欢迎来到学术参考网
当前位置:发表论文>论文发表

蜜蜂的研究论文

发布时间:2023-03-11 20:08

蜜蜂的研究论文

蜜蜂靠什么发出嗡嗡声?权威专家都认为:是靠翅膀振动发声。我省监利县12岁的小学生聂利大胆挑战这一说法。她说:“蜜蜂有自己的发音器官,不是靠翅膀振动发声。”

  聂利是监利县黄歇口镇中心小学六年级学生。在甘肃省兰州市8月举行的第18届全国青少年科技创新大赛上,
她撰写的论文《蜜蜂并不是靠翅膀振动发 声》,荣获优秀科技项目银奖和高士其科普专项奖。

  2001年秋,聂利从《小学自然学习辅导》一书中得知,蜜蜂、苍蝇、蚊子等昆虫都没有发音器官,但它们在飞行时不断高速扇动翅膀,使空气振动,会产生嗡嗡的声音。后来,聂利在《十万个为什么》一书中也看到这种说法。

  去年春天,她到一个养蜂场去玩,发现许多蜜蜂聚集在蜂箱上,翅膀没动,仍然嗡嗡叫个不停,她因此对教材、科普读物的说法产生怀疑,并开始试验和研究。她把蜜蜂的双翅用胶水粘在木板上,或者剪去蜜蜂的双翅,都能听到蜜蜂的叫声。两种方法交替进行了42次,结果表明:蜜蜂不振动翅膀也能发声。

  为了探究蜜蜂的发音器官,她把蜜蜂粘在木板上,用放大镜仔细查找,观察了一个多月,终于在蜜蜂的双翅根部发现两粒比油菜籽还小的黑点,蜜蜂叫时,黑点上下鼓 动。她用大头针捅破小黑点,蜜蜂就不发声了。她又找来一些蜜蜂,不损伤双翅,只刺破小黑点,放在蚊帐里。蜜蜂飞来飞去,再也没有声音。她将这一发现写成论文,认为蜜蜂的发音器官就是这两个小黑点。

