系统的广泛应用大大提高了生产过程自动化水平。电力调度的自动化水平更是国际领先,目前电力调度自动化的各种系统,如SCADA、AGC以及EMS等已建成,省电力调度机构全部建立了SCADA系统,电网的三级调度100%实现了自动化。华北电力调度局自动化处处长郭子明说,早在20世纪70年代华北电力调度局就用晶体管计算机调度电力,从国产121机到176机,再到176双机,华北电力调度局全用过,到1978年已经基本实现了电网调度自动化。
5 安全技术
电力是社会的命脉之一,当今人类社会对电力系统的依赖已到了难以想象的程度。电力系统发生大灾变对于社会的影响是不可估量的,因此电力系统最重要的是运行的安全性,但这个问题在全世界均未得到很好解决,电力系统发生大灾变的概率小但后果极其严重,我国电力系统也出现过稳定破坏的重大事故。由于我国经济快速发展的需求,电力工业将会继续以空前的速度和规模发展。随着三峡电站、西电东送、南北互供和全国联网等重大工程的实施,我国必将出现世界上最大规模的电力系统。
6 传动技术
实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。变频器作为节能降耗减排的利器之一,在电力设备中的应用已经极为广泛而成熟。对于变频器厂商而言,在未来30年,变频器,尤其是高压变频器在电力节能降耗中的作用极为明显,变频器也成为越来越多电力行业改造技术的首选。
在业内,以ABB为首的电力自动化技术领导厂商,ABB建立了全球最大的变压器生产基地及绝缘体制造中心。自1998年成立以来,公司多次参与国家重点电力建设项目,凭借安全可靠、高效节能的产品性能而获得国内外用户的好评。其公司多种产品,包括:PLC、变流器、仪器仪表、机器人等产品都在电力行业中得到很好的应用。
7 人机界面
发电站、变电站、直流电源屏是十分重要的设备,随着科学技术的不断发展,搜企网,单片机技术的日趋完善,电力行业中对发电站、变电站设备提出了更高精密、更高质量的要求,直流电源屏是发电站、变电站二次设备中非常重要的设备,直流电源屏承担着向发电站、变电站提供直流控制保护电源的作用,同时提供给高压开关及断路器的操作电源,因此直流电源屏的可靠性将直接关系到发电站的安全运行,直流电源屏的发展已经经历了很长的时间,从早期的直流发电机、磁饱和直流充电机到集成电路可控硅控制直流充电机、单片机控制可控硅充电机、高频开关电源充电机等,至目前直流电源屏已很成熟。
直流电源屏整流充电部分仍然采用目前国际最流行的软开关技术,将工频交流经过多级变换,最后形成稳定的直流输出,直流电源屏系统控制的核心部件是V80系列可编程控制器PLC,它将系统采集的输入输出模拟量以及开关量经过运算处理,最终控制高频开关电源模块使其按电池曲线及有人为设置的工作要求更可靠地工作。
8 结束语
电气自动化技术是当今世界最活跃、最充满生机、最富有开发前景的综合性学科与众多高新技术的合成。其应用范围十分广泛,几乎渗透到国民经济各个部门,随着我国科技技术的发展,电气自动化技术也随之提高。
【参考文献】
[1]汪秀丽.中国电力系统自动化综述[J].水利电力科技,2005(02).
[2]唐亮.论电力系统自动化中智能技术的应用[J].硅谷,2008(02).
[3]夏永平,唐建春.浅议电力系统自动化[J].硅谷,2010(06).
