音频检测论文
音频检测论文
探讨和分析。
论文首先从音频模态进行视频内容检索的方法进行了探讨和分析,研究总结了基于音频的视频检索中音频特征的有效选取和门限值的确定,并通过实验,给出了一组有效的音乐特征以及门限值选取的方法,其次,在向量模板分类算法的基础上,提出了一种分层的向量模板分类算法(HCMBVT),通过分级分类,减少分类过程中的计算冗余,提高了分类效率。在此基础上,结合传统基于欧式空间距离的匹配算法,提出一种改进的前向加权序列匹配算法(FWDM),实验结果表明这两种算法可以有效地提高视频检索的实时性。通过实验探讨了基于音频的视频内容检索系统的优缺点及可行性。
求,关于音频技术发展方向方面的论文资料?
音频定义
,指人说话的声音频率,通常指300Hz-3400Hz的频带。
2.指存储声音内容的文件。
3.在某些方面能指作为波滤的振动。
音频这个专业术语,人类能够听到的所有声音都称之为音频,它可能包括噪音、 声音被录制下来以后,无论是说话声、歌声、乐器都可以通过数字音乐软件处理。把它制作成CD,这时候所有的声音没有改变,因为CD本来就是音频文件的一种类型。而音频只是储存在计算机里的声音。 演讲和音乐,如果有计算机加上相应的音频卡 -- 就是我们经常说的声卡,我们可以把所有的声音录制下来,声音的声学特性,音的高低都可以用计算机硬盘文件的方式储存下来。反过来,我们也可以把储存下来的音频文件通过一定的音频程序播放,还原以前录下的声音。
解读音频属性
大家都承认现在是一个数码时代,为了追求优良的音质很多人不懈地努力。随着数码时代的来临,谁都承认数码音频比模拟信号优越。什么是模拟信号?其实任何我们可以听见的声音经过音频线或话筒的传输都是一系列的模拟信号。模拟信号是我们可以听见的。而数字信号就是用一堆数字记号来记录声音,而不是用物理手段来保存信号。(用普通磁带录音就是一种物理方式)数字信号我们实际上是听不到的。
这样我们可以简略地比较一下模拟时代的录音制作与数码时代的区别:模拟时代是把原始信号以物理方式录制到磁带上(当然在录音棚里完成了),然后加工,剪接,修改,最后录制到磁带,LP等广大听众可以欣赏的载体上。这一系列过程全是模拟的,每一步都要损失一些信号,到了听众手里自然是差了好远,更不用说什么HI-FI了。数码时代是第一步就把原始信号录成数码音频资料,然后用硬件或软件进行加工处理,这个过程相比模拟方法有无比的优越性,因为它几乎不会有任何损耗。对于机器来说只是处理一下数字而已,当然丢码的可能性也有,但只要操作合理就不会发生。最后把这堆数字信号传输给数字记录设备如CD等,损耗自然小很多了!
如果我们注意一下身边的CD片就会看到很多CD都有如:ADD,AAD,DDD等标记。三个字母各代表该片在录音,编辑,成品三个过程中所使用的方法是模拟(Analog)的还是数字(Digital)的。当然A代表模拟,D代表数字。AAD就说明其录音和编辑是用模拟方式的,而最后灌片是用数字方式的,这类唱片多是将过去录制的音乐转成CD片而不做任何修改。ADD则是有一个修改过程,许多古典音乐大师的演奏或指挥多录制于模拟时代,我们现在听到的CD是经过修改后罐录的,很多这类唱片都有标记ADD。而DDD的唱片必然是较现代的录音品。自然,CD片必然以D结尾,而磁带可以姑且认为是AAA,虽然好像并没有这种说法。
所以说,数码音频是我们保存声音信号,传输声音信号的一种方式,它的特点是信号不容易损失。而模拟信号是我们最后可以听到的东西。不过模拟信号的修改简直是一场灾难,损失太大了。有此僻好的格伦•古尔德若活到现在也会瞠目结舌的。而数码音频复制100遍也不会有损耗,不信大家COPY一个WAVE文件试试?
