非的算法研究论文
非的算法研究论文
你这问题也太搞笑了吧,非线性方程无论是代数方程还是微分方程都没有统一解法的,唯一通用的解法是级数展开。
数据挖掘的算法及技术的应用的研究论文
数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
4.1市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
4.2金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
急求计算机导论论文。要求内详。尽量原创。好处多多,加分多多!谢谢了!
计算机科学与技术这一门科学深深的吸引着我们这些同学们,原先不管是国内还是国外都喜欢把这个系分为计算机软件理论、计算机系统、计算机技术与应用。后来又合到一起,变成了现在的计算机科学与技术。我一直认为计算机科学与技术这门专业,在本科阶段是不可能切分成计算机科学和计算机技术的,因为计算机科学需要相当多的实践,而实践需要技术;每一个人(包括非计算机专业),掌握简单的计算机技术都很容易(包括原先Major们自以为得意的程序设计),但计算机专业的优势是:我们掌握许多其他专业并不"深究"的东西,例如,算法,体系结构,等等。非计算机专业的人可以很容易地做一个芯片,写一段程序,但他们做不出计算机专业能够做出来的大型系统。今天我想专门谈一谈计算机科学,并将重点放在计算理论上。
1)计算机语言
随着20世纪40年代第一台存储程序式通用电子计算机的研制成功,进入20世纪50年代后,计算机的发展步入了实用化的阶段。然而,在最初的应用中,人们普遍感到使用机器指令编制程序不仅效率低下,而且十分别扭,也不利于交流和软件维护,复杂程序查找错误尤其困难,因此,软件开发急需一种高级的类似于自然语言那样的程序设计语言。1952年,第一个程序设计语言Short Code出现。两年后,Fortran问世。作为一种面向科学计算的高级程序设计语言,Fortran的最大功绩在于牢固地树立了高级语言的地位,并使之成为世界通用的程序设计语言。Algol60的诞生是计算机语言的研究成为一门科学的标志。该语言的文本中提出了一整套的新概念,如变量的类型说明和作用域规则、过程的递归性及参数传递机制等。而且,它是第一个用严格的语法规则——巴科斯范式(BNF)定义语言文法的高级语言。程序设计语言的研究与发展在产生了一批成功的高级语言之后,其进一步的发展开始受到程序设计思想、方法和技术的影响,也开始受到程序理论、软件工程、人工智能等许多方面特别是实用化方面的影响。在“软件危机”的争论日渐平息的同时,一些设计准则开始为大多数人所接受,并在后续出现的各种高级语言中得到体现。例如,用于支持结构化程序设计的PASCAL语言,适合于军队各方面应用的大型通用程序设计语言ADA,支持并发程序设计的MODULA-2,支持逻辑程序设计的PROLOG语言,支持人工智能程序设计的LISP语言,支持面积对象程序变换的SMALLTALK、C等。而且,伴随着这些语言的出现和发展,产生了一大批为解决语言的编译和应用中所出现的问题而发展的理论、方法和技术。有大量的学术论文可以证明,由高级语言的发展派生的各种思想、方法、理论和技术触及到了计算机科学的大多数学科方向,但内容上仍相对集中在语言、计算模型和软件开发方法学方面。
(2)计算机模型与软件开发方法
20世纪80年代是计算机网络、分布式处理和多媒体大发展的时期。在各种高级程序设计语言中增加并发机构以支持分布式程序设计,在语言中通过扩展绘图子程序以支持计算机图形学程序设计成为当时程序设计语言的一种时尚。之后,在模数/数模转换等接口技术和数据库技术的支持下,通过扩展高级语言的程序库又实现了多媒体程序设计的构想。进入20世纪90年代之后,并行计算机和分布式大规模异质计算机网络的发展又将并行程序设计语言、并行编译程序、并行操作系统、并行与分布式数据库系统等试行软件的开发的关键技术依然与高级语言和计算模型密切相关,如各种并行、并发程序设计语言,进程代数,PETRI网等,它们正是软件开发方法和技术的研究中支持不同阶段软件开发的程序设计语言和支持这些软件开发方法和技术的理论基础——计算模型。
(3)计算机应用