猜你喜欢:
1. 电力系统自动化论文范文
2. 电力工程自动化专业论文范文
3. 电力系统毕业论文范文
4. 电气自动化专业毕业论文范文
5. 电力工程自动化论文优秀范文
电子毕业论文,文献综述怎么写,谢谢!~
为了提高矿热炉供电系统的功率因数,本文研制了矿热炉低压无功补偿控制器。它能实时在线采集电网电压电流,计算出有功功率、无功功率、视在功率、电网频率、功率因数等参数,通过复合开关投切补偿电容器组实现无功功率的补偿。课题内容主要包括无功功率补偿相关理论分析、复合开关控制研究、控制器硬件设计和软件设计四部分。论文首先从理论上推导了各个电网电量参数的计算过程,分析了通过并联电容器来实现无功功率补偿基本原理,同时讨论了无功补偿三种方式的优缺点及无功补偿的控制依据。之后通过比较机械式投切开关、电力电子开关和复合开关的优缺点,得出复合开关是电容投切比较理想的开关。硬件电路设计采用ATmega48作为核心处理芯片,设计了电源模块电路、信号采样调理电路、投切控制电路、节点温度监控电路以及通讯模块电路等芯片外围电路,充分利用ATmega48内部集成的A/D、UART、定时计数器等嵌入式功能模块。设计了基于CAN工业通信总线和RS485总线,为现场监控与远程监测提供了方便,提高了控制器的适用性。在软件设计方面,编写了基于ATmega48的下位机程序,主要包括用统计算法来获得电量参数、智能化的投切控制程序设计及通信程序设计。电网参数采集程序主要是对电流电压进行AD采集,并计算出功率因数等参数。投切控制程序实现双向可控硅和真空接触器按照一定的投切顺序完成补偿电容器的投切。通信程序实现将实时参数传送至上位机,同时完成接收上位机的投切指令等功能。研制的控制器在实验室进行了关键参数的测试实验,各项技术参数都基本符合设计要求,控制器已经投入实际使用,实践结果表明:该控制器能动态快速的进行投切控制,及时对矿热炉无功功率进行补偿,各项功能发挥正常
电力拖动自动控制系统论文
电力拖动自动控制系统 课程涉及到各种电动机控制系统的模型建立、系统分析和系统设计等的基础理论。下面是我为大家整理的电力拖动自动控制系统论文,供大家参考。
《 浅析电力拖动自动控制系统 》
【摘 要】电力拖动控制系统是一种较为重要的控制系统,其在工业生产中发挥着很大的作用,随着社会的发展以及科技的推动,这一系统开始趋向于自动化的应用形式。电能在人们的生活中发挥着重要的作用,电器的种类越来越多,现代社会对电力的需求量也越来越大,所以,自动化的电力拖动控制系统,可以更好的满足人类社会对电力的需求。本文分析了电力拖动自动控制系统的设计原理,还介绍了电力拖动自动控制系统的安全防护,希望对相关电力人员有所帮助,使相关企业生产可以更加安全、稳定的进行。
【关键词】电力拖动;系统;自动控制;原理;安全防护
电力拖动系统在工业领域应用极其广泛,伴随着我国科技的发展,工业企业的生产效率越来越高,人类社会对电能的需求量也越来越大。很多工业企业引进了先进的机械设备,提高了企业的生产水平,同时也对电力拖动控制系统提出了更高的要求,所以,电力拖动控制系统的自动化也是企业未来发展的必然趋势。电力拖动自动控制系统是对传统系统的改进与优化,这种系统在运行的过程中,更加安全稳定,而且满足了企业对自动化机械设备生产运行的要求。为了使电力拖动自动控制系统发挥更大的效用,相关人员要研究出更加完善的安全防护 措施 ,这也可以为企业增产以及效益提升做出更大的贡献。
1.电力拖动自动控制系统的设计原理
电力拖动控制系统在工业企业生产中发挥着重要的作用,工作人员在系统运行的过程中,可以更好的掌握电动机的运行状况,还可以通过信息反馈,了解企业生产运行机制的运转情况,比较常见的反馈信息是电流信息。电力拖动控制系统中包含着很多的构件,其中电气设备是生产运行机制中比较重要的系统,其也是企业实现机械自动控制的关键因素。在利用计算机设备,可以在系统运行的过程中,可以直观的从 显示器 中,了解设备的运行状况,通过计算机等设备的信息反馈,可以有效的实现电力拖动的自动化控制。
