边缘检测论文
边缘检测论文
以下答复杜绝机译,请予以关注。
Edges characterize boundaries and are therefore a problem of fundamental importance in image processing. 边缘表征边界,而且因此在图像处理中成为一个具有根本重要性的问题。Edges in images are areas with strong intensity contrasts ,a jump in intensity from one pixel to the next.图像中的边界是具有强烈光强反差的区域,即光强从一个像素到下一个像素的跳跃。 Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. 边缘检测一个图像大大减少了数据量,而且滤除了无用的信息,同时则保留了图像中重要的结构性质。This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.这在我的Sobel和Laplace边缘检测论文中也做了说明,但是我只想再次强调一点,就是我为什么要检测边缘。
一篇图像边缘检测英文文献的翻译
Canny边缘检测教程
Author: Bill Green (2002) 作者:比尔绿色( 2002 )
HOME EMAIL 主页 电子邮件
This tutorial assumes the reader: 本教程假定读者:
(1) Knows how to develop source code to read raster data ( 1 )知道如何发展的源代码阅读栅格数据
(2) Has already read my Sobel edge detection tutorial ( 2 )已经阅读我Sobel边缘检测教程
This tutorial will teach you how to:本教程将教你如何:
(1) Implement the Canny edge detection algorithm. ( 1 )实施Canny边缘检测算法。
INTRODUCTION 导言
Edges characterize boundaries and are therefore a problem of fundamental importance in image processing.边的特点,因此,边界问题,根本的重要性在图像处理中。 Edges in images are areas with strong intensity contrasts – a jump in intensity from one pixel to the next.在图像的边缘地区,强度强的反差-一个跳转的强度从一个像素的下一个。 Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么你会要检测的边缘。
The Canny edge detection algorithm is known to many as the optimal edge detector. Canny's intentions were to enhance the many edge detectors already out at the time he started his work.的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。坎尼的意图是要加强许多先进的探测器已经在的时候,他开始他的工作。 He was very successful in achieving his goal and his ideas and methods can be found in his paper, " A Computational Approach to Edge Detection ".他很成功地实现他的目标和他的思想和方法中可以找到他的论文“ 计算方法的边缘检测 ” 。 In his paper, he followed a list of criteria to improve current methods of edge detection.在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。 The first and most obvious is low error rate.第一个也是最明显的错误率低。 It is important that edges occuring in images should not be missed and that there be NO responses to non-edges.重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。 The second criterion is that the edge points be well localized. In other words, the distance between the edge pixels as found by the detector and the actual edge is to be at a minimum.第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。 A third criterion is to have only one response to a single edge.第三个标准是,只有一个回应单一优势。 This was implemented because the first 2 were not substantial enough to completely eliminate the possibility of multiple responses to an edge.这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。
Based on these criteria, the canny edge detector first smoothes the image to eliminate and noise.根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。 It then finds the image gradient to highlight regions with high spatial derivatives.然后认定的形象,以突出地区梯度高空间衍生物。 The algorithm then tracks along these regions and suppresses any pixel that is not at the maximum (nonmaximum suppression).该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。 The gradient array is now further reduced by hysteresis.梯度阵列现在进一步减少滞后。 Hysteresis is used to track along the remaining pixels that have not been suppressed.磁滞用来追踪沿其余像素,但没有压制。 Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made a nonedge).磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。 If the magnitude is above the high threshold, it is made an edge.如果是规模以上的高门槛,这是一个优势。 And if the magnitude is between the 2 thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient above T2.如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。
Step 1 第1步
