条件概率毕业论文
条件概率毕业论文
概率论在生活中所涉及的领域相当广泛,本文通过对生活中几个概率问题:事件概率与试验的先后次序的关系、疾病诊断中概率,赌博中的概率的分析,合理解释了其中的原因,也为我们日常生活提供启示.作者: 王洪春 作者单位: 重庆师范大学数学与计算机科学学院,重庆,400047 刊名: 世界华商经济年鉴·高校教育研究 英文刊名: WORLD CHINESE ENTREPRENEUR ECONOMIC YEARBOOK·GAOXIAO JIAOYU YANJIU 年,卷(期): 2009 ""(6) 分类号: TL364+.5 关键词: 概率 赌博 公平度 机标分类号: O21 F23 机标关键词: 日常生活事件概率疾病诊断合理解释概率问题概率论试验启示关系分析赌博次序 基金项目: 重庆市教委科学技术研究项目 DOI: 参考文献(8条) 生活中的概率 祝国强.杭国明.腾海英 数理诊断中的Bayes条件概率模型 [期刊论文] -数理医药学杂志2005(03) 郭静.徐勇勇.何大卫 临床实验中的条件概率期中分析方法 [期刊论文] -中国卫生统计2001(05) 复旦大学 概率论 1986 张琦 赌本大小与输赢的关系 2000(03) 温忠麟 博彩的公平度 1999(03) 王妍 概率统计在实际问题中的应用举例 [期刊论文] -中国传媒大学学报(自然科学版)2007(01) 孙景艳 多元统计在水资源利用方面的应用 [期刊论文] -重庆师范大学学报(自然科学版)2007(02)
自学考试数学教育专业毕业论文题目
1. 生活中处处有数学
2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径
4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养
6、谈小学、初中数学的衔接 7、容斥原理及其应用
8、从高中课程改革看大学课程改革 9、信息化教育问题
10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动
12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索
14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值
16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解
18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识
20、关于探索性命题的若干问题 21、数学实验教学模式探究
22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略
24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神
26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维
28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质
30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见
32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用
34. 谈谈类比法 35. 数学教学设计随笔
36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题
38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识
40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析
42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用
44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习
46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便
48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识
50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改
52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力
54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用
56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则
58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考
60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学
62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计
64. 注重创新性试题的设计
以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题
1.关于数学教学目的问题;
2.关于数学思维问题;
3.关于数学教学方法问题;
4.关于学习的迁移问题;
5.关于数学教学的评价问题;
6.关于熟练技能与深刻理解的关系问题;
7.数学的实用功能与数学的文化教育功能相关关系的研究;
8.数学教学的德育功能研究;
9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用;
10.数学发现法(探究式)教学可实施的基本内容、对象和范围;
11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究;
12.中学生数学学习习惯与学习方法的调查分析;
13.诊断和鉴别数学学习困难学生的方法探析;
14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究;
15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究;
16.教法与学法的双向作用研究;