数码录音最关键一步就是要把模拟信号转换为数码信号。就电脑而言是把模拟声音信号录制成为Wave文件,这个工作Windows自带的录音机也可以做到,但是它的功能十分有限,不能满足我们的需求,所以我们用其他专业音频软件代替,如Sound Forge等。录制出来的文件就是Wave文件,描述Wave文件主要有两个指标,一个是采样精度,另一个是比特率。这是数字音频制作中十分重要的两个概念,下面就来看一下吧。
什么是采样精度?因为Wave是数码信号,它是用一堆数字来描述原来的模拟信号,所以它要对原来的模拟信号进行分析,我们知道所有的声音都有其波形,数码信号就是在原有的模拟信号波形上每隔一段时间进行一次“取点”,赋予每一个点以一个数值,这就是“采样”,然后把所有的“点”连起来就可以描述模拟信号了,很明显,在一定时间内取的点越多,描述出来的波形就越精确,这个尺度我们就称为“采样精度”。我们最常用的采样精度是44.1kHz/s。它的意思是每秒取样44100次,之所以使用这个数值是因为经过了反复实验,人们发现这个采样精度最合适,低于这个值就会有较明显的损失,而高于这个值人的耳朵已经很难分辨,而且增大了数字音频所占用的空间。一般为了达到“万分精确”,我们还会使用48k甚至96k的采样精度,实际上,96k采样精度和44.1k采样精度的区别绝对不会象44.1k和22k那样区别如此之大,我们所使用的CD的采样标准就是44.1k,目前44.1k还是一个最通行的标准,有些人认为96k将是未来录音界的趋势。采样精度提高应该是一件好事,可有时我也想,我们真的能听出96k采样精度制作的音乐与44.1k采样精度制作的音乐的区别吗?普通老百姓家里的音响能放出他们的区别吗?
比特率是大家常听说的一个名词,数码录音一般使用16比特,20比特,24比特制作音乐,什么是“比特”?我们知道声音有轻有响,影响轻响的物理要素是振幅,作为数码录音,必须也要能精确表示乐曲的轻响,所以一定要对波形的振幅有一个精确的描述,“比特”就是这样一个单位,16比特就是指把波形的振幅划为216即65536个等级,根据模拟信号的轻响把它划分到某个等级中去,就可以用数字来表示了。和采样精度一样,比特率越高,越能细致地反映乐曲的轻响变化。20比特就可以产生1048576个等级,表现交响乐这类动态十分大的音乐已经没有什么问题了。刚才提到了一个名词“动态”,它其实指的是一首乐曲最响和最轻的对比能达到多少,我们也常说“动态范围”,单位是dB,而动态范围和我们录音时采用的比特率是紧密结合在一起的,如果我们使用了一个很低的比特率,那么我们就只有很少的等级可以用来描述音响的强弱,我们当然就不能听到大幅度的强弱对比了。动态范围和比特率的关系是;比特率每增加1比特,动态范围就增加6dB。所以假如我们使用1比特录音,那么我们的动态范围就只有6dB,这样的音乐是不可能听的。16比特时,动态范围是96dB。这可以满足一般的需求了。20比特时,动态范围是120dB,对比再强烈的交响乐都可以应付自如了,表现音乐的强弱是绰绰有余了。发烧级的录音师还使用24比特,但是和采样精度一样,它不会比20比特有很明显的变化,理论上24比特可以做到144 dB的动态范围,但实际上是很难达到的,因为任何设备都不可避免会产生噪音,至少在现阶段24比特很难达到其预期效果。
音频格式
以下是常见音频文件格式的特点。
要在计算机内播放或是处理音频文件,也就是要对声音文件进行数、模转换,这个过程同样由采样和量化构成,人耳所能听到的声音,最低的频率是从20Hz起一直到最高频率20KHZ,20KHz以上人耳是听不到的,因此音频的最大带宽是20KHZ,故而采样速率需要介于40~50KHZ之间,而且对每个样本需要更多的量化比特数。音频数字化的标准是每个样本16位-96dB的信噪比,采用线性脉冲编码调制PCM,每一量化步长都具有相等的长度。在音频文件的制作中,正是采用这一标准。
CD格式:天簌