实现电力拖动控制系统的自动化运行,需要借助先进的计算机技术,相关工作人员通过计算机信息的反馈,以及企业生产需求的变化,可以有效的制定出不同的控制方案,还可以实现机械运行的自动化生产。在这一过程中,计算机的编程起着至关重要的作用,计算机不但具有强大的计算等功能,还具有操作便捷等特点,所以,工作人员一定要多了解计算机相关知识,这样才能编制出独立的驱动程序,实现多种设备的自动控制。工作人员还要利用计算机操作技术,实现系统的对接测试,这些步骤有利于简化电力拖动自动化控制编程。电力拖动自动控制系统的各项参数可以认为调动,根据不同的要求,技术人员可以更改编程,所以这项工作具有一定的变动性。但是从系统的设计原理来看,电力拖动自动控制系统在调整的过程中,需要遵循一定的设计原则,其主要是利用计算机作为控制中心,而且是通过信号传输完成下达命令以及执行命令这一系列工作。
2.电力拖动系统自动控制的内容选择
2.1电力拖动自动控制系统对电动机的选择
电动机功率的选择应当与生产机械标准要求直接挂钩,要选择与其相匹配,能够拥有一定负载的电动机,这样,才能保证生产机械的正常运行。电动机采用直流还是交流电需要结合企业经济、技术等方面综合考量,通常情况,企业只需要选择操作简单,稳定性强、价格低廉的交流异步电动机。但如果所在企业生产机械功率大、调速范围广,则可以采用调速性能优质的直流电动机。在选择电动机时也要考虑后期维护问题,任何系统在使用一段时间后,都可能因为外界因素的干扰而出现故障,为了降低线路损坏对企业生产效益的影响,设计人员一定保证维护工作的便捷性,便于及时抢修。
2.2电力拖动自动控制系统对电器控制线路的选择
电器控制线路的选择是电力拖动自动控制系统中一项重要的工作,其不但影响着整个控制系统的安装设计,也影响着电器选择的质量,在选择电器控制线路时,需要参考不同部件的特点以及生产的需求,在控制线路时,要利用总体框架,细化生产线路中局部电器的控制,还要考虑不同设备之间的关联,将局部电器控制融入整体线路控制中,构成完整的控制线路。
在设计的过程中,还要保证线路运行的稳定性以及安全性,这样才能有效的提高企业的生产效率,降低生产过程中安全事故发生的概率。电器控制线路的选择,需要保证元件选择的正确性,所以,设计人员一定要选择性能良好的设备,这样能延长设备使用年限,还能降低外界因素对电器的影响与干扰,使电器的运行线路更加稳定。相对而言,选择安全可靠的继电器,可以降低电器出现故障的概率,也可以降低设备维修的成本。另外,在选择具体的电器控制线路时,设计人员还要注意以下几点内容:
2.2.1触头设计
在选择电器控制线路时,首先要保证线路中的电器触头可以有效的对接在一起。比如,有的线路中,将常闭与常开的电器触头连接在一起,这两种电器处于不同的电源中,很容易因为触头的长期接触而出现短路等问题,而且如果该线路的绝缘防护措施做的不好,则很容易引发线路的安全故障。
2.2.2电器线圈联接
在设计电器的线圈联接时,要注意线路中的电器线圈是否联接正确,如果出现线圈设计失误问题,一定要及时处理,否则也会影响线路的正常运行。在检测电器线圈的联接时,要观察串联的线圈是否存在于交流控制线路中,要保证两个线圈的外加电压不能超过额定电压,另外,非并联的线圈也不能直接联接。
3.电力拖动自动控制系统的安全防护
3.1短路保护
短路故障一般是因为电流短路而造成局部电气设备绝缘体过热损害,电流过大,容易造成强大的电磁脉冲进而产生电动应力,进而损害电力拖动自动控制系统或各种电器设备。
3.2过流保护
如果使用电动机不当,很容易使得电动机超负荷运作,这样会引起电动机局部过电流,一般的过电流能量是正常启动电动机电流的数倍,因此容易损害电动机及系统元器件。
3.3热保护
任何元器件在经过长时间工作时都会出现过热现象,如果电动机绕组或长时间超载运行,那么势必会造成自身温度高于允许值,进而导致电动机出现故障,为避免过热损害,可以采用多个电动机相替换的 方法 进行热保护。
4.结语
综上所述,本文对电力拖动自动控制系统的设计原理、设计时电动机以及电器线路的选择进行了介绍,这些内容可以有效的保证电力拖动控制系统的稳定运行。另外,笔者还对电力拖动自动控制系统的安全防护提出了几点建议,希望对相关设计人员有所帮助,从而提高该系统的安全性以及稳定性,使其在工业生产应用的过程中,发挥更大的效用。
【参考文献】
[1]王春凤,杨耕.电力电子与运动控制实验平台安全性建设[J].实验技术与管理,2011(07).
[2]陈伯时.电力拖动自动控制系统―运动控制系统[M].北京:机械工业出版社,2003.
[3]黄华.浅析电力系统中的电器控制线路设计[J].科技信息,2010(35).