17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究;
18.数学新课程实施中转变学生学习方式的途径;
19.学生数学观念或数学意识的形成机制和培养途径的实验研究;
20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。
21.中学数学教育的地位与作用。
22.形象思维与数学教学。
23.直观思维与数学教学。
24.非智力因素与数学学习。
25.数学美与数学教学。
26.在数学教学中怎样培养学生的数学能力。
27.数学作图及图形的教学。
28.数学解题错误的探讨。
29.怎样配备数学习题。
30.数学解题常用的一些思维方法。
31.怎样提高学生的自学能力。
32.怎样培养学生学习数学的兴趣。
二、《概率论与数理统计》参考题
1.有关概率论发展的历史。
2.随机性与必然的数学基础与认识。
3.随机变量的直观认识与数学描述。
4.古典概率型的计算技巧。
5.几何概率型的分析处理。
6.有关概率论之介绍。
7.概率论中数学期望概念。
8.利用期望概率统一引人矩阵概率。
9.期望概率在概率论中的地位和作用。
10.特征函数与因数在概率论中的作用及其含义。
11.关于独立性。
12.大数定律与中心定律之含义。
13.大数定律与概率的统计定义。
14.有关概率不等式。
15.条件概率与条件期望。
16.Bayes公式的扩展。
17.概率在其它学科中的应用。
18.其它数学分支在概率论中的应用。
19.概率题目计算的多解性。
20.数理统计概念。
21.数理统计的过去与现在。
22.数理统计在客观现实中的作用。
23.假设检验的实质与作用。
24.参数估计的作用与处理方法。
25.数理统计在你自己工作实践中的应用(实例)。
26.学习概率统计的实践与体会。
27.概率统计中的错题分析。
28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。
29.利用回归分析方法处理问题。
30.回归分析理论中存在的问题与解决的设想。
三、《微分几何》参考题
1.空间曲线的基本公式及其在曲线论中的作用。
2.渐近线与渐缩线。
3.空间曲线弯曲性的研究。
4.曲率与挠率。
5.曲面的第一基本形式在曲面论中的作用。
6.等矩映象与曲面的内在几何。
7.曲面的第二基本形式在曲面论中的作用。
8.曲面上的曲率线,渐近曲线,测地线。
9.曲面的内在几何与外在几何的相依性。
10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。
11.高斯曲率的意义与作用。
12.等矩映射与等角映射及等积映射的关系。
13.高斯与波涅公式的意义与作用。
14.伪球面与罗氏几何。
四、《复变函数》参考题
1.复变函数在一点解析的等价定义。
2.幅角多值性所导出的问题汇集。
3.小结复变函数的积分。
4.解析与调和函数的关系。
5.漫谈复数∞。
6.0,∞与函数
7.多值函数单值分支的表达与计算。
8.分式线性函数全体对乘法——函数复合——构成群。
9.∞和∞邻域的引进使扩充复平面的为紧空间。
lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。
11.谈复数的比较大小问题。
五、《实变函数》参考题,
1.关于积分号下取极限(积分与极限交换次序问题)。
①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。
②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。
③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。
2.关于微积分基本定理(牛顿一菜布尼兹公式)
①什么是微积分基本定理,它的重要意义在哪里?
②黎曼积分情形,相应定理的条件是什么?有什么不足之处?
③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题?
④应用例题。
3.关于绝对连续函数。
①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。
②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。
③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。
④绝对连续函数全体组成线性空间。
4.关于勒贝格积分。
①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处?
②说明勒贝格积分在几何上仍是“曲边梯形的面积”。
③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。
④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。
⑤勒贝格积分有许多重要性质,带来一些什么好处?
5.关于测度。
①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。
②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。
③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。
6.关于可测函数。
①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。
②全体可测函数构成线性空间,构成环。
③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。
7.关于可测函数列的各种收敛概念。
①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。
②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。
8.关于点集上的连续函数。
①定义,性质。
②与数学分析中讲的连续的关系。
9.集合论和点集论的方法在实变函数论中的意义。
从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。
以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。
您好,我想问问您的一个回答的论文题目,百度知道上的问题是:(以下补充)谢谢!
