欢迎来到学术参考网
当前位置:发表论文>论文发表

实时目标检测论文

发布时间:2023-03-11 08:12

实时目标检测论文

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation

提出时间:2014年

论文地址:

针对问题:

从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。

创新点:

RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。

参考博客: 。

论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

提出时间:2014年

论文地址:

针对问题:

该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。

创新点:

在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。

参考博客:

论文题目:Scalable Object Detection using Deep Neural Networks

提出时间:2014年

论文地址:

针对问题:

既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。

创新点:

本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。

参考博客:

论文题目:DeepBox: Learning Objectness with Convolutional Networks

提出时间:2015年ICCV

论文地址:

主要针对的问题:

本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。

创新点:

本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。

参考博客:

论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection

提出时间:2015年ICCV

论文地址:

主要针对的问题:

对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢?

创新点:

通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。

参考博客:

论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

提出时间:2014年

论文地址:

针对问题:

如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。

创新点:

作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。

参考博客 :

论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model

提出时间:2015年

论文地址:

针对问题:

既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。

创新点:

作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。

参考博客 :

论文题目:Fast-RCNN

提出时间:2015年

论文地址:

针对问题:

RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢?

创新点:

作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。

参考博客 :

论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

提出时间:2015年

论文地址:

主要针对的问题:

本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。

创新点:

作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。

论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

提出时间:2015年NIPS

论文地址:

主要针对的问题:

由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢?

创新点:

将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。

参考博客 :

Faster R-CNN:使用RPN实时目标检测

论文: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

目标检测网络大多依靠 区域生成 (region proposal)算法来假设目标的位置。 R-CNN 是采用 Selective Search 算法来提取(propose)可能的 RoIs(regions of interest) 区域,然后对每个提取区域采用标准 CNN 进行分类。选择性搜索(Selective Search )方法就是在目标对象周围设定2000个形状大小位置不一的候选区域,目标物体在候选区域的可能性还是比较大的。然后对这些区域卷积,找到目标物体,虽然大多数区域都是无用的。与寻找几乎个区域比起来,这种方法要高效的多。

Fast R-CNN ,不在原始图像生成备选区域,而是先整张图片通过卷积网络得到特征图,然后在特征图上使用备选区域算法得到感兴趣的区域在特征图的映射,之后使用 Rol Pool将所有区域变成同样尺寸,大大减少了这些目标检测网络的运行时间,但是区域生成的计算成为整个检测网络的瓶颈。

Faster R-CNN 引入了一个 区域生成网络(Region Proposal Network,RPN) ,该网络与检测网络共享输入图像的卷积特征,从而使接近零时间成本的区域生成成为可能。 RPN是一个全卷积网络,可以同时在每个位置预测目标边界和目标分数。RPN经过端到端的训练,可以生成高质量的区域候选框,然后提供给Fast R-CNN用于检测。

Faster R-CNN 由两个模块组成:第一个模块是区域生成的深度全卷积网络,第二个模块是使用备选区域的Fast R-CNN检测器。整个系统是一个单个的,统一的目标检测网络。使用最近流行的“注意力”机制的神经网络术语,RPN模块告诉Fast R-CNN模块在哪里寻找目标。

针对一张图片,需要获得的输出有:

Faster R-CNN 第一步是采用基于分类任务(如ImageNet)的 CNN 模型作为特征提取器。输入图片表示为 H × W × D 的形式,经过预训练 CNN 模型的处理,得到卷积特征图(conv feature map)。

Faster R-CNN 最早是采用在 ImageNet 训练的 ZF 和 VGG ,其后出现了很多其它权重不同的网络.。如 MobileNet 是一种小型效率高的网络结构,仅有 3.3M 参数;而ResNet-152 的参数量达到了 60M;新网络结构,如 DenseNet 在提高了结果的同时,降低了参数数量。

以 VGG16 为例:

VGG16 图片分类时,输入为 224×224×3 的张量(即,一张 224×224 像素的 RGB 图片)。网络结构最后采用 FC 层(而不是 Conv 层)得到固定长度的向量,以进行图片分类.。对最后一个卷积层的输出拉伸为1维的向量,然后送入 FC 层。官方实现中是采用的卷积层 conv5/conv5_1 的输出。