当今世界上音质最好的音频格式是什么?当然是CD了。因此要讲音频格式,CD自然是打头阵的先锋。在大多数播放软件的“打开文件类型”中,都可以看到*.cda格式,这就是CD音轨了。标准CD格式也就是44.1K的采样频率,速率88K/秒,16位量化位数,因为CD音轨可以说是近似无损的,因此它的声音基本上是忠于原声的,因此如果你如果是一个音响发烧友的话,CD是你的首选。它会让你感受到天籁之音。CD光盘可以在CD唱机中播放,也能用电脑里的各种播放软件来重放。一个CD音频文件是一个*.cda文件,这只是一个索引信息,并不是真正的包含声音信息,所以不论CD音乐的长短,在电脑上看到的“*.cda文件”都是44字节长。注意:不能直接的复制CD格式的*.cda文件到硬盘上播放,需要使用象EAC这样的抓音轨软件把CD格式的文件转换成WAV,这个转换过程如果光盘驱动器质量过关而且EAC的参数设置得当的话,可以说是基本上无损抓音频。推荐大家使用这种方法。
WAV:无损
是微软公司开发的一种声音文件格式,它符合 PIFFResource Interchange File Format 文件规范,用于保存WINDOWS平台的音频信息资源,被WINDOWS平台及其应用程序所支持。“*.WAV”格式支持MSADPCM、CCITT A LAW等多种压缩算法,支持多种音频位数、采样频率和声道,标准格式的WAV文件和CD格式一样,也是44.1K的采样频率,速率88K/秒,16位量化位数,看到了吧,WAV格式的声音文件质量和CD相差无几,也是目前PC机上广为流行的声音文件格式,几乎所有的音频编辑软件都“认识”WAV格式。
这里顺便提一下由苹果公司开发的AIFF(Audio Interchange File Format)格式和为UNIX系统开发的AU格式,它们都和和WAV非常相像,在大多数的音频编辑软件中也都支持它们这几种常见的音乐格式。
MP3:流行
MP3格式诞生于八十年代的德国,所谓的MP3也就是指的是MPEG标准中的音频部分,也就是MPEG音频层。根据压缩质量和编码处理的不同分为3层,分别对应“*.mp1"/“*.mp2”/“*.mp3”这3种声音文件。需要提醒大家注意的地方是:MPEG音频文件的压缩是一种有损压缩,MPEG3音频编码具有10:1~12:1的高压缩率,同时基本保持低音频部分不失真,但是牺牲了声音文件中12KHz到16KHz高音频这部分的质量来换取文件的尺寸,相同长度的音乐文件,用*.mp3格式来储存,一般只有*.wav文件的1/10,而音质要次于CD格式或WAV格式的声音文件。由于其文件尺寸小,音质好;所以在它问世之初还没有什么别的音频格式可以与之匹敌,因而为*.mp3格式的发展提供了良好的条件。直到现在,这种格式还是风靡一时,作为主流音频格式的地位难以被撼动。但是树大招风,MP3音乐的版权问题也一直是找不到办法解决,因为MP3没有版权保护技术,说白了也就是谁都可以用。
MP3格式压缩音乐的采样频率有很多种,可以用64Kbps或更低的采样频率节省空间,也可以用320Kbps的标准达到极高的音质。我们用装有Fraunhofer IIS Mpeg Lyaer3的 MP3编码器(现在效果最好的编码器)MusicMatch Jukebox 6.0在128Kbps的频率下编码一首3分钟的歌曲,得到2.82MB的MP3文件。采用缺省的CBR(固定采样频率)技术可以以固定的频率采样一首歌曲,而VBR(可变采样频率)则可以在音乐“忙”的时候加大采样的频率获取更高的音质,不过产生的MP3文件可能在某些播放器上无法播放。我们把VBR的级别设定成为与前面的CBR文件的音质基本一样,生成的VBR MP3文件为2.9MB。
MIDI:作曲家最爱
经常玩音乐的人应该常听到MIDI(Musical Instrument Digital Interface)这个词,MIDI允许数字合成器和其他设备交换数据。MID文件格式由MIDI继承而来。MID文件并不是一段录制好的声音,而是记录声音的信息,然后在告诉声卡如何再现音乐的一组指令。这样一个MIDI文件每存1分钟的音乐只用大约5~10KB。今天,MID文件主要用于原始乐器作品,流行歌曲的业余表演,游戏音轨以及电子贺卡等。*.mid文件重放的效果完全依赖声卡的档次。*.mid格式的最大用处是在电脑作曲领域。*.mid文件可以用作曲软件写出,也可以通过声卡的MIDI口把外接音序器演奏的乐曲输入电脑里,制成*.mid文件。