摘 要 研究了沪深300指数日收益率时间序列,经检验其具有马氏性,并建立了马尔可夫链模型。取交易日分时数据,根据分时数据确定状态初始概率分布,通过一步转移概率矩阵对下一交易日的日收益率进行了预测。对该模型分析和计算,得出其为有限状态的不可约、非周期马尔可夫链,求解其平稳分布,从而得到沪深300指数日收益率概率分布。并预测了沪深300指数上涨或下跌的概率,可为投资管理提供参考。
关键词 马尔可夫链模型 沪深300指数 日收益率概率分布 平稳分布
1 引言
沪深300指数于2005年4月正式发布,其成份股为市场中市场代表性好,流动性高,交易活跃的主流投资股票,能够反映市场主流投资的收益情况。众多证券投资基金以沪深300指数为业绩基准,因此对沪深300指数收益情况研究显得尤为重要,可为投资管理提供参考。
取沪深300指数交易日收盘价计算日收益率,可按区间将日收益率分为不同的状态,则日收益率时间序列可视为状态的变化序列,从而可以尝试采用马尔可夫链模型进行处理。马尔可夫链模型在证券市场的应用已取得了不少成果。参考文献[1]、[2]、[3]和[4]的研究比较类似,均以上证综合指数的日收盘价为对象,按涨、平和跌划分状态,取得了一定的成果。但只取了40~45个交易日的数据进行分析,历史数据过少且状态划分较为粗糙。参考文献[5]和[6]以上证综合指数周价格为对象,考察指数在的所定义区间(状态)的概率,然其状态偏少(分别只有6个和5个状态),区间跨度较大,所得结果实际参考价值有限。参考文献[7]对单只股票按股票价格划分状态,也取得了一定成果。
然而收益率是证券市场研究得更多的对象。本文以沪深300指数日收益率为对考察对象进行深入研究,采用matlab7.1作为计算工具,对较多状态和历史数据进行了处理,得出了沪深300指数日收益率概率分布,并对日收益率的变化进行了预测。
2 马尔可夫链模型方法
2.1 马尔可夫链的定义
设有随机过程{Xt,t∈T},T是离散的时间集合,即T={0,1,2,L},其相应Xt可能取值的全体组成状态空间是离散的状态集I={i0,i1,i2,L},若对于任意的整数t∈T和任意的i0,i1,L,it+1∈I,条件概率则称{Xt,t∈T}为马尔可夫链,简称马氏链。马尔可夫链的马氏性的数学表达式如下:
P{Xn+1=in+1|X0=i0,X1=i1,L,Xn=in}=P{Xn+1=in+1|Xn=in} (1)
2.2 系统状态概率矩阵估计
马尔可夫链模型方法的基本内容之一是系统状态的转移概率矩阵估算。估算系统状态的概率转移矩阵一般有主观概率法和统计估算法两种方法。主观概率法一般是在缺乏历史统计资料或资料不全的情况下使用。本文采用统计估算法,其主要过程如下:假定系统有m种状态S1,S2,L,Sm根据系统的状态转移的历史记录,可得到表1的统计表格。其中nij表示在考察的历史数据范围内系统由状态i一步转移到状态j的次数,以■ij表示系统由状态i一步转移到状态的转移概率估计量,则由表1的历史统计数据得到■ij的估计值和状态的转移概率矩阵P如下:
■ij=nij■nik,P=p11 K p1mM O Mpm1 L pmn(2)
2.3 马氏性检验
随机过程{Xt,t∈T}是否为马尔可夫链关键是检验其马氏性,可采用χ2统计量来检验。其步骤如下:(nij)m×m的第j列之和除以各行各列的总和所得到的值记为■.j,即:
■.j=■nij■■nik,且■ij=nij■nik(3)
当m较大时,统计量服从自由度为(m-1)2的χ2分布。选定置信度α,查表得χ2α((m-1)2),如果■2>χ2α((m-1)2),则可认为{Xt,t∈T}符合马氏性,否则认为不是马尔可夫链。
■2=2■■nijlog■ij■.j(4)
2.4 马尔可夫链性质
定义了状态空间和状态的转移概率矩阵P,也就构建了马尔可夫链模型。记Pt(0)为初始概率向量,PT(n)为马尔可夫链时刻的绝对概率向量,P(n)为马尔可夫链的n步转移概率矩阵,则有如下定理:
P(n)=PnPT(n)=PT(0)P(n)(5)
可对马尔可夫链的状态进行分类和状态空间分解,从而考察该马尔可夫链模型的不可约闭集、周期性和遍历性。马尔可夫链的平稳分布有定理不可约、非周期马尔可夫链是正常返的充要条件是存在平稳分布;有限状态的不可约、非周期马尔可夫链必定存在平稳过程。
3 马尔可夫链模型方法应用
3.1 观测值的描述和状态划分
取沪深300指数从2005年1月4日~2007年4月20日共555个交易日收盘价计算日收益率(未考虑分红),将日收益率乘以100并记为Ri,仍称为日收益率。计算公式为:
Ri=(Pi-Pi-1)×100/Pi-1(6)
其中,Pi为日收盘价。
沪深300指数运行比较平稳,在考察的历史数据范围内日收益率有98.38%在[-4.5,4.5]。可将此范围按0.5的间距分为18个区间,将小于-4.5和大于4.5各记1区间,共得到20个区间。根据日收益率所在区间划分为各个状态空间,即可得20个状态(见表2)。
3.2 马氏性检验
采用χ2统计量检验随机过程{Xt,t∈T}是否具有马氏性。用前述统计估算法得到频率矩阵(nij)20×20。
由(3)式和(4)式可得:■.j=■nij■■nik,且■ij=nij■nik,■2=2■■nijlog■ij■.j=446.96,令自由度为k=(m-1)2即k=361,取置信度α=0.01。由于k>45,χ2α(k)不能直接查表获得,当k充分大时,有:
χ2α(k)≈■(zα+■)2(7)