  据了解,中国教育协会、小学自然教学专业委员会会刊全文发表了聂利的论文。

有关蜜蜂的论文题目

  [1]. 徐卫滨, 无选择策略的改进蜜蜂群算法. 太原科技大学学报, 2011(05): 第343-347页.
  [2]. 陈璇与胡福良, 调控蜜蜂采粉行为的遗传因素. 中国蜂业, 2010(11): 第13-15页.
  [3]. 汪明明等, 蜜蜂工蜂卵巢发育的影响因素. 中国蜂业, 2010(10): 第5-7页.
  [4]. 曾鸣等, 基于混沌量子蜜蜂算法的机会约束输电规划. 电力系统保护与控制, 2010(22): 第1-7+14页.
  [5]. 安建东与陈文锋, 全球农作物蜜蜂授粉概况. 中国农学通报, 2011(01): 第374-382页.
  [6]. 陈璇与胡福良, 雌性蜜蜂级型决定的分子机制. 蜜蜂杂志, 2011(04): 第1-7页.
  [7]. 侯春生与张学锋, 生态条件的多样性变化对蜜蜂生存的影响. 生态学报, 2011(17): 第5061-5070页.
  [8]. 陶德双等, 中华蜜蜂为石榴授粉效果研究. 蜜蜂杂志, 2010(03): 第10-11页.
  [9]. 李兆英与奚耕思, 中华蜜蜂工蜂复眼的胚后发育研究. 陕西师范大学学报(自然科学版), 2010(03): 第60-64页.
  [10]. 严盈, 彭露与万方浩, 昆虫卵黄原蛋白功能多效性:以蜜蜂为例. 昆虫学报, 2010(03): 第335-348页.
  [11]. 周亮等, 蜜蜂囊状幼虫病RT-PCR快速检测方法的初步应用. 蜜蜂杂志, 2010(06): 第9-10页.
  [12]. 李兆英, 中华蜜蜂工蜂视叶胚后发育过程中的细胞凋亡. 昆虫知识, 2010(04): 第680-684页.
  [13]. 沈登荣等, 蜜蜂作为病原物载体的研究进展. 中国生物防治, 2010(S1): 第118-122页.
  [14]. 周亮等, 蜜蜂囊状幼虫病RNA依赖的RNA聚合酶部分基因的克隆和序列分析. 中国畜牧兽医, 2010(11): 第50-52页.
  [15]. 郑肇葆, 产生最佳Tuned模板的蜜蜂交配算法. 武汉大学学报(信息科学版), 2009(04): 第387-390+435页.
  [16]. 李伟强, 徐建城与殷剑锋, 蜜蜂群优化算法用于训练前馈神经网络. 计算机工程与应用, 2009(24): 第43-45+49页.
  [17]. 周丹银等, 蜜蜂为油菜授粉效果初步研究. 蜜蜂杂志, 2010(01): 第3-5页.
  [18]. 薛晗等, 空间机器人随机故障容错规划的蜜蜂算法. 信息与控制, 2009(06): 第724-734页.
  [19]. 张成翠与曾建潮, 蜜蜂群组决策方法的建模与仿真. 太原科技大学学报, 2009(06): 第452-455页.
  [20]. 周婷等, 蜜蜂巢房大小影响狄斯瓦螨的繁殖行为. 昆虫知识, 2006(01): 第89-93页.
  [21]. 历延芳, 闫德斌与葛凤晨, 蜜蜂为塑料大棚西瓜和田间西瓜授粉试验报告. 蜜蜂杂志, 2006(01): 第6-7页.
  [22]. 王成菊等, 阿维菌素及其混配制剂对蜜蜂的安全性评价. 农业环境科学学报, 2006(01): 第229-231页.
  [23]. 黄智勇, 蜜蜂全基因组出笼前后. 昆虫知识, 2007(01): 第5-9页.
  [24]. 姜双林与李博平, 陇东地区不同生境下蜜蜂的种类及其生态分布. 草业科学, 2007(05): 第89-91页.
  [25]. 王志江与魏红福, 蜜蜂α-葡萄糖苷酶的分离纯化及其酶学性质研究. 食品科学, 2007(07): 第304-308页.
  [26]. 罗阿蓉等, 后基因组时代的蜜蜂QTL研究. 昆虫学报, 2007(09): 第950-956页.
  [27]. 何铠光, 刘佩珊与苏鸿基, 台湾蜜蜂的螺旋菌质病研究. 蜜蜂杂志, 2007(S1): 第3-7页.
  [28]. 许益鹏等, 蜜蜂囊状幼虫病毒病的Nest-PCR检测. 科技通报, 2007(06): 第824-827页.
  [29]. 林小丽等, 农药对蜜蜂的风险评价技术进展. 农药学学报, 2008(04): 第404-409页.
  [30]. 刘之光与石巍, 中国甘肃东北部地区东方蜜蜂(Apis cerana)形态学研究. 环境昆虫学报, 2008(02): 第97-102页.

初中蜜蜂研究报告怎么写50字?

1蜜蜂指蜜蜂科所有会飞行的群居昆虫,采食花粉和花蜜并酿造蜂蜜。其细胞沉积现象,也是唯一在细胞中有铁矿物沉积现象的真核生物。蜜蜂群体中有蜂王、工蜂和雄蜂三种类型的蜜蜂,群体中有一只蜂后(有些例外情形有两只蜂后),1万到15万工蜂,500到1500只雄蜂。蜜蜂源自于亚洲与欧洲,由英国人与西班牙人带到美洲。蜜蜂为取得食物不停的工作,白天采蜜、晚上酿蜜,同时替果树完成授粉任务,为农作物授粉的重要媒介。
2蜂王在巢室内产卵,幼虫在巢室中生活,营社会性生活的幼虫由工蜂喂食,营独栖性生活的幼虫取食雌蜂贮存于巢室内的蜂粮,待蜂粮吃尽,幼虫成熟化蛹,羽化时破茧而出。家养蜜蜂一年繁育若干代,野生蜜蜂一年繁育1~3代不等。以老熟幼虫、蛹或成虫越冬 。 一般雄性出现比雌性早,寿命短,不承担筑巢、贮存蜂粮和抚育后代的任务。雌蜂营巢、采集花粉和花蜜,并贮存于巢室内,寿命比雄性长。

写议论文 关于‘蜜蜂的精神’