在深度上,卷积特征图对图片的所有信息进行了编码,同时保持相对于原始图片所编码 “things” 的位置。例如,如果在图片的左上角存在一个红色正方形,而且卷积层有激活响应,那么该红色正方形的信息被卷积层编码后,仍在卷积特征图的左上角。因此利用特征图检测目标所在的位置是可行的。

ResNet 结构逐渐取代 VGG 作为基础网络,用于提取特征。ResNet 相对于 VGG 的明显优势是,网络更大,因此具有更强的学习能力.。这对于分类任务是重要的,在目标检测中也应该如此。另外,ResNet 采用残差连接(residual connection) 和 BN (batch normalization) 使得深度模型的训练比较容易。

然后,RPN(Region Propose Network) 对提取的卷积特征图进行处理,寻找可能包含 目标的 预定义数量的区域(regions,边界框) 。为了生成候选区域,在最后的共享卷积层输出的卷积特征图上做 3x3 卷积,卷积核共有512个(VGG),后面是ReLU,这样每个 3x3 区域会得到一个512维的特征向量。然后这个特征向量被输入到两个全连接层——一个边界框回归层(reg)和一个边界框分类层(cls)。

下面解释 k, 2k, 4k 的含义。

基于深度学习的目标检测中,可能最难的问题就是生成长度不定(variable-length)的边界框列表(bounding-boxes),边界框是具有不同尺寸(sizes)和长宽比(aspect ratios )的矩形。在构建深度神经网络时,最后的网络输出一般是固定尺寸的张量输出(采用RNN的除外)。例如,在图片分类中,网络输出是 (C, ) 的张量,C是类别标签数,张量的每个位置的标量值表示图片是类别的概率值。

在 RPN 中,通过采用 anchors(锚) 来解决边界框列表长度不定的问题,即在原始图像中统一放置固定大小的参考边界框。上面说到RPN对特征图做3x3的卷积,假设每一次卷积需要预测 k 个候选区域,因此,reg层具有 4k 个输出,编码 k 个边界框的坐标,cls层输出 2k 个分数,估计每个区域是目标或是背景的概率。这 k 个区域就是 被 k 个参考边界框初始化, k 个参考框就是 k 个锚点,作为第一次预测目标位置的参考 boxes。锚点的中心位于卷积核滑动窗口的中心。默认情况下每个滑动位置使用3个不同尺度(128 2 , 256 2 , 512 2 )3个不同长宽比(1:2, 1:1, 2:1)的锚点,k=9。对于大小为W×H(通常约为2400)的卷积特征图,总共有 W×H×k 个锚点。对于RPN的最后两个全连接层,参数的个数为 512×(4+2)×k.

不同于直接检测目标的位置,这里将问题转化为两部分。对每一个 anchor 而言:

有一种简单的方法来预测目标的边界框,即学习相对于参考边界框的偏移量。假设参考 box:( ),待预测量:( ),一般都是很小的值,以调整参考 box 更好的拟合所需要的。

虽然 anchors 是基于卷积特征图定义的,但最终的 anchos 是相对于原始图片的.

由于只有卷积层和 pooling 层,特征图的维度是与原始图片的尺寸成比例关系的. 即,数学地表述,如果图片尺寸 w×h,特征图的尺寸则是w/r×h/r. 其中,r 是下采样率(subsampling ratio). 如果在卷积特征图空间位置定义 anchor,则最终的图片会是由 r 像素划分的 anchors 集。在 VGG 中, r=16。

RPN 利用所有的参考边界框(anchors),输出一系列目标的良好的 proposals。针对每个 anchor,都有两个不同的输出:

RPN是全卷积网络。

对于分类层,每个 anchor 输出两个预测值:anchor 是背景(background,非object)的 score 和 anchor 是前景(foreground,object) 的 score.

对于回归层,也可以叫边界框调整层,每个 anchor 输出 4 个预测值: (Δxcenter,Δycenter,Δwidth,Δheight),用于 anchors 来得到最终的 proposals。根据最终的 proposal 坐标和其对应的 objectness score,即可得到良好的 objects proposals.