其中,zα是标准正态分布的上α分位点。查表得z0.01=2.325,故可由(1)、(7)式得,即统计量,随机过程{Xt,t∈T}符合马氏性,所得模型是马尔可夫链模型。
3.3 计算转移概率矩阵及状态一步转移
由频率矩阵(nij)20×20和(1)、(2)式得转移概率矩阵为P=(Pij)20×20。考察2007年4月20日分时交易数据(9:30~15:30共241个数据),按前述状态划分方法将分时交易数据收益率归于各状态,并记Ci为属于状态i的个数,初始概率向量PT(0)=(p1,p2,L,pt,L,p20),则:
pj=Cj/241,j=1,2,K,20(8)
下一交易日日收益率分布概率PT(0)={p1(1),p2(1),L,pi(1),L,p20(1)},且有PT(1)-PT(0)p,计算结果如表3所示。
3.4 马尔可夫链遍历性和平稳分布
可以分析该马尔可夫链的不可约集和周期性,从而进一步考察其平稳分布,然而其分析和求解非常复杂。本文使用matlab7.1采用如下算法进行求解:将一步转移概率矩阵P做乘幂运算,当时Pn+1=Pn停止,若n>5 000亦停止运算,返回Pn和n。计算发现当n=48时达到稳定,即有P(∞)=P(48)=P48。考察矩阵P(48)易知:各行数据都相等,不存在数值为0的行和列,且任意一行的行和为1。故该马尔可夫链{Xt,t∈T}只有一个不可约集,具有遍历性,且存在平稳分布{πj,j∈I},平稳分布为P(48)任意一行。从以上计算和分析亦可知该马尔可夫链是不可约、非周期的马尔可夫链,存在平稳分布。计算所得平稳分布如表4所示。
3.5 计算结果分析
表3、表4给出了由当日收益率统计出的初始概率向量PT(0),状态一步预测所得绝对概率向量PT(1)和日收益率平稳分布,由表3和表4综合可得图1。可以看出,虽然当日(2007年4月20日)收益率在区间(1.5,4.5)波动且在(2.5,4.5)内的概率达到了0.7261,表明在2007年4月20日,日收益率较高(实际收盘时,日收益率为4.41),但其下一交易日和从长远来看其日收益率概率分布依然可能在每个区间。这是显然的,因为日收益率是随机波动的。
对下一交易日收益率预测(PT(1)),发现在下一交易日收益率小于0的概率为0.4729,大于0的概率为0.5271,即下一交易日收益率大于0的概率相对较高,其中在区间(-2,-1.5)、(0.5,1)和(1,1.5)概率0.2675、0.161和0.1091依次排前三位,也说明下一交易日收益率在(-2,-1.5)的概率会比较高,有一定的风险。
从日收益率长远情况(平稳分布)来看,其分布类似正态分布但有正的偏度,说明其极具投资潜力。日收益率小于0的概率为0.4107,大于0的概率为0.5893,即日收益率大于0的概率相当的高于其小于0的概率。
4 结语
采用马尔可夫链模型方法可以依据某一交易日收益率情况向对下一交易日进行预测,也可得到从长远来看其日收益率的概率分布,定量描述了日收益率。通过对沪深300指数日收益率分析和计算,求得沪深300指数日收益率的概率分布,发现沪深300指数日收益率大于0的概率相对较大(从长远看,达到了0.5893,若考虑分红此概率还会变大),长期看来沪深300指数表现乐观。若以沪深300指数构建指数基金再加以调整,可望获得较好的回报。
笔者亦采用范围(-5,5)、状态区间间距为1和范围(-6,6)、状态区间间距为2进行运算,其所得结果类似。当采用更大的范围(如-10,10等)和不同的区间大小进行运算,计算发现若状态划分过多,所得模型不易通过马氏性检验,如何更合理的划分状态使得到的结果更精确是下一步的研究之一。在后续的工作中,采用ANN考察所得的日收益率预测和实际日收益率的关系也是重要的研究内容。马尔可夫链模型方法也可对上证指数和深证成指数进行类似分析。
参考文献
1 关丽娟,赵鸣.沪综指走势的马尔可夫链模型预测[J].山东行政学院,山东省经济管理干部学院学报,2005(4)
2 陈奕余.基于马尔可夫链模型的我国股票指数研究[J].商场现代化(学术研讨),2005(2)
3 肖泽磊,卢悉早.基于马尔可夫链系统的上证指数探讨[J].科技创业月刊,2005(9)
4 边廷亮,张洁.运用马尔可夫链模型预测沪综合指数[J].统计与决策,2004(6)
5 侯永建,周浩.证券市场的随机过程方法预测[J].商业研究,2003(2)
6 王新蕾.股指马氏性的检验和预测[J].统计与决策,2005(8)
7 张宇山,廖芹.马尔可夫链在股市分析中的若干应用[J].华南理工大学学报(自然科学版),2003(7)
8 冯文权.经济预测与决策技术[M].武汉:武汉大学出版社,2002
9 刘次华.随机过程[M].武汉:华中科技大学出版社,2001
10 盛千聚.概率论与数理统计[M].北京:高等教育出版社.1989转
论文综述怎么写 范文
论文综述范文如下:
摘要:经济学的数学化和定量化是经济学迅速科学化的重要标志。本文主要以计量经济学分支学科的应用为着探讨点通过分析计量经济学模型在中国经济研究中的现状分析与背景意义、最终提出启示与展望。
关键词:计量经济学模型;经济研究。
一、计量经济学模型在中国经济研究中的应用背景和意义
二十多年来,计量经济学作为中国经济学科的一个分支,得到了迅速的发展。以数学化和定量化作为经济学迅速科学化的重要标志。数学模型的应用仅仅是一种工具,不能作为研究经济学理论的本质。要实现中国经济学现代化、科学化的这一目标必须学习西方经济学的先进的研究分析方法。而计量经济学在经济研究中的应用,正是一个具体体现。