WMA:最具实力
WMA (Windows Media Audio) 格式是来自于微软的重量级选手,后台强硬,音质要强于MP3格式,更远胜于RA格式,它和日本YAMAHA公司开发的VQF格式一样,是以减少数据流量但保持音质的方法来达到比MP3压缩率更高的目的,WMA的压缩率一般都可以达到1:18左右,WMA的另一个优点是内容提供商可以通过DRM(Digital Rights Management)方案如Windows Media Rights Manager 7加入防拷贝保护。这种内置了版权保护技术可以限制播放时间和播放次数甚至于播放的机器等等,这对被盗版搅得焦头乱额的音乐公司来说可是一个福音,另外WMA还支持音频流(Stream)技术,适合在网络上在线播放,作为微软抢占网络音乐的开路先锋可以说是技术领先、风头强劲,更方便的是不用象MP3那样需要安装额外的播放器,而Windows操作系统和Windows Media Player的无缝捆绑让你只要安装了windows操作系统就可以直接播放WMA音乐,新版本的Windows Media Player7.0更是增加了直接把CD光盘转换为WMA声音格式的功能,在新出品的操作系统Windows XP中,WMA是默认的编码格式,大家知道Netscape的遭遇,现在“狼”又来了。WMA这种格式在录制时可以对音质进行调节。同一格式,音质好的可与CD媲美,压缩率较高的可用于网络广播。虽然现在网络上还不是很流行,但是在微软的大规模推广下已经是得到了越来越多站点的承认和大力支持,在网络音乐领域中直逼*.mp3,在网络广播方面,也正在瓜分Real打下的天下。因此,几乎所有的音频格式都感受到了WMA格式的压力。
RealAudio:流动旋律
RealAudio主要适用于在网络上的在线音乐欣赏,现在大多数的用户仍然在使用56Kbps或更低速率的Modem,所以典型的回放并非最好的音质。有的下载站点会提示你根据你的Modem速率选择最佳的Real文件。现在real的的文件格式主要有这么几种:有RA(RealAudio)、RM(RealMedia,RealAudio G2)、RMX(RealAudio Secured),还有更多。这些格式的特点是可以随网络带宽的不同而改变声音的质量,在保证大多数人听到流畅声音的前提下,令带宽较富裕的听众获得较好的音质。
近来随着网络带宽的普遍改善,Real公司正推出用于网络广播的、达到CD音质的格式。如果你的RealPlayer软件不能处理这种格式,它就会提醒你下载一个免费的升级包。许多音乐网站如 提供了歌曲的Real格式的试听版本。现在最新的版本是RealPlayer 9.0。
VQF:无人问津
雅马哈公司另一种格式是*.vqf,它的核心是减少数据流量但保持音质的方法来达到更高的压缩比,可以说技术上也是很先进的,但是由于宣传不力,这种格式难有用武之地。*.vqf可以用雅马哈的播放器播放。同时雅马哈也提供从*.wav文件转换到*.vqf文件的软件。 此文件缺少特点外加缺乏宣传,现在几乎已经宣布死刑了。
OGG:新生代音频格式
ogg格式完全开源,完全免费, 和mp3不相上下的新格式。
前途无量
时下的MP3支持格式最常见的是MP3和WMA。MP3由于是有损压缩,因此讲求采样率,一般是44.1KHZ。另外,还有比特率,即数据流,一般为8---320KBPS。在MP3编码时,还看看它是否支持可变比特率(VBR),现在出的MP3机大部分都支持,这样可以减小有效文件的体积。WMA则是微软力推的一种音频格式,相对来说要比MP3体积更小。
音频处理
一、音频媒体的数字化处理
随着计算机技术的发展,特别是海量存储设备和大容量内存在PC机上的实现,对音频媒体进行数字化处理便成为可能。数字化处理的核心是对音频信息的采样,通过对采集到的样本进行加工,达成各种效果,这是音频媒体数字化处理的基本含义。
二、音频媒体的基本处理