RPN 有两种类型的预测值输出:二值分类和边界框回归调整。

为了训练RPN,我们为每个锚点分配一个二值类别标签(是目标或不是目标)。我们给两种锚点分配一个正标签:(i)具有与实际边界框的重叠最高交并比(IoU)的锚点,或者(ii)具有与实际边界框的重叠超过0.7 IoU的锚点。注意,单个真实边界框可以为多个锚点分配正标签。通常第二个条件足以确定正样本;但我们仍然采用第一个条件,因为在一些极少数情况下,第二个条件可能找不到正样本。对于所有的真实边界框,如果一个锚点的IoU比率低于0.3,我们给非正面的锚点分配一个负标签。既不正面也不负面的锚点不会有助于训练目标函数。

然后,随机采样 anchors 来生成batchsize=256 的 mini-batch,尽可能的保持 foreground 和 background anchors 的比例平衡。

RPN 对 mini-batch 内的所有 anchors 采用二分类交叉熵来计算分类 loss。然后,只对 mini-batch 内标记为 foreground 的 anchros 计算回归 loss。为了计算回归的目标targets,根据 foreground anchor 和其最接近的 groundtruth object,计算将 anchor 变换到 object groundtruth 的偏移值 Δ。

Faster R-CNN没有采用简单的 L1 或 L2 loss 用于回归误差,而是采用 Smooth L1 loss. Smooth L1 和 L1 基本相同,但是,当 L1 误差值非常小时,表示为一个确定值即认为是接近正确的,loss 就会以更快的速度消失.

由于 Anchors 一般是有重叠,因此,相同目标的候选区域也存在重叠。

为了解决重叠 proposals 问题,采用 NMS 算法处理,丢弃与一个 score 更高的 proposal 间 IoU 大于预设阈值的 proposals.

虽然 NMS 看起来比较简单,但 IoU 阈值的预设需要谨慎处理. 如果 IoU 值太小,可能丢失 objetcs 的一些 proposals;如果 IoU 值过大,可能会导致 objects 出现很多 proposals。IoU 典型值为 0.7。

NMS 处理后,根据 sore 对topN 个 proposals 排序. 在 Faster R-CNN 论文中 N=2000,其值也可以小一点,如 50,仍然能的高好的结果.

当获得了可能的相关目标和其在原始图像中的对应位置之后,问题就更加直接了,采用 CNN 提取的特征和包含相关目标的边界框,采用 RoI Pooling 处理,并提取相关目标的特征,得到一个新的向量。

RPN 处理后,可以得到一堆没有分类得分的目标 proposals。待处理问题为,如何利用这些边界框并分类。

一种最简单的方法是,对每个 porposal,裁剪,并送入pre-trained base 网络,提取特征;然后,将提取特征来训练分类器. 但这就需要对所有的 2000 个 proposals 进行计算,效率低,速度慢。Faster R-CNN通过重用卷积特征图来加快计算效率,即采用 RoI(region of interest) Pooling 对每个 proposal 提取固定尺寸的特征图。然后 R-CNN 对固定尺寸的特征图分类。

目标检测中,包括 Faster R-CNN,常用一种更简单的方法,即:采用每个 proposal 来对卷积特征图裁剪crop,然后利用插值算法(一般为双线性插值 bilinear)将每个 crop resize 到固定尺寸14×14×ConvDepth. 裁剪后,利用 2×2 kernel 的 Max Pooling 得到每个 proposal 的最终7×7×ConvDepth 特征图.

之所以选择该精确形状,与其在下面的模块(R-CNN)中的应用有关。

R-CNN利用RoI Pooling提取的特征进行分类,采用全连接层来输出每个可能的 目标类别的分类得分,是Faster R-CNN框架中的最后一个步骤。

R-CNN 有两个不同的输出:

R-CNN 对每个 proposal 的特征图,拉平后采用 ReLU 和两个大小为 4096 维的全连接层进行处理。然后,对每个不同目标采用两个不同的全连接层处理:一个全连接层有 N+1 个神经单元,其中 N 是类别 class 的总数,包括 background class;一个全连接层有 4N 个神经单元,是回归预测输出,得到 N 个可能的类别分别预测 Δcenterx,Δcentery,Δwidth,Δheight。

R-CNN 的目标基本上是与 RPN 目标的计算是一致的,但需要考虑不同的可能的 object 类别 classes.