In order to implement the canny edge detector algorithm, a series of steps must be followed.为了落实Canny边缘检测算法,一系列步骤必须遵循。 The first step is to filter out any noise in the original image before trying to locate and detect any edges.第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。 And because the Gaussian filter can be computed using a simple mask, it is used exclusively in the Canny algorithm.而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。 Once a suitable mask has been calculated, the Gaussian smoothing can be performed using standard convolution methods.一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。 A convolution mask is usually much smaller than the actual image.阿卷积掩模通常远远小于实际的形象。 As a result, the mask is slid over the image, manipulating a square of pixels at a time. The larger the width of the Gaussian mask, the lower is the detector's sensitivity to noise .因此,该面具是下跌的形象,操纵一个正方形的像素上。 较大的宽度高斯面具,较低的是探测器的敏感性噪音 。 The localization error in the detected edges also increases slightly as the Gaussian width is increased.定位误差检测边缘也略有增加的高斯宽度增加。 The Gaussian mask used in my implementation is shown below.高斯遮罩使用我在执行下面显示。
Step 2 第2步
After smoothing the image and eliminating the noise, the next step is to find the edge strength by taking the gradient of the image.经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。 The Sobel operator performs a 2-D spatial gradient measurement on an image.的Sobel算子进行二维空间梯度测量的形象。 Then, the approximate absolute gradient magnitude (edge strength) at each point can be found.然后,大约绝对梯度幅度(边缘强度)各点可以找到。 The Sobel operator uses a pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。 They are shown below:它们如下所示:
The magnitude, or EDGE STRENGTH, of the gradient is then approximated using the formula:的规模,或EDGE强度,梯度近似然后使用公式:
|G| = |Gx| + |Gy| | G | = | GX的| + |戈瑞|
Step 3 第3步
Finding the edge direction is trivial once the gradient in the x and y directions are known.寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。 However, you will generate an error whenever sumX is equal to zero.然而,你会产生错误时sumX等于零。 So in the code there has to be a restriction set whenever this takes place.因此,在代码中必须有一个限制规定只要发生。 Whenever the gradient in the x direction is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on what the value of the gradient in the y-direction is equal to.每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。 If GY has a value of zero, the edge direction will equal 0 degrees.如果青的值为零,边缘方向将等于0度。 Otherwise the edge direction will equal 90 degrees.否则边缘方向将等于90度。 The formula for finding the edge direction is just:公式为寻找边缘方向是:
theta = invtan (Gy / Gx)论旨= invtan (戈瑞/ GX的)
Step 4 第4步
Once the edge direction is known, the next step is to relate the edge direction to a direction that can be traced in an image.一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。 So if the pixels of a 5x5 image are aligned as follows:因此,如果一个5x5像素图像对齐如下:
x x x x x x x x x x
x x x x x x x x x x
x x a x x x x 1 x x
x x x x x x x x x x
x x x x x x x x x x
Then, it can be seen by looking at pixel " a ", there are only four possible directions when describing the surrounding pixels - 0 degrees (in the horizontal direction), 45 degrees (along the positive diagonal), 90 degrees (in the vertical direction), or 135 degrees (along the negative diagonal).然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度 (水平方向) , 45度 (沿积极对角线) , 90度 (垂直方向) ,或135度 (沿负对角线) 。 So now the edge orientation has to be resolved into one of these four directions depending on which direction it is closest to (eg if the orientation angle is found to be 3 degrees, make it zero degrees).所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。 Think of this as taking a semicircle and dividing it into 5 regions.认为这是采取了半圆形和分裂成5个地区。
Therefore, any edge direction falling within the yellow range (0 to 22.5 & 157.5 to 180 degrees) is set to 0 degrees.因此,任何先进的方向范围内的黄色范围 ( 0至5月22日& 157.5至180度)设置为0度。 Any edge direction falling in the green range (22.5 to 67.5 degrees) is set to 45 degrees. Any edge direction falling in the blue range (67.5 to 112.5 degrees) is set to 90 degrees.任何先进的方向下滑的绿色范围 ( 22.5至67.5度)设置为45度。任何优势的方向下滑的蓝色范围 ( 67.5至112.5度)设置为90度。 And finally, any edge direction falling within the red range (112.5 to 157.5 degrees) is set to 135 degrees.最后,任何先进的方向范围内的红色范围 ( 112.5到157.5度)设置为135度。
Step 5 第5步
After the edge directions are known, nonmaximum suppression now has to be applied. Nonmaximum suppression is used to trace along the edge in the edge direction and suppress any pixel value (sets it equal to 0) that is not considered to be an edge. This will give a thin line in the output image.在被称为边缘方向, nonmaximum抑制现在必须适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将给细线的输出图像。
Step 6 第6步