基本的音频数字化处理包括以下几种:
不同采样率、频率、通道数之间的变换和转换。其中变换只是简单地将其视为另一种格式,而转换通过重采样来进行,其中还可以根据需要采用插值算法以补偿失真。
针对音频数据本身进行的各种变换,如淡入、淡出、音量调节等。
通过数字滤波算法进行的变换,如高通、低通滤波器。
三、音频媒体的三维化处理
长期以来,计算机的研究者们一直低估了声音对人类在信息处理中的作用。当虚拟技术不断发展之时,人们就不再满足单调平面的声音,而更催向于具有空间感的三维声音效果。听觉通道可以与视觉通道同时工作,所以声音的三维化处理不仅可以表达出声音的空间信息,而且与视觉信息的多通道的结合可以创造出极为逼真的虚拟空间,这在未来的多媒体系统中是极为重要的。这也是在媒体处理方面的重要措施。
人类感知声源的位置的最基本的理论是双工理论,这种理论基于两种因素:两耳间声音的到达时间差和两耳间声音的强度差。时间差是由于距离的原因造成,当声音从正面传来,距离相等,所以没有时间差,但若偏右三度则到达右耳的时间就要比左耳约少三十微秒,而正是这三十微秒,使得我们辨别出了声源的位置。强度差是由于信号的衰减造成,信号的衰减是因为距离而自然产生的,或是因为人的头部遮挡,使声音衰减,产生了强度的差别,使得靠近声源一侧的耳朵听到的声音强度要大于另一耳。
基于双工理论,同样地,只要把一个普通的双声道音频在两个声道之间进行相互混合,便可以使普通双声道声音听起来具有三维音场的效果。这涉及到以下有关音场的两个概念:音场的宽度和深度。
音场的宽度利用时间差的原理完成,由于现在是对普通立体声音频进行扩展,所以音源的位置始终在音场的中间不变,这样就简化了我们的工作。要处理的就只有把两个声道的声音进行适当的延时和强度减弱后相互混合。由于这样的扩展是有局限性的,即延时不能太长,否则就会变为回音。
音场的深度利用强度差的原理完成,具体的表现形式是回声.音场越深,则回音的延时就越长.所以在回音的设置中应至少提供三个参数:回音的衰减率、回音的深度和回音之间的延时。同时,还应该提供用于设置另一通道混进来的声音深度的多少的选项。
舞台演出音响效果影响因素与调试技术论文
舞台演出音响效果影响因素与调试技术论文
在日常学习和工作生活中,大家肯定对论文都不陌生吧,论文是一种综合性的文体,通过论文可直接看出一个人的综合能力和专业基础。那么问题来了,到底应如何写一篇优秀的论文呢?以下是我为大家收集的舞台演出音响效果影响因素与调试技术论文,欢迎大家借鉴与参考,希望对大家有所帮助。
摘要:
本文首先对音响调试在舞台表演中的重要性做出分析阐述,随后深入探讨了舞台演出音响的调试技巧以及效果,希望可以为舞台演出工作更好的发展做出贡献,为相关工作人员提供文献参考。
关键词:
舞台演出;音响调试;技巧与效果;
引言:
对于舞台演出来说,在演出过程中所取得的效果在一定程度上会受到灯光、音响等方面的影响,只有在灯光、音响等方面条件的相互配合下,才能更好地完成一整场舞台表演工作,确保表演的效果。在舞台演出的过程中,需要对于音响的调试技巧以及效果等方面做出多方面考量,高质量完成其中各项工作,才能保证舞台表演效果更佳。下面本文将针对舞台演出音响的调试技巧与效果做出系统性的讨论分析。
一、音响调试在舞台表演中的重要性分析
在舞台表演的过程中,音响调试具有极为重要的意义。通过音响效果的渲染,可以有效调动现场的热烈气氛,大幅度提高现场观众的观赏热情,提升舞台中的表演效果,与观众产生情感上的共鸣[1]。在舞台表演的整个过程中,音响调试主要起到的效果就是现场的气氛调动,通过旋律的渲染,将观众的情绪带入到整个舞台的表演中,使观众与音响调试工作产生共鸣,沉浸在现场的气氛中,这样才能全方位提升舞台表演工作的成效,获得更好的舞台表演效果。在舞台表演的过程中,音响调试工作可以使观众的情绪随着剧情的变化而变化,这便要求在音响调试的过程中,要紧紧跟随着表演节奏的律动,尽最大可能来还原以及丰富舞台表演阶段人物的情感,从而提升艺术作品的感染力,让观众通过音乐的效果能够沉浸在舞台表演剧情中,走入人物的内心世界,这样才能最大限度的`增加舞台作品的艺术表现能力,确保舞台表演作品的真实性,并且使舞台表演工作所取得不错的效果。