蜜蜂,是勤劳的象征。它不仅仅只代表这样的意义,还有一种似雨水般的深意。
倘若你走进我们数学老师的办公室中,然后转身一看,就会看到那张在圣诞节时,同学送给老师的祝福。那份祝福像一阵美妙的交响曲回荡在教师的办公室,同时,还飞遍了整个充满生气的校园。
眺首看去,只见一只像精灵似的小蜜蜂俯吸在高墙上。你看见它,一定会觉得惊奇,一定会走近一瞧。啊,那只小蜜蜂好象戴了一副眼镜,身上披了件闪亮透明的今衣裳,又好象穿了一条牛崽裤。“小精灵”好似背着什么东西在飞快的翱翔。咦?这是什么呀?把脸凑上前去,只见是一本精致的小日历,在这下面,又萦系着一个充满激情,似鲜花烂漫般的爱心,他带着同学们的向往,愿望,带着无限数不清的东西,一直翱翔在办公室的上空……
它似乎飞行在一个葛藤缭绕,盘根错节,流水丁冬,百花绽放,蚊呐成阵的幽谷中。一大群密密麻麻的蜜蜂穿梭在这复杂的“天籁”中。它们成群结队地停下,又成群结队地飞走。有上有下,一起一伏,一横一竖,真是千姿百态,都在这个神奇的大舞台上演替着。许多人都害怕蜜蜂,而我则不这么认为,因为它们的结晶,它们的勤奋永远回荡在这个广大的生物群落中。这与我们现在的学习是同样的道理。一个人在世间,重在于学习,追求,创造,发现。它也像一个生物链永不停止,它又似这蜜蜂,这是勤奋,刻苦的成绩。总之,努力会成功,而成功的捷径在于方法。
在一片蔚蓝,波光粼粼,缓缓东去的海洋之上,正有一群蜜蜂,它们正团结一致,又飞向一个百花绽放的仙境……

求一篇与蜜蜂有关的论文

NC508 Sustainable Solutions to Problems Affecting Honey Bee Health

White Paper: Honey bee genetics and breeding

As the managed pollinator of choice for numerous crops, the honey bee is an animal of substantial importance to U.S. agriculture. However, like many of the crops they pollinate, honey bees are not native to North America. Current honey bee populations within the United States reflect historical patterns of introduction from Old World source populations and the genetic consequences of founder events and subsequent queen propagation practices by beekeepers. With few exceptions, commercial queen propagation in the United States has relied on the production of a large number of saleable queens from a very limited number of queen mothers each generation. The ratio of daughter queens to queen mothers in these operations has averaged well over 1000:1 over the past decade (1, 2, 3).

Following the establishment of parasitic honey bee mites in U.S. beekeeping operations in the 1980's, substantial losses occurred at the national level to both managed honey bees and a formerly robust feral honey bee population (4). While queen production output was able to provide replacement queens for the beekeeping industry during this period, little effort was made to select for and incorporate genetic traits that enhanced the resistance of honey bees to parasitic mites and diseases. Unfortunately, substantial annual losses of honey bees due to parasitic mites have continued, as the mite Varroa destructor rapidly develops resistance to beekeeper applied chemical control measures. The inherent genetic capacity of some honey bees to tolerate or resist V. destructor, tracheal mites and contagious brood diseases is well known (5, 6, 7). However, there has not been a concerted effort within the queen breeding industry to develop selection protocols nor to manage even breeder queen populations without supplemental miticides and antibiotics. Exceptions include some private and public institution bee breeding programs that have adopted selection protocols based, in part, on specific assays, for traits of apicultural significance. While the impact of these programs has been limited, relative to overall queen production totals, collectively they represent a germplasm reserve of honey bee stocks that are comparatively productive, mite resistant and healthy in the face of known pathogens and stressors. Measurements that are used in selection protocols include the expression of hygienic behavior, short-term weight gain, mite and bee population growth, temperament, Varroa sensitive hygiene and others.

Recent reports of increased honey bee losses in the United States due to as yet undefined causes (8) makes it clear that high priority should be given to selecting and breeding honey bees that can remain healthy with minimal need for chemical inputs in the bee hive. There is preliminary evidence to suggest that selection and breeding would be an efficient and sustainable approach to deal with novel pathogens or group of pathogens, including those that may be involved in CCD (9, 10). The recent report that a virus associated with CCD is present within a population of honey bees that are currently being imported into the U.S. in massive numbers(11) brings up another aspect that must be considered together with selection and breeding regimes, the issue of honey bee source populations and importation.

Out of the 26 recognized subspecies of honey bees, only 9 are known to have been sampled and introduced into the New World (12). Currently, commercial strains (Italian, Carniolan) based on two of these subspecies predominate in managed populations in the United States, although a third strain (Caucasian) was available until quite recently. Since 2004, due to perceived/projected shortfalls in managed honey bee colonies available to effect almond pollination, the U.S. has permitted the importation of honey bees of presumptive European origin maintained in Australia. These honey bees underwent a genetic bottleneck associated with importation, similar to U.S. populations (vis a vis sampling original sources from Europe) although, in contrast to U.S. populations, the Australian honey bees have not been selected for any measure of resistance through exposure to parasitic mites over the past 20 years.