二、国内计量经济学模型在经济研究中的应用现状
通过对《经济研究》近间刊载的计量经济学文章统计分析,目的在于对这期间计量经济学在经济研究中的应用过程有一个粗略的归纳,同时也能够初步探索中国经济学研究方法的转换与研究技术规范的转变,本文则通过计量经济学论文在《经济研究》刊文中的变动情况从一个侧面反映了中国经济学内在的技术规范的形成历程。
近些年我国主要经济学期刊发表的计量经济学文章主要以应用研究型文章仍然占主导地位,数量远远大于理论研究。例“经济转轨中的企业很出机制”采用了Cox比例死亡模型和条件概率方法[1]:“职业经理人进入民营企业影响因素的实证研究”用到了二元选择的1oait模型[2]而就相同的问题也可采用回归模型和协整分析模型进行计量分析。
由此可以看出我国计量经济学应用研究已经用到了现代很多复杂的计量经济学方法。同时我们要注意到曾经的经典计量经济学方法仍然占有重要地位,在任何时候都不过时,是研究一般问题的首选方法:如“城市化与商品流通的关系研究”[3]。
参考文献:
[1]刘金全,张鹤.经济增长风险的冲击传导和经济周期波动的“溢出效应”.经济研究,20xx,(10)
[2]刘莉亚,任若恩.银行危机与货币危机共生性关系的实证研究[J].经济研究,20xx,(10)
[3]张建琦,黄文锋.职业经理人进入民营企业影响因素的实证研究[].经济研究,20xx,(10)
论文综述的注意事项
论文综述的是在撰写学术论文之前,对相关文献资料进行综合、整理和分析的一种学术功课。综述不仅是实现学习、论文撰写的必修环节,同时也是科学研究的重要步骤。本文将讨论如何进行论文综述以及其重要性。
在进行论文综述之前,需要拟定好研究方向、题目和关键词。之后,开始检索和筛选与主题相关的文献。这些文献需要来自于可靠、权威、高质量的学术资源,例如学术期刊、数据库和学术搜索引擎等。筛选文献时应关注其研究内容、研究方法、结论等方面,尽可能找到与主题相关、探究深入、论述完整的文献。
确定了合适的文献后,接下来需要撰写综述。综述应包括文献的简介、研究内容的梳理、分析和评价,此外还需要注意文献来源的引证、叙述的逻辑性、内容的客观性和准确性。在撰写综述时,可以根据对文献的分析和评价,对研究中存在的问题和未来的研究方向提出建议。
综述的重要性在于为学术研究和论文撰写提供了基础和支撑。通过对相关文献的分析和评价,可以形成对目标研究领域的深入了解和认识,帮助更好地理解研究现状和未来的发展方向。同时,综述还可以引导和指导论文撰写,为研究提供参考、激励和促进作用。
总之,论文综述是科学研究中不可或缺的学术练习,以其严谨的方法论和学术研究的规范性,对于提高学术研究的质量、推动学术研究的进程、提升个人和团队的学术水平都有着十分重要的作用。
征集北京市高中应用数学竞赛论文题目
考研的数学分为四种,分别是数学一、数学二、数学三、数学四
数学一是一般的理工科要考的,如计算机/材料等理工专业
数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业
数学三是偏向于经济类别的考生,如经济管理 偏向概率
数学四是其它对数学要求相对低的学科。
而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。
大纲见下:
全国硕士研究生入学考试数学三考试大纲
考试科目
微积分、线性代数、概率论与数理统计
微积分
一、函数。极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限
函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数、反函数、隐函数和分段函数的概念.
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.
5.会建立简单应用问题中的函数关系式.
6.了解数列极限和函数极限(包括左极限与右极限)的概念.
7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.
8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限.
9.理解函数连续性的概念(含左连续与右连续).
10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用.
二、一元函数微分学
考试内容
导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念).
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题).
8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线.
9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形.
三、一元函数积分学
考试内容
原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数.
3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题.
4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件.