二、舞台演出音响效果影响因素
(一)调音师专业素质
调音师应深刻理解音乐作品,根据音乐作品意蕴合理运用声音调试技术,如运用均衡器调节音色、运用延时器调节空间感。现今音响数码技术在调音师操作下全面突显歌唱者声线优势,调出良好舞台音响效果。调音师应强化自身声学艺术修养,要求调音师熟知各类乐器,并了解不同演员声线特征,经声音弱点弥补呈现最佳演出效果。此外,调音师应具备较强心理素质,逐渐提升情绪调节能力,以便灵活应对舞台演出应急情况,使自身音乐品位和鉴赏水平大幅提高。
(二)音响设备组合水平
时代进步的同时,观众对舞台音响效果提出较高要求,站在受众角度来分析,既要满足受众视觉需要,又要带来良好听觉感受。基于此,应提高音响设备组合的专业化水平,在音响设备配置、麦克风与话筒位置调节、音响位置摆放、功放使用等方面保证专业性。音响设备完美组合,能够推动舞台表演情节,烘托舞台氛围,进而调动表演者热情,提高受众满意度。
(三)舞台环境与音响融合
舞台演出音响效果受舞台环境与音响融合要素影响较大,具体来说,测量人员根据舞台场地差异分别准备音响调试工作,测量内容包括声场均匀度、混响时段、传声增益等,在此基础上调试音响,直到音响效果达到预期要求。规范操作舞台现场音响设备,保证音响设计效果和演出效果和谐性,使受众音乐欣赏需求得到满足。紧密配合音响调试和灯光变化环节,以期呈现多样化舞台表演效果,并加深受众欣赏印象。
三、舞台演出音响的调试技巧与效果
(一)舞台音响调试过程中避免出现啸叫的技巧分析
针对于舞台表演来说,在表演的过程当中,若是音响的摆放位置不佳便有可能会致使印象发生直接或间接反馈,在这一过程当中,一旦某段音频点位皆达到一定强度时,系统反馈便能够根据实际情况相应形成,由此可见,这一音频点位之上的自己会相应形成,这便是通常所讲的音响啸叫。在一般的情况下,频点出现最多的区域便是中高频段,这种情况会严重影响到演出的正常进行,所以在舞台表演的过程中,需要尽量防止啸叫情况的发生。在此过程中,音响摆放位置需要着重注意,在将其放置于表演区域之前,应将话筒使用范围放置于音响后方,需要着重注意的是,无线领夹话筒在使用的过程中比较容易产生自激现象,所以在使用的过程中需要尽可能保证话筒与音响之间的距离。在确定演出的内容之后,还应该将话筒进行编号,之后进行对应的标记,确认话筒相对应的调音台的哪一路,这样可以有效防止在表演的过程中产生啸叫的现象[2]。还要保证在舞台表演过程之前,周边设备的功率放大器调试良好,随后将不同的声源的输入调整到适合的音量,然后从调音台进行输出。在正式开始之前,还需要进行试音并且对于无线话筒是否产生飘频等方面的情况做出测试。
(二)音响设备的选择
舞台表演开始之前,还需要对于音响设备进行选择。通过音响设备,能够有效提升舞台演出过程的魅力,音响设备的专业配置能够将表演效果切实呈现与观众眼前,通常来讲,拾音设备、调音台、音源设备、功率放大器、音箱、线组等设备是一套完整舞台表演工程系统所需具备的全部条件,对于摆放音响设备、调试、音箱等摆放位置都会造成不同的观看效果,也能引领观众感受不同类型的情绪,所以为了在舞台表演的过程中取得更好的效果,便需要更加注重对于音响设备的选择,并且按照实际舞台环境对音响相关展开判断,在发现问题后对其进行调整,如此才能够令最具真实性与震撼性的表演效果呈现于观众眼前,表露出表演者的真情实感,这样才能有效提升舞台表演工作的效果。
(三)传声器的选择和应用
若想要全方位完善舞台表演工作的效果,还需要选择较好传声器以及应用等方面工作。在整个的表演工程中,传声器是其中比较重要的一环,其主要的作用便是接收人声、乐器声及其他外界声音,并且将声信号转化成为电信号,之后这个信号在电器设备中传递,通过各种音响设备进行传递,从而使观众能够清楚听到表演者的声音[3]。在通常的舞台表演过程中,应用范围比较广的便是电容传声器,在应用的过程当中只需要对传声器进行音质的补偿即可,便能够达到所需效果,在通常情况下,有线、无线传声器等皆属于传输器的一种,无线传声器通常在主持人、演艺者当中受到广泛应用,在使用过程当中,需在声音接收区域防治防风罩,从而令传声器发生喷麦或受到风力影响这一情况有效避免。面对具备较为激烈、震动性较强等特点的乐曲,应对表演者与音响距离过近这一情况严加防治,二者距离一旦缩减到一定程度便会产生巨大的回授,从而导致舞台效果受到极其强烈的影响,胸麦或耳麦则常见于小品与话剧演员当中,通过这样的方式可以为演员的表演工作提供更大的便利,让观众体验到更好的表演效果。