根据 proposals 和 ground-truth boxes,计算其 IoU。与任何一个 ground-truth box 的 IoU 大于 0.5 的 proposals 被设为正确的 boxes。IoU 在 0.1 到 0.5 之间时设为 background。这里忽略没有任何交叉的 proposals。这是因为,在此阶段,假设已经获得良好的 proposals。当然,所有的这些超参数都是可以用于调整以更好的拟合 objects。

边界框回归的目标计算的是 proposal 与其对应的 ground-truth间的偏移量,只对基于 IoU 阈值设定类别后的 proposals 进行计算。随机采用一个平衡化的 mini-batch=64,其中,25% 的 foreground proposals(具有类别class) 和 75% 的background proposals.

类似于 RPNs 的 losses,对于选定的 proposals,分类 loss 采用 multiclass entropy loss;对于 25% 的 foreground proposals 采用 SmoothL1 loss 计算其与 groundtruth box 的匹配。

由于 R-CNN全连接网络对每个类别仅输出一个预测值,当计算边框回归loss 时需谨慎,只需考虑正确的类别。

类似于 RPN,R-CNN 最终输出一堆带有类别分类的objects,在返回结果前,再进一步进行处理。

为了调整边界框,需要考虑概率最大的类别的 proposals. 忽略概率最大值为 background class 的proposals.

当得到最终的 objects 时,并忽略被预测为 background 的结果,采用 class-based NMS. 主要是通过对 objects 根据类别class 分组,然后根据概率排序,并对每个独立的分组采用 NMS 处理,最后再放在一起.

最终得到的 objects 列表,仍可继续通过设定概率阈值的方式,来限制每个类的 objects 数量.

Faster R-CNN在论文中是采用分步方法,对每个模块分别训练再合并训练的权重. 自此,End-to-end 的联合训练被发现能够得到更好的结果.

当将完整的模型合并后,得到 4 个不同的 losses,2 个用于 RPN,2 个用于 R-CNN。4 种不同的 losses 以加权和的形式组织. 可以根据需要对分类 loss 和回归 loss 设置权重,或者对 R-CNN 和 RPNs 设置不同权重.

采用 SGD 训练,momentum=0.9. 学习率初始值为 0.001,50K 次迭代后衰减为 0.0001. 这是一组常用参数设置。

EfficientDet : 快又准,EfficientNet作者在目标检测领域的移植 | CVPR 2020

论文: EfficientDet: Scalable and Efficient Object Detection

目前目标检测领域,高精度的模型通常需要很大的参数量和计算量,而轻量级的网络则一般都会牺牲精度。因此,论文希望建立一个可伸缩的高精度且高性能的检测框架。论文基于one-stage的检测网络范式,进行了多种主干网络、特征融合和class/box预测的结构尝试,主要面临两个挑战:

FPN是目前最广泛的多尺度融合方法,最近也有PANet和NAS-FPN一类跨尺度特征融合方法。对于融合不同的特征,最初的方法都只是简单地直接相加,然而由于不同的特征是不同的分辨率,对融合输出特征的共享应该是不相等的。为了解决这一问题,论文提出简单但高效加权的bi-directional feature pyramid network(BiFPN),该方法使用可学习的权重来学习不同特征的重要性,同时反复地进行top-down和bottom-up的多尺度融合

论文认为除了缩放主干网络和输入图片的分辨率,特征网络(feature network)和box/class预测网络的缩放对准确率和性能也是很重要的。作者借鉴EfficientNet,提出针对检测网络的混合缩放方法(compound scaling method),同时对主干网络,特征网络和box/class预测网络的分辨率/深度/宽度进行缩放

最后,论文将EfficientNet作为主干,结合BiFPN和混合缩放,提出新的检测系列EfficientDet,精度高且轻量,COCO上的结果如图1,论文的贡献有以下3点:

定义多尺寸特征 ,论文的目标是找到变化函数 来高效融合不同的特征,输出新特征 。具体地,图2a展示了top-down FPN网络结构,一般FPN只有一层,这里应该为了对比写了repeat形式。FPN获取3-7层的输入 , 代表一个分辨率为 的特征层

top-down FPN操作如上所示, 为上采用或下采样来对齐分辨率, 通常是特征处理的卷积操作

top-down FPN受限于单向的信息流,为了解决这一问题,PANet(图2b)增加了额外的bottom-up路径的融合网络,NAS_FPN(图2c)使用神经架构搜索来获取更好的跨尺度特征网络的拓扑结构,但需要大量资源进行搜索。其中准确率最高的是PANet,但是其需要太多的参数和计算量,为了提高性能,论文对跨尺寸连接做了几点改进:

大多的特征融合方法都将输入特征平等对待,而论文观察到不同分辨率的输入对融合输出的特征的贡献应该是不同的。为了解决这一问题,论文提出在融合时对输入特征添加额外的权重预测,主要有以下方法:

, 是可学习的权重,可以是标量(per-feature),也可以是向量(per-channel),或者是多维tensor(per-pixel)。论文发现标量形式已经足够提高准确率,且不增加计算量,但是由于标量是无限制的,容易造成训练不稳定,因此,要对其进行归一化限制

,利用softmax来归一化所有的权重,但softmax操作会导致GPU性能的下降,后面会详细说明

,Relu保证 , 保证数值稳定。这样,归一化的权重也落在 ,由于没有softmax操作,效率更高,大约加速30%

BiFPN集合了双向跨尺寸的连接和快速归一化融合,level 6的融合操作如上, 为top-down路径的中间特征, 是bottom-up路径的输出特征,其它层的特征也是类似的构造方法。为了进一步提高效率,论文特征融合时采用depthwise spearable convolution,并在每个卷积后面添加batch normalization和activation

EfficientDet的结构如图3所示,基于one-stage检测器的范式,将ImageNet-pretrained的EfficientNet作为主干,BiFPN将主干的3-7层特征作为输入,然后重复进行top-down和bottom-up的双向特征融合,所有层共享class和box网络

之前检测算法的缩放都是针对单一维度的,从EfficientNet得到启发,论文提出检测网络的新混合缩放方法,该方法使用混合因子 来同时缩放主干网络的宽度和深度、BiFPN网络、class/box网络和分辨率。由于缩放的维度过多,EfficientNet使用的网格搜索效率太慢,论文改用heuristic-based的缩放方法来同时缩放网络的所有维度

EfficientDet重复使用EfficientNet的宽度和深度因子,EfficinetNet-B0至EfficientNet-B6

论文以指数形式来缩放BiFPN宽度 (#channels),而以线性形式增加深度 (#layers),因为深度需要限制在较小的数字

box/class预测网络的宽度固定与BiFPN的宽度一致,而用公式2线性增加深度(#layers)

因为BiFPN使用3-7层的特征,因此输入图片的分辨率必需能被 整除,所以使用公式3线性增加分辨率

结合公式1-3和不同的 ,论文提出EfficientDet-D0到EfficientDet-D6,具体参数如Table 1,EfficientDet-D7没有使用 ,而是在D6的基础上增大输入分辨率

模型训练使用momentum=0.9和weight decay=4e-5的SGD优化器,在初始的5%warm up阶段,学习率线性从0增加到0.008,之后使用余弦衰减规律(cosine decay rule)下降,每个卷积后面都添加Batch normalization,batch norm decay=0.997,epsilon=1e-4,梯度使用指数滑动平均,decay=0.9998,采用 和 的focal loss,bbox的长宽比为 ,32块GPU,batch size=128,D0-D4采用RetinaNet的预处理方法,D5-D7采用NAS-FPN的增强方法

Table 2展示了EfficientDet与其它算法的对比结果,EfficientDet准确率更高且性能更好。在低准确率区域,Efficient-D0跟YOLOv3的相同准确率但是只用了1/28的计算量。而与RetianaNet和Mask-RCNN对比,相同的准确率只使用了1/8参数和1/25的计算量。在高准确率区域,EfficientDet-D7达到了51.0mAP,比NAS-FPN少使用4x参数量和9.3x计算量,而anchor也仅使用3x3,非9x9

论文在实际的机器上对模型的推理速度进行了对比,结果如图4所示,EfficientDet在GPU和CPU上分别有3.2x和8.1x加速

论文对主干网络和BiFPN的具体贡献进行了实验对比,结果表明主干网络和BiFPN都是很重要的。这里要注意的是,第一个模型应该是RetinaNet-R50(640),第二和第三个模型应该是896输入,所以准确率的提升有一部分是这个原因。另外使用BiFPN后模型精简了很多,主要得益于channel的降低,FPN的channel都是256和512的,而BiFPN只使用160维,这里应该没有repeat