四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题.
5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分.
五、无穷级数
考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散、收敛级数的和的概念.
2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数.
六、常微分方程与差分方程
考试内容
常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用
考试要求
1.了解微分方程的阶及其解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性方程.
4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.掌握一阶常系数线性差分方程的求解方法.
7.会应用微分方程和差分方程求解简单的经济应用问题.
线性代数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解n阶行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。
2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法.
4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩.
四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量性质.
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.
2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质.
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念.
二、随机变量及其概率分布
考试内容
随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布
考试要求
1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略).
5.会根据自变量的概率分布求其简单函数的概率分布.
三、随机变量的联合概率分布
考试内容
随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布
考试要求
1.理解随机变量的联合分布函数的概念和基本性质.
2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布.
3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.
5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布.
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征.
2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望.
3.掌握切比雪夫不等式.
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理)
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论.
2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率.
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略)
2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表.
3.掌握正态总体的抽样分布.
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性.
2.掌握矩估计法(一阶、二阶矩)和最大似然估计法.
3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法.
4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法.
八、假设检验
考试内容
显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验.
2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率.
3.了解单个和两个正态总体参数的假设检验.
试卷结构
(一)内容比例
微积分 约50%
线性代数 约25%
概率论与数理统计 约 25%
(二)题型比例
境空题与选择题约 30%
解答题(包括证明题) 约70%
由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有
上一篇:中特论文格式模板
下一篇:毕业论文能给别人