(四)舞台表演音响调试中避免噪声源的技巧分析
在舞台演出的过程中,噪声源便是其中一项影响因素。针对于噪声来说,是在演出的过程中一种无关紧要的声音,这种声音在表演的过程中又不可避免,因此只能尽可能减弱,使其不影响舞台整体演出的效果。从实际来说,噪音是指从音箱发出的,也是观众不希望听到的而又听到的声音,在一般情况下有这几种原因。第一,在扩声系统中的音响设备固有的本底噪声。按照目前的科技发展水平,现阶段只能通过相应的措施对其进行减弱,而无法从根本上消除。为了有效减少表演过程中的本底噪声,还需在音响设备中选用信噪比较高的技术指标,尽可能采取措施以降低噪声对于表演的影响;第二,在通常情况当中,发生扩声系统音响设备铝箔电容原件失去效果或因老化导致电容量减少这一情况便会导致交流电流生产生。除此之外,设备连接插件若是发生接触不良或损坏时也会导致低频噪音产生[4]。因此,需对设备展开定期检修与维护,在检修维护过程当中一旦发现存有故障需立即对其加以排除。从而全面保证舞台表演的效果;第三,可控硅也会对音响设备产生干扰。特别是在演出中调光时可控硅会生产高次谐波干扰音响设备所产生的“咝咝”声。在实际的使用过程中,为了有效改善上文所提到产生的干扰的情况,可采用灯光设备和音响设备用不同的变压器分别供电,通过变压器内阻的耦合,将硅柜至灯具的供电线路进行屏蔽,从而全方位降低噪声对于舞台表演效果的影响。
(五)舞台表演音箱的布置技巧分析
针对于舞台表演来说,音箱的布置也是中一个极为重要的环节,室外扩音与室内扩音两种系统皆属于音箱声场布置当中,室外扩声系统主要用于诸如体育场、公园、广场、露天剧院等表演场所,在使用过程当中,应首先选取用于较大功率容量的音箱,并结合实际情况对其输入功率适宜增加,并且需要对其分布与安装高度严格注意[5]。而设计哦么偶扩音系统主要在扩散声场当中较为常见,在对其使用过程当中,不仅应依照室外扩音处理方式进行处理,还需对室内混响声综合利用加以注意、房间增益对其声音反馈的抑制有着极大影响。在实际当中不论是室内场所亦或室外场所,皆应根据实际场地调教对音响位置展开不知,位置不能过低,并且必须放置于舞台两侧较为靠前的位置之上,音响放置位置一旦过低,便极易会发生被诸多观众加以人体吸声这一情况,进而导致折射吸声这一显现发生在舞台上,此类情况为导致音响中高频段出现较大损害。在选择扩音系统时,应首先选择拥有较大储备功率的音响,此种音响能够令声压等级成倍增加。站在集中布置与分区域不知系统的江都上来看,同时且不同位置工作的音响数量应严格控制在最少这一范围之内,这一方式不仅行之有效的防止梳状滤波器效应产生,也能够令由于因时间差较大而导致观众耳中声音不清晰或回声这一情况大幅度减少。
四、结束语
综上所述,为了全方位提升舞台表演工作的效果,需要细化考量现场音响的调试工作,掌握音响调试的技巧,这样才能全方位保证舞台表演工作的质量,让观众感受到更加优质的舞台表演效果,本文通过分析阐述的方式分析了音响调试的技巧与效果,希望可以为舞台表演工作的优化贡献出绵薄之力。
参考文献
[1]陈炳江.探究如何利用舞台音响提升舞台艺术层次[J].戏剧之家,2017(15):59-59.
[2]庞志锋.分析舞台音响效果现场调试的实践与探索[J].大众文艺,2018(2):221.
[3]周远.探析演出中舞台音响的调试技巧与效果关系[J].数码世界,2018(6):403-404.
[4]邵娟娟.浅析舞台音响效果的艺术设计[J].数码设计,2017(7):199-200.
[5]严坤贤.利用舞台音响提升舞台艺术层次的路径析探[J].戏剧之家,2019(13):142,144.