《 试论电力拖动自动控制系统 》
摘要:随着社会的高速发展,更多电器的出现导致电力的需求不断攀升,因而人们对电力拖动控制系统自动化程度提出了更高更新的要求。鉴于此,拟通过对电力拖动控制系统的设计原理、设计方案的确定、设计应遵循的规章以及安全防护等内容进行分析,为使用者与企业提供借鉴与参考。
关键词:电力拖动 自动控制 运行
中图分类号:TM76 文献标识码:A 文章 编号:1007-3973(2012)010-028-02
1 引言
随着科技日新月异的发展,机械自动化程度与生产水平达到了前所未有的高度,在当前的工业生产领域中,电力拖动自动控制系统得到了广泛的应用。电力拖动自动控制系统的优势在于:一方面可以保障自身 系统安全 稳定运行;另一方面可以满足企业机械生产要求。电力拖动系统可以很好的对电动机、各类继电器等原件进行保护,进而减少系统运行过程中故障发生概率。因此,研究电力拖动自动控制系统,提升其自动化程度,增强其安全性,完善其功能,对于企业而言是至关重要的。
2 电力拖动系统自动控制原理及其设计
2.1 电力拖动系统自动控制原理
操作人员在电力拖动控制系统运行过程中可以得到电动机各信息的反馈,例如电流反馈等。在电力拖动控制系统中,电气设备是实现机械自动控制的核心器件。计算机系统在此过程中的主要作用是显示信息显示、运行连锁、安全保护等信息,同时其也是电力拖动系统自动控制实现的唯一途径。
在计算机系统中,操作人员可以利用计算机根据实际生产需求实行不同的自动控制方案。电力拖动自动控制主要是利用计算机完成逻辑计算、功能模块化、编程等工作,然后为操作人员提供独立于机械设备的仪器驱动程序,方便使用者可以较快的将程序与自己的系统进行对接测试,方便编程。虽然电力拖动自动控制系统的各项参数及要求的设定“因人而异”。但从系统的本质来讲,系统构成的基本原理还是殊途同归的,即以计算机为系统的集中控制中心,信号输入给计算机下达指令,信号输出执行指令。电力拖动自动控制系统计算机接收信号与输出信号的系统反应如图1所示。
2.2 电力拖动自动控制系统方案的确定
在电力拖动自动控制设计方面,是否确定好方案与控制方式将会决定整个设计能否成功。如果宏观方案是正确切实可行的,那么生产设备各项指标达到要求的可能性才能得到保障。在设计时,即便出现某个控制环节设计的错误,也可以通过不断改进与测试达到要求,但如果宏观方案一开始就制定有问题,那么设计工作必须等到方案明确后重新开始。
学术领域认为,所谓电力拖动自动控制方案,其主要是依据不同的生产工艺要求,例如根据运动要求、加工效率、零部件加工精度等条件来决定电动机运行、类型、数量、传动方式等控制要求。最后将这些调研好的工艺要求与控制要求相结合,作为电气控制原理图设计电器原件选择的重要参考凭证。譬如说,在设计效率要求较高的加工机床时,拖动方式可以随机变化,如可以使用直流拖动,也可以使用集中拖动等。确定好拖动方案后,拖动电动机的数量以及各项参数也随之明了,控制方式的选择就是控制要求的选择。
2.3 电力拖动系统自动控制电动机的选择
在确定好电力拖动系统设计方案后,需要根据实际需求对电动机的数量、规格及各项参数如额定转速、功率等进行选择与确定。笔者通过 总结 ,归纳出电动机在选择方面应当遵循以下几点:
(1)电动机功率的选择应当与生产机械标准要求直接挂钩,要选择与其相匹配,能够拥有一定负载的电动机,这样,才能保证生产机械的正常运行。此外,在明确电动机功率时,还需对以下三大要素进行综合考虑:1)允许过载能力;2)启动能力;3)电动机发热。确决定电动机功率选择的核心条件是电动机容量,通常,电动机容量容易受外界环境影响,所以电动机额定功率的确定要进行多次校验确认。
(2)电动机采用直流还是交流电需要结合企业经济、技术等方面综合考量,笔者认为,通常情况,企业只需要选择操作简单,稳定性强、维护遍历、价格低廉的交流异步电动机即可。但如果所在企业生产机械功率大、调速范围广,则可以采用调速性能优质的直流电动机。
(3)电动机额定转速需要结合以下方面来选择,主要是看所在企业机械匹配的技术经济程度,如企业所需电动机需拥有较高的使用寿命,并较少使用,那么就需要结合企业经济、技术等多方面因素来选择;如果企业使用电动机频繁,那么该电动机额定转速就需要以电动机的动能储存量来选择。
(4)必须在供电电网电压基础上选择电动机额定电压各参数,必须保证两者一致。电动机机构形式要根据企业的作业环境进行选择。
总而言之,电动机数量、规格以及各项参数的选择应当根据企业的经济、技术、作业环境、使用需求等多方面综合考虑来选择,要保证所选择的电动机既能满足企业生产机械的实际需求,又能够保证其运行的可靠性与实惠。
2.4 电力拖动设计中电器控制线路的设计
拖动方案与电动机的选择之后,其次是电器控制线路的设计。电器控制线路是整个电器选择与安装图设计的主要依据,通常,电器控制线路的设计方法是,根据所有部件不同的需求,根据控制线路的总体框架来细化局部线路,最后根据生产机械的实际需求与相互关联,将局部线路统筹规划到线路总体框架中,形成一个完整的控制线路。