用计算机来代替人进行计算,就得首先研究计算方法和相应的计算机算法,进而编制计算机程序。由于早期计算机的应用主要集中在科学计算领域,因此,数值计算方法就成为最早的应用数学分支与计算机应用建立了联系。最初的时候,由于计算机的存储器容量很小,速度也不快,为了计算一些稍稍大一点的题目,人们常常要挖空心思研究怎样节省存储单元,怎样减少不需要的操作。为此,发展了像稀疏矩阵计算理论来进行方程组的求解;发展了杂凑函数来动态地存储、访问数据;发展了虚拟程序设计思想和程序覆盖技术在内存较小的计算机上运行较大的程序;在子程序和程序包的概念提出之后,许多人开始将数学中的一些通用计算公式和计算方法写成子程序,并进一步开发成程序包,通过简洁的调用命令向用户开放。子程序的提出是今日软件重用思想的开端。
在计算机应用领域,科学计算是一个长久不衰的方向。该方向主要依赖于应用数学中的数值计算的发展,而数值计算的发展也受到来自计算机系统结构的影响。早期,科学计算主要在单机上进行,经历了从小规模数值分析到中大规模数值分析的阶段。随着并行计算机和分布式并行计算机的出现,并行数值计算开始成为科学计算的热点,处理的问题也从中大规模数值分析进入到中大规模复杂问题的计算。所谓中大规模复杂问题并不是由于数据的增大而使计算变得困难,使问题变得复杂,而主要是由于计算中考虑的因素太多,特别是一些因素具有不确定性而使计算变得困难,使问题变得复杂,其结果往往是在算法的研究中精度与复杂性的矛盾难于克服。
几何是数学的一个分支,它实现了人类思维方式中的数形结合。在计算机发明之后,人们自然很容易联想到了用计算机来处理图形的问题,由此产生了计算机图形学。计算机图形学是使用计算机辅助产生图形并对图形进行处理的科学。并由此推动了计算机辅助设计(CAD)、计算机辅助教学(CAI)、计算机辅助信息处理、计算机辅助测试(CAT)等方向的发展。
在各种实际应用系统的开发中,有一个重要的方向值得注意,即实时系统的开发。
利用计算机证明数学定理被认为是人工智能的一个方向。人工智能的另一个方向是研究一种不依赖于任何领域的通用解题程序或通用解题系统,称为GPS。特别值得一提的是在专家系统的开发中发展了一批新的技术,如知识表示方法、不精确性推理技术等,积累了经验,加深了对人工智能的认识。20世纪70年代末期,一部分学者认识到了人工智能过去研究工作基础的薄弱,开始转而重视人工智能的逻辑基础研究,试图从总结和研究人类推理思维的一般规律出发去研究机器思维,并于1980年在《Artificial Intelligence》发表了一组非单调逻辑的研究论文。他们的工作立即得到一大批计算机科学家的响应,非单调逻辑的研究很快热火朝天地开展起来,人工智能的逻辑基础成为人工智能方向发展的主流。
数据库技术、多媒体技术、图形学技术等的发展产生了两个新方向,即计算可视化技术与虚拟现实技术。
随着计算机网络的发展,分布在全世界的各种计算机正在以惊人的速度相互连接起来。网络上每天都在进行着大量政治、经济、军事、外交、商贸、科学研究与艺术信息的交换与交流。网络上大量信息的频繁交换,虽然缩短了地域之间的距离,然而同时也使各种上网的信息资源处在一种很难设防的状态之中。于是,计算机信息安全受到各国政府的高度重视。除了下大力气研究对付计算机病毒的软硬件技术外,由于各种工作中保密的需要,计算机密码学的研究更多地受到各国政府的重视。
实际上,在计算机科学中计算机模型和计算机理论与实现技术同样重要。但现在许多学生往往只注重某些计算机操作技术,而忽略了基础理论的学习,并因为自己是“操作高手”而沾沾自喜,这不仅限制了自己将研究工作不断推向深入,而且有可能使自己在学科发展中处于被动地位。例如,在20世纪50年代和20世纪60年代,我国随着计算机研制工作和软件开发工作的发展,陆续培养了在计算机制造和维护中对计算机某一方面设备十分精通的专家,他们能准确地弄清楚磁芯存储器、磁鼓、运算器、控制器,以及整机线路中哪一部分有问题并进行修理和故障排除,能够编制出使用最少存储单元而运算速度很快的程序,对机器代码相当熟悉。但是,当容量小的磁芯存储器、磁鼓、速度慢的运算器械、控制器很快被集成电路替代时,当程序设计和软件开发广泛使用高级语言、软件开发工具和新型软件开发方法后,这批技术精湛的专家,除少量具有坚实的数学基础、在工作中已有针对性地将研究工作转向其他方向的人之外,相当一部分专家伴随着新技术的出现,在替代原有技术的发展过程中而被淘汰。因此,在计算机科学中,计算比实现计算的技术更重要。只有打下坚实的理论基础,特别是数学基础,学习计算机科学技术才能事半功倍,只有建立在高起点理论基础之上的计算机科学技术,才有巨大的潜力和发展前景。