Table 4展示了Figure 2中同一网络使用不同跨尺寸连接的准确率和复杂度,BiFPN在准确率和复杂度上都是相当不错的

Table 5展示了不同model size下两种加权方法的对比,在精度损失不大的情况下,论文提出的fast normalized fusion能提升26%-31%的速度

figure 5展示了两种方法在训练时的权重变化过程,fast normalizaed fusion的变化过程与softmax方法十分相似。另外,可以看到权重的变化十分快速,这证明不同的特征的确贡献是不同的,

论文对比了混合缩放方法与其它方法,尽管开始的时候相差不多,但是随着模型的增大,混合精度的作用越来越明显

论文提出BiFPN这一轻量级的跨尺寸FPN以及定制的检测版混合缩放方法,基于这些优化,推出了EfficientDet系列算法,既保持高精度也保持了高性能,EfficientDet-D7达到了SOTA。整体而言,论文的idea基于之前的EfficientNet,创新点可能没有之前那么惊艳,但是从实验来看,论文推出的新检测框架十分实用,期待作者的开源

光子学报目标检测论文属于什么领域

科技领域。《光子学报》是中国科学院西安光学精密机械研究所、中国光学学会主办、科学出版社出版的学术月刊。光子学报目标检测论文属于科技领域,宗旨是展示光子学研究领域的新理论、新概念、新思想、新技术和新进展,反映代表该学科前沿并具有中国国内外先进水平而为国际上关心的最新研究成果。

科技小论文(科技界最具影响力的十篇论文)

在谷歌学术搜索中,存有高达4亿篇论文的数据库。论文被引用的数据可以作为证明文章影响力的依据。即使这个方法有局限性,但在更大程度上,反映了当今社会的进展和科学的进步。

1《亚当:一种随机优化方法 》 Adam: A Method for Stochastic Optimization。文章发布于2015年,引用数为47774。

截止2020年为止,这篇文章达到了,人类可知的引用最高数。一篇涉及人工智能的文章获得最高引用,证实了科学界对人工智能的注重。不仅是科学界对人工智能领域有巨大的兴趣,而且欧美国家也正在把人工智能作为未来的主要发展对象。美国把对人工智能的投资提高了一倍,欧盟也把投资提高了百分之70。《亚当:一种随机优化方法 》能够获得最高引用,正说明在未来人工智能上,将展开激烈竞争。无独有偶,跟着这篇文章后面,引用最多的文章多是涉及人工智能。

2《图像识别的深度残差学习》 Deep Residual Learning for Image Recognition 文章发布于2016年,引用数为25256。

深度残差学习的概念出自何凯明等4名中国学生。何凯明来自清华大学物理系,现是脸书人工智能的科学家。从文章的引用数量来看,足以显示,他提出的这个方法对该行业的影响。

3《让R-CNN更快: 朝着带有区域建议网络 的实时目标检测》 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks发表于2015,引用数为19507。

4《深度学习》 Deep Learning, 文章发布于2015年,引用数为16750。

5 《带着缠绕走得更深》 Going deeper with Convolutions, 文章发布于2015年,引用数为14424。

这篇文章已经成为计算机图像处理必读论文之一。

6《通过深层强化学习的人类层面的控制》 Human-Level control through deep reinforcement learning 文章发布于2015年,引用数为10394。

7 《语义分割的完全常规网络》 Fully Conventinal Networks for Semantic segmentation 文章发布于2015年,引用数为10153。

9 《 脓毒症与脓毒症休克第三版国际共识 》 The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) 文章发布于2016年,引用数为8576。

10《RNA测序和微阵列研究中 Limma 强化差异表达分析》 Limma porwers defferential expression analyses for RNA-sequencing and microarray studies 文章发布于2015年,引用数为8328。

第9和第10篇是前十名论文中,和计算机没有关系的两篇医学论文。这是否意味着,未来对人类社会影响最大的,除了人工智能就是医学了呢?

最后要提到的这篇文章,虽然没有进入第10,但值得一提。 《以深度神经网络和树搜索掌握围棋战略》 Mastering the game of Go with deep neural networks and tree search发布于2016年,引用数为8209。

这篇文章涉及的是伦敦大学学院的教授David Silver, 他领导的AlphaGo团队击败了围棋九段棋手柯洁。人工智能击败了最强大脑,没有什么能比这更能说明人工智能的前途,同时也可能是一个细思极恐的大事件。在机器击败人的时代,人怎么办?

上一篇:别墅景论文题目

下一篇:医学类研究型论文