设计前期调研:控制线路设计之初,设计者需要对企业生产工艺与机械实际需求进行调研。对于一般企业而言,控制线路仅需要满足下属三种功能即可:即制动、起动与反向。生产机械工艺较大的企业通常还需要平滑调速、安全预警功能等。另外,操作者能否对控制线路做出及时反应,能否进行操作等问题也都需要设计人员在设计前调研明白。
设计过程的掌控:控制线路能否稳定安全运行取决于控制线路工作是否安全与稳定,因此在选择设计元件时,应当采用性能良好、使用期限长、抗干扰能力强、安全可靠、稳定的继电器,同时在规划具体线路时,笔者认为,设计人员还需要注意以下几点内容: (1)触头的设计,要保证所有电器触头必须全部正确对接。例如同一电器,如果将常闭与常开的辅助头放在一起,那么当将它们接在不同相的电源上时,很可能由于限位开关上的常开/闭触头产生电位差使得电路短路,如果线路没有良好的绝缘性,那么势必会造成电路短路事故。
(2)设计电器线圈联接时,要保证所有电器线圈正确联接。串联的两个电器线圈一般不能出现在交流控制电路中,即便串联的两个线圈的额定电压和等同于外加电压,也不允许非并联线圈连接。要实现接触器与接触器,接触器与线圈的同步,应当将所有线圈并联在电路中,使所有线圈承受相同的额定电压。
(3)设计后的控制机构,其后期维护与操作必须简单明了,在操作人员采用某种控制方式控制时,可以根据实际需求迅速、快捷的切换到其他控制方式,例如,在进行自动控制时,可以根据需求直接切换到手动控制,所有电控设备都需保证其后期运行的稳定性与维护的便利性,同时还需为其配置隔离电器,以便在仪器出现故障时进行抢修。
2.5 电力拖动自动控制系统设计应遵循的原则
笔者通过总结,归纳出当前电力拖动自动控制系统在设计时应当遵循的原则:
(1)经济简单化原则。企业在选择电力拖动自动控制系统时,都想要低廉的价格换来可靠的电力拖动控制系统。因此在设计过程中,设计人员应当尽最大努力将系统不必要的电器与触头数量进行减少,线路设计应当最优化。
(2)稳定、安全、可靠性原则。在经济简单化原则基础上选择稳定性、可靠性、安全性较强的元件。
3 电力拖动自动控制系统的安全防护
任何系统的出现都需要制定想匹配的安全防护措施,电力拖动自动控制系统亦是如此,一般情况下,电力拖动自动控制系统的安全防护分为两种:一种是计算机系统保护;另一种是电器保护。电器保护是最基本,也是必要的保护,其通常有过流保护、短路保护、欠压保护以及热保护。而计算机系统保护则是不可或缺的保护,它属于高级保护,主要是对确保系统运行、维稳等进行保护。笔者在下文将从以下几点对电力拖动自动控制系统的安全防护进行分析:
(1)短路保护:短路故障一般是因为电流短路而造成局部电气设备绝缘体过热损害,电流过大,容易造成强大的电磁脉冲进而产生电动应力,进而损害电力拖动自动控制系统或各种电器设备。
(2)过流保护:如果使用电动机不当,很容易使得电动机超负荷运作,这样会引起电动机局部过电流,一般的过电流能量是正常启动电动机电流的数倍,因此容易损害电动机及系统元器件。
(3)欠压保护:系统运行过程中,如果电源电压不能满足电动机正常运作的需求,容易造成系统因欠压而减缓电动机速率甚至同志运作,当负载矩不变时,可以适当的增加电源来提压。另外,欠压还会造成电气释放问题,进而影响系统所有器件的正常工作,情况严重时还会出现系统故障。所以,笔者认为,当电压达到电动机电压临界值时,可以采取切断电源措施来进行保护。
(4)热保护:任何元器件在经过长时间工作时都会出现过热现象,如果电动机绕组或长时间超载运行,那么势必会造成自身温度高于允许值,进而导致电动机出现故障,为避免过热损害,可以采用多个电动机相替换的方法进行热保护。
(5)安全链:安全链的保护主要涉及五个方面。1)欠压保护的控制;2)过流保护的控制;3)水压保护;4)油压保护;5)轴瓦温度保护。安全链是将上述五种保护串联在一起的保护,无论其中哪个环节出现问题,计算机都会直接将自动控制系统关闭。
(6)运行连锁和启动连锁的保护:当计算机接收到信号后,电力拖动自动控制的实现主要是通过计算机所配置的程序完成,该过程主要是预防系统运行时信号条件的消失或电动机缺乏条件启动的保护。
4 结论
本文通过对电力拖动自动控制系统各方面的研究,提出了加强、完善系统设计与安全防护的意见,以期为设计者与使用者提供帮助。
参考文献:
[1] 王春凤,李旭春,杨耕.电力电子与运动控制实验平台安全性建设[J].实验技术与管理,2011(07).
[2] 陈伯时.电力拖动自动控制系统——运动控制系统[M].北京:机械工业出版社,2003.
[3] 黄华.浅析电力系统中的电器控制线路设计[J].科技信息,2010(35).
[4] 罗毅,李莺.浅析电力拖动系统稳定运行的充要条件[J].太原师范学院学报(自然科学版),2006(02).
有关电力拖动自动控制系统论文推荐:
1. 自动化专业自荐信范文
2. 浅谈电力优质服务论文
3. 自动化专业求职方向
4. 浅谈电力安全管理论文
5. 有关电气工程及其自动化硕士论文
6. 有关电力锅炉技术论文
谁有电力电子的关于开关电源的论文 发给我
电力电子技术的发展与展望研究