The importation of additional honey bee germplasm for selection and breeding purposes could address several key needs. First, the importation of germplasm from Old World subspecies known to have been sampled and previously introduced to the U.S. would provide additional genetic diversity for breeding purposes, a means to enhance and maintain sex allele diversity, to recover the commercial Caucasian strain and potentially bolster mite resistance. The latter contribution would depend on whether original Old World source populations (with their own history of mite exposure and survival) were utilized (13), rather than mite-free "introduced" populations from other New World sources. Secondly, the importation of novel honey bee germplasm from subspecies now known to be the original pollinator for crops of agricultural importance, such as A. m. pomonella in endemic forests of wild apples and pears, may provide improved pollination efficiency in crop-specific climatic conditions. Finally, as genetic markers associated with genetic resistance mechanisms or useful immunological or behavioral characteristics become available, Old World honey bee populations represent an available resource for marker-assisted identification of desirable germplasm. Currently, there is no explicit protocol U.S. researchers and breeders to import live bees from many countries nor are there readily accessible quarantine facilities to assist in safe importation of stocks.

In summary, research is needed to:

1) Screen available stocks of honey bees from U.S. breeding programs for the expression of genetic characteristics associated with colony health. This could involve phenotypic measurements of heritable traits or identification of specific genes that influence these traits. In addition to known apicultural traits and measures of genetic diversity, these characteristics could include immunological resistance to pathogens and potential indicators of "CCD-resistance" detectable through novel screening protocols.

2) Develop a selection and breeding protocol for the queen breeding industry that can be implemented with existing honey bee stocks to maximize the preservation of genetic diversity (sex-allele diversity) , while still permitting measurable stock improvement in areas of disease resistance and parasitic mite tolerance. Stocks identified in the colony health screening protocol (1) as useful to breeders could be promoted within this effort.

3) Characterize additional populations of Old World honey bee stocks as potential sources to assure sustainable germplasm maintenance within the U.S. bee breeding industry. This research will use molecular markers for the identification of specific subspecies and to label highly desirable breeding lines or lines expressing "CCD-resistance" (1). Develop a protocol to maintain these stocks within an association of involved university/private/government bee breeding facilities.

Primary author: Steve Sheppard1
Participants: Marla Spivak2, Greg J. Hunt3
1. Washington State University,
2. University of Minnesota,
3. Purdue University,

1) Schiff, N.M. and W.S. Sheppard. 1995. Genetic analysis of commercial honey bees (Hymenoptera: Apidae) from the southern United States. J. Econ. Entomol. 88: 1216-1220.

2) Schiff, N.M. and W.S. Sheppard. 1996. Genetic differentiation in the queen breeding population of the western United States. Apidologie 27:77-86.

3) Delaney, Schiff and Sheppard. 2007. Unpublished data

4) Sanford, M. T. 2001. Introduction, spread, and economic impact of Varroa mites in North America, in; Webster T.C., Delaplane K.S. (Eds.), Mites of the honey bee, Dadant and Sons, Hamilton, Illinois, pp. 149-162.

5) Guerra Jr., J. C. V., L. S. Gonçalves and D. De Jong. 2000. Africanized honey bees (Apis mellifera L.) are more efficient at removing worker brood artificially infested with the parasitic mite Varroa jacobsonii Oudemans than are Italian bees or Italian/Africanized hybrids. Genetics and Molecular Biology 23 89-92.
6) Spivak, M. and G. S. Reuter. 2001. Resistance to American foulbrood diseases by honey bee colonies (Apis mellifera) bred for hygienic behavior. Apidologie 32: 555-565.

7) Danka, R. G. and J. D. Villa. 2000. A survey of tracheal mite resistance levels in U.S. commercial queen breeder colonies. American Bee Journal 140: 405-407.

8) Oldroyd, B. P. 2007. What's killing American honey bees? PLOS Biology, 5: 1195-1199.

9) Evans, J. D. and D. L. Lopez. 2004. Bacterial probiotics induce an immune response in the
honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 97: 752-756

10)

11) Cox-Foster et al. 2007. A metagenomic survey of microbes in honey bee colony collapse
disorder. Sciencexpress, 6 September 2007, 10.1126/science.1146498

12) Sheppard, W.S. 1989. A history of the introduction of honey bee races into the United
States, I and II. Amer. Bee J. 129: 617-619, 664-667.

13) De Guzman, L.I., T.E. Rinderer, A. M. Frake. 2007. Growth of Varroa destructor (acari:
varroidae) populations in Russian honey bee (Hymenoptera: Apidae) colonies. Ann.
Entomol. Soc. Amer 100:187-195

上一篇:视传论文题目

下一篇:加工工位毕业论文