Finally, hysteresis is used as a means of eliminating streaking.最后,滞后是用来作为一种手段,消除条纹。 Streaking is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold.裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。 If a single threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be instances where the edge dips below the threshold.如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将有情况下,边逢低低于阈值。 Equally it will also extend above the threshold making an edge look like a dashed line.同样它也将延长超过阈值决策的优势看起来像一个虚线。 To avoid this, hysteresis uses 2 thresholds, a high and a low.为了避免这种情况,滞后使用2的门槛,高和低。 Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately.任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。 Then, any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels.然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。 If you think of following an edge, you need a gradient of T2 to start but you don't stop till you hit a gradient below T1.如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。
You are visitor number: 你是第位访客人数:
图像边缘检测算法的研究与实现 的开题报告
摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。
关键词 DM642;Sobel算子;程序优化;图像边缘检测
1 引言
边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。
近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。
2 Sobel边缘检测算法的改进
经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。
2.1 图像加权中值滤波
由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。
2.2 增加方向模板
除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。
2.3 边缘的定位及噪声的去除
通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。
图1 边缘检测8个方向模板
图2 系统结构图
3 基于TMS320DM642的图像处理的设计及算法优化
3.1 TMS320DM642功能模块及图像处理系统的硬件结构
DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。
TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相环12倍频后产生600 MHz的工作频率。DM642采用了2级缓存结构(L1和L2),大幅度提高了程序的运行性能。片内64位的EMIF(External Memory Interface)接口可以与SDRAM、Flash等存储器件无缝连接,极大地方便了大量数据的搬移。更重要的是,作为一款专用视频处理芯片,DM642包括了3个专用的视频端口(VP0~VP2),用于接收和处理视频,提高了整个系统的性能。此外,DM642自带的EMAC口以及从EMIF 口扩展出来的ATA口,还为处理完成后产生的海量数据提供了存储通道。
本系统是采用瑞泰公司开发的基于TI TMS320DM642 DSP芯片的评估开发板——ICETEK DM642 PCI。在ICETEK DM642 PCI评估板中将硬件平台分为五个部分,分别是视频采集、数据存储、图像处理、结果显示和电源管理。视频采集部分采用模拟PAL制摄像头,配合高精度视频A/D转换器得到数字图像。基于DSP的视频采集要求对视频信号具备采集,实时显示、对图像的处理和分析能力。视频A/D采样电路—SAA7115与视频端口0或1相连,实现视频的实时采集功能。视频D/A电路—SAA7105与视频口2相连,视频输出信号支持RGB、HD合成视频、PAL/NTSC复合视频和S端子视频信号。通过I2C总线对SAA7105的内部寄存器编程实现不同输出。
整个系统过程由三个部分组成:图像采集—边缘处理—输出显示,如图2所示。摄像头采集的视频信号经视频编码器SAA7115数字化,DM642通过I2C总线对SAA7115进行参数配置。在SAA7115内部进行一系列的处理和变换后形成的数字视频数据流,输入到核心处理单元DM642。经过DSP处理后的数字视频再经过SAA7105视频编码器进行D/A转换后在显示器上显示最终处理结果。
3.2 图像处理的软件设计和算法优化的实现
由于在改进Sobel边缘检测算子性能的同时,也相对增加了计算量,尤其是方向模板的增加,每个像素点均由原来的2次卷积运算增加为8次卷积运算,其实时性大大减弱。为了改进上述的不足,在深入研究处理系统和算法后,针对TMS320DM642的硬件结构特点,研究适合在TMS320DM642中高效运行的Sobel改进算法,满足实时处理的要求。整个程序的编写和调试按照C6000软件开发流程进行,流程分为:产生C代码、优化C代码和编写线性汇编程序3个阶段。使用的工具是TI的集成开发环境CCS。在CCS下,可对软件进行编辑、编译、调试、代码性能测试等工作。在使用C6000编译器开发和优化C代码时[7-8],对C代码中低效率和需要反复调用的函数需用线性汇编重新编写,再用汇编优化器优化。整个系统的控制以及数字图像处理是用C程序实现,大部分软件设计采用C程序实现,这无疑提高了程序的可读性和可移植性,而汇编程序主要是实现DM642的各部分初始化。其边缘检测优化算法在DM642中的实现步骤具体如下:
S1:根据DM642的硬件结构要求和控制寄存器设置,初始化系统并编写实现边缘检测算法的C程序。
S2:借助CCS开发环境的优化工具如Profiler等产生.OUT文件。
S3:根据产生的附件文件如.MAP文件,分析优化结果及源程序结构,进一步改进源程序和优化方法。
S4:使用CCS中调试、链接、运行等工具,再生成.OUT可执行文件。
S5:运行程序,如果满足要求则停止;否则重复步骤S2~S4直至满足使用要求。
4 实验结果
本文以Lena图像为例根据上述的硬件环境和算法实现的原理和方法,图4~图6分别给出了在该系统下采集的视频Lena图像及使用边缘检测算子和改进后处理的结果。由实验结果可以看出,在该系统下能实时完成视频图像的处理,并且给出的边缘检测算子能较好的消除噪声的影响,边缘轮廓清晰。该算法不仅能抑制图像中大部分噪声和虚假边缘,还保证了较高的边缘点位精度。
图4 Lena原始图像 图5 传统Sobel算子 图6 改进Sobel算子
5 总结
本文实现了在TMS320DM642评估板上用改进的Sobel算子对实时图像进行边缘检测,无延迟地得到边缘图像。边缘检测效果较好,既提高了图像检测的精度又满足了实时性的要求。从检测结果看,利用该改进后的算子在边缘精确定位、边缘提取都达到了很好的效果,且抗噪声能力强,并为目标跟踪、无接触式检测、自动驾驶、视频监控等领域的应用提供了坚实的基础。
参考文献
[1] 王磊等. 基于Sobel理论的边缘提取改善方法[J].中国图像图形学报,2005.10
[2] 陈宏席. 基于保持平滑滤波的Sobel算子边缘检测.兰州交通大学学报,2006,25(1):86—90
[3] 熊伟. 基于TMS320DM642的多路视频采集处理板卡硬件设计与实现[ M]. 国外电子元器件,2006
[4] 朱立.一种具有抗噪声干扰的图像边缘提取算法的研究[J].电子技术应用.2004,25(1)
[5] 刘松涛,周晓东.基于TMS320C6201的实时图像处理系统[J].计算机工程,2005(7):17—23
[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003
[7] TMS320C6x Optimizing C Compiler User’s Guide’ TEXAS INSTRUMENTS”,2002
[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001
高分求边缘检测算子源代码以及毕业论文!!!
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。
图像分割技术论文
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
上一篇:论文答辩样板视频
下一篇:榆树期刊论文查重