作者:王娟武 班级:机设0918 专业:机电设备维修与管理 学号:0918316 学院:安徽水电学院 日期:2010年12月
当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。
电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
�现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。
一..电力电子技术的发展历史
1. 整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
2. 逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
3. 变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2. 现代电力电子的应用领域
2.1 计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合
绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2 通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3 直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4 不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5 变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6 高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7 大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。 国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8 电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。
二..现代电力电子技术在电力系统中的应用
1. 发电环节
电力系统的发电环节涉及发电机组的多种设备 ,电力电子备的应用以改善这些设备的运行特性为主要目的。
(l)大型发电机的静止励磁控制
静止励磁采用晶闸管整流自并励方式具有结构简单 、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。
(2)水力、风力发 电机的变速恒频励磁
水力发电的有效功率取决干水头压力和流量,当水头的变化幅度较大时 (尤其是抽水蓄能机组) ,机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。
(3)发电厂风机水泵的变频调速
发电厂的厂用电率平均为 8%,风机水泵耗电量约占火电设备总耗电量的6 5%且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。
2. 输电环节
电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改 善了电力网的稳定运行特性。
(1)直流输电 ( HVDC)和轻型直流输电( HVDC L i g ht )技术 直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。l 9 7 0年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。
(2)柔性交流输电 ( FACTS)技术 FA CTs技术的概念问世20世纪8 0 年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压 及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪9 0年代以来,国外在研究开发的基础上开始将FA CTS技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。
3. 配电环节
配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率 、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力 ( Cu s t o m Po we r ) 技术或DFACTS技术,是在F ACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以DFACTS设备理解为F AC TS 设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着 电力电子器件价格的不断降低,可以预期D F A C TS设备产品将进入快速发展期。