关于声音的科技小论文
音乐是美好的,音乐是神奇的,一首动人心扉的音乐,能唤起人们甜蜜的回忆,能奇迹般地给人以生活的勇气和奋进的力量。而人们常常把节奏比作是音乐的脉搏,也就是说,节奏是音乐的生命。本文对节奏与节拍、声音、感觉、律动、速度等五个方面的关系进行了论述,并对一些谱例进行分析,强调了节奏在音乐中的重要作用及掌握好节奏的重要性。
懂得音乐的人常常不无根据地把音乐作品的节奏比作是音乐的脉搏,换句话说也就是节奏是音乐的生命。我觉得人们这样的比喻是恰好不过的。他们不把节奏和钟表的滴答声相比,而是和脉搏相比,是有理由的。在我们生命存在的每时每刻,我们的脉搏都在跳动,每个健康的人脉搏的跳动是很均匀的,在心绪稳定的情况下,基本上保持在七十次上下,当兴奋一些时,跳得便略快一些,安静时,则跳的慢一些,这些正常的伸缩都是合理的。如果基本次数是一分钟跳七十次,忽然在几秒种之内变成了九十次,一百次,忽然又掉到五十次,六十次,若出现这样的变化,那一定是心脏出了问题了。音乐节奏不可能像机器一样地纹丝不变。一首奏鸣曲,一个乐章虽有一个基本速度,但在欢快时,也许稍稍加快了一点,抒情的地方也许要稍稍放慢一些,但是基本速度不能改变,从整体感觉上,速度必须是统一的,这样,乐曲才能完整。
节奏和节拍方面的若干普遍的缺点,使人们认为节奏节拍可分为较难的和较易的。在这里,首先明确是节奏与节拍是不同的。节拍包含在节奏的概念中。从人们把节奏的比喻上就可以看出,他们并没有把节奏和摆钟的摆动,钟表的滴答声和节拍器的敲打声上比,其实这些都是节拍,并不是节奏。在音乐的领域里,节奏和节拍最为吻合的情况发生在进行曲中,因为士兵们的步伐最接近节拍的机械而准确的敲击,在音乐作品表演中,节奏应当更接近于节后,而不是接近于无节奏,应当更像健康人的脉搏。
关于一些基本常用的节拍,如四四,四三,八六,八三等。我们首先要养成数拍子,打拍子的习惯,需要的时候也可以借助一下节拍器来帮助没有数拍子习惯的学生。节拍器的使用只是借助一下外力,从根本上来说,还要我们自己有拍子准确的概念和感觉。
一、对于拍子的错误,我们要从实际练习和弹奏中常常会影响拍子准确的情况:
1、乐曲中的一些的音。往往没弹够其时值,便匆匆接下去了,这样就会出现缺拍子的现象。
下面这一段是八六拍,每小节六个八分音我们可以数为:一二三博士三,即每小节分为两个节奏组,每组三个八分音符,即三拍。问题常出现在第二与第四小节的第二组拍子上,此外都是一个加符号的四分音符,在以八分音符为一拍的八六拍中,符点四分音符应算三拍。而不少学生弹到这里,都只耽搁了两个八分音符的时间,就提前接下去弹了。这样,这一小节就变成了五拍,前半小节还是三拍,后半小节变成了两拍。导致的后果是节奏不均衡,好像一句话没有说完,不喘气地又抢着说下去了,听起来非常不舒服。
2、对休止符要重视。在有休止符的地方视而不见,一到休止符,就把拍子抢过去了,匆匆接着往下弹,这样节拍就错了。休止符都是占拍子的,还都要数拍子,这是从最基本的和基础的节拍角度来说的。休止符是音乐和节奏的重要组成部分,对休止符的忽略必将歪曲音乐和节奏。
这一段谱例最后一小节第三拍是休止符,这一小节一个二分音符占去两拍,休止符占去一拍,加起来正好三拍,但有的同学在弹完两拍的音后就紧接下一小节去了。由于这一小节正好在这一乐段的末尾,虽只是少停了一拍,并没有弹错音,但是却影响了全曲的完整性,成为一个无法弥补的缺憾。
3、还有一种常见的弹的不准确的情况,其实它和节奏有间接关系。大家都知道,刚开始学琴的学生往往在加强音响时把速度也加快,减弱音响时速度也减慢,他们把渐强、渐快、渐弱和渐慢的概念等同起来。在音乐实践中的许许多多的“渐强但不渐快” 的情况,也同样有许多“渐强并且渐快”的情况。在大多数情况下,作曲家明确地标出是否应当渐快,但有时他们并不标出,忽而这两种情况的意义是截然不同的。所以应当特别小心,不要弄错。
4、延长记号也必须加以注意。在乐曲中,最容易确定的是渐慢之后的延长记号的时值。只要在思想上把延长记号的那几个长音继续弹渐慢即可。也就是说,用不着增加时值的倍数,这样,延长就成为在它之前的渐慢或更慢的合科逻辑的结束。这中是延长的一种类型。如果延长突然出现,没有先前的减慢或加速,那就应当按基本的,正常的速度来数拍子。只不过要视情况而把写在延长记号下的时值增加一倍,二倍,甚至三倍。重要的是应当区别延长记号在作品中作曲结构上所处的地位。这个“分水岭”是重要的还是不重要的,也就是说它和曲式中的主要分界处相吻合,还是和次要分界处相吻合。
延长记号并不是无关紧要的,不仅延长记号如此,多乐章乐曲中各个乐章之间的间隔也是这样。记得苏联的涅高兹说过:无论是寂静、间歇、停顿或休止都应当是听的清楚的,它们也是音乐。“对音乐的聆听”一秒钟也不能中止!只有这样,一切才会有说服力并且是真实的。在思想上把这些间歇,停顿指挥出来,也是很有用的。
上一篇:软件论文查重吗
下一篇:土建参考文献期刊