三.电力电子技术的发展展望
1. 新型电力电子器件
在用新型半导体材料制成的功率器件中,最有希望的是碳化硅(SiC)功率器件。它的性能指标比砷化镓器件还要高一个数量级。碳化硅与其它半导体材料相比,具有下列优异的物理特点:高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数,以及高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合下是极为理想的半导体材料。在同样的耐压和电流水平下,SiC器件的漂移区电阻仅为硅器件的1/200,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的低得多。而且,SiC器件的开关时间可达10ns量级,并具有十分优越的FBSOA。SiC可以用来制造射频和微波功率器件、各种高频整流器、MESFETs、MOSFETs和JFETs等。SiC高频功率器件已在Motorola开发成功,并应用于微波和射频装置。GE公司正在开发SiC功率器件和高温器件(包括用于喷气式引擎的传感器)。西屋公司已经制造出了在26GHz频率下工作的甚高频的MESFET。ABB公司正在研制高功率、高电压的SiC整流器和其它SiC低频功率器件,用于工业和电力系统。理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。可是,SiC材料和功率器件的机理、理论、制造工艺均有大量问题需要解决,它们要真正给电力电子技术领域带来又一次革命,估计还需要至少10年左右的时间。
2. 新能源
电力电子技术在新能源发电技术和电能质量控制技术及节能技术方面有很广阔的发展间。其中风力发电和太阳能发电最受关注,而电力电子技术正是风力发电和太阳能发电的核心技术之一,这给电力电子工程师提供了千载难逢的发展机遇 ,广大 电力电子工程师务可以住这一机遇乘势而上,促进电力电子技术的发展。同时,由于一方面电力电子装置和电弧炉等装置的的大量应用,使得电能质量日益下降,另一方面用 户对电能质量的要求越来越高人们对以有源电力滤波器为代表的电能质量控制装置日益重视,研究开发越来越多。此外,由于电力系统电动机(约占发电量的6 0 % 以上 ) 和照明电源( 约占发电量的 1 0~1 5 %的大量采用,电力电子装置对无功功率和电力谐波都可有很好的补偿作用,因此,电力电子技术被称为节能的技术。目前,由于化石能源日渐枯竭,因此 ,电力电子技术在节能方面受到很大程度的重视,并且发展十分迅速。
3. 电动车辆
中国人多地大石油少,现在中国每年已进口许多石油。在21世纪前半叶,地球上的石油天然气资源日益减少,以至早晚会用尽。特别在中国国情下,城市交通以发展电动车辆为主是必然的趋势。大城市间的磁悬浮列车、城市内的电动高架列车和地铁列车、个人用电动自行车和电动汽车将构成未来的交通网络的主角。其中,大有电力电子产品的用武之地。磁悬浮列车的磁悬浮电源和直线电动机的变频调速;城市高架列车和地铁列车中异步电动机的变频调速;电动自行车和电动汽车中永磁无刷电机的外转子调速,在今后十年里会有很大的发展。这里,电动自行车和电动汽车的普及必须解决无刷电机及其控制器、环保电池、快速充电器和充电站网络服务等几方面的问题。现在看来,在中国推广电动自行车替代摩托车作为代步工具技术上正在趋于成熟。这里必须采用镍-氢电池组和锂离子电池组,消除常规铅-酸电池对环境的污染。这种价格尚偏贵的电池组可以采用向电动自行车用户出租使用的方式,实行由间距合理的电池充电站统一充电和用户自行充电相结合的办法。铅-酸电池与锂离子电池(如36V,10AH)相比,前者重12 kg,后者仅2.4 kg。
电动汽车的发展又是电力电子未来的潜在大市场。首先是高能量密度的清洁电池的突破。比较有希望的是燃料电池,它的起动和稳定运行都要用电力电子产品与之配套。其牵引系统方案中令人最感兴趣、并已有工业应用前景的,要属安装在四个车轮中的外转子盘式永磁无刷直流电动机驱动了。这种电机结构的优化设计、高性能控制调速传动,以及四台电机转动的协调运转,将为电动汽车的舒适运行,零半径转弯提供技术保证。今后十年将是电动汽车实用化发展的关键时期,电力电子产业可以也应该为此做出相应的研究开发工作,积极迎接这个庞大市场的到来。
结束语:
电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的各个工业部门。毫无疑问,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。
参 考 文 献
(1)林渭勋. 浅谈半导体高频电力电子技术.电力电子技术选编,浙江大学,1992(384-390)
(2)付宇明 张辉. 电力电子技术在电力系统中的应用.信息技术,2000(162)
(3)王兆安. 我国电力电子技术的新进展..逆变器世界,2008(32)
(4) 陈虹. 电气学科导论. 北京:机械工业出版社,2005
上一篇:课程论论文题目
下一篇:论文查重句子50