计算机理论的一个核心问题
我国计算机科学系里的传统是培养做学术研究,尤其是理论研究的人(方向不见得有多大的问题,但是做得不是那么尽如人意)。而计算机的理论研究,说到底了,如网络安全学,图形图像学,视频音频处理,哪个方向都与数学有着很大的关系,虽然也许是正统数学家眼里非主流的数学。这里我还想阐明我的一个观点:我们都知道,数学是从实际生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,有些数学研究工作者喜欢用一些现存的理论知识去推导若干条推论,殊不知其一:问题考虑不全很可能是个错误的推论,其二:他的推论在现实生活中找不到原型,不能指导实践。严格的说,我并不是一个理想主义者,政治课上学的理论联系实际一直是指导我学习科学文化知识的航标(至少我认为搞计算机科学与技术的应当本着这个方向)。
我个人的浅见是:计算机系的学生,对数学的要求固然跟数学系不同,跟物理类差别则更大。通常非数学专业的所?高等数学",无非是把数学分析中较困难的理论部分删去,强调套用公式计算而已。而对计算机系来说,数学分析里用处最大的恰恰是被删去的理论部分。记上一堆曲面积分的公式,难道就能算懂了数学?那倒不如现用现查,何必费事记呢?再不然直接用Mathematica或是Matlab好了。退一万步。华罗庚在数学上的造诣不用我去多说,但是他这光辉的一生做得我认为对我们来说,最重要的几件事情:首先是它筹建了中国科学院计算技术研究所,这是我们国家计算机科学的摇篮。在有就是他把很多的高等数学理论都交给了做工业生产的技术人员,推动了中国工业的进步。第三件就是他一生写过很多书,但是对高校师生价值更大的就是他在病期间在病床上和他的爱徒王元写了《高等数学引论》(王元与其说是他的爱徒不如说是他的同事,是中科院数学所的老一辈研究员,对歌德巴赫猜想的贡献全世界仅次于陈景润)这书在我们的图书馆里居然找得到,说实话,当时那个书上已经长了虫子,别人走到那里都会闪开,但我却格外感兴趣,上下两册看了个遍,我的最大收获并不在于理论的阐述,而是在于他的理论完全的实例化,在生活中去找模型。这也是我为什么比较喜欢具体数学的原因,正如我在上文中提到的,理论脱离了实践就失去了它存在的意义。正因为理论是从实践当中抽象出来的,所以理论的研究才能够更好的指导实践,不用于指导实践的理论可以说是毫无价值的。
正如上面所论述的,计算机系的学生学习高等数学:知其然更要知其所以然。你学习的目的应该是:将抽象的理论再应用于实践,不但要掌握题目的解题方法,更要掌握解题思想,对于定理的学习:不是简单的应用,而是掌握证明过程即掌握定理的由来,训练自己的推理能力。只有这样才达到了学习这门科学的目的,同时也缩小了我们与数学系的同学之间思维上的差距。
关于计算机技术的学习我想是这样的:学校开设的任何一门科学都有其滞后性,不要总认为自己掌握的某门技术就已经是天下无敌手了,虽然现在Java,VB,C,C++用的都很多,怎能保证没有被淘汰的一天,我想.NET平台的诞生和X#语言的初见端倪完全可以说明问题。换言之,在我们掌握一门新技术的同时就又有更新的技术产生,身为当代的大学生应当有紧跟科学发展的素质。举个例子,就像有些同学总说,我做网页设计就喜欢直接写html,不愿意用什么Frontpage,Dreamweaver。能用语言写网页固然很好,但有高效的手段你为什么不使呢?仅仅是为了显示自己的水平高,unique? 我看真正水平高的是能够以最快的速度接受新事物的人。高级程序设计语言的发展日新月异,今后的程序设计就像人们在说话一样,我想大家从xml中应是有所体会了。难道我们真就写个什么都要用汇编,以显示自己的水平高,真是这样倒不如直接用机器语言写算了。反过来说,想要以最快的速度接受并利用新技术关键还是在于你对计算机科学地把握程度。
总的来说,从教育角度来讲,国内高校的课程安排不是很合理,强调理论,又不愿意在理论上深入教育,无力接受新技术,想避开新技术又无法避得一干二净。我觉得关键问题就是国内的高校难于突破现状,条条框框限制着怎么求发展。我们虽然认识得到国外教育的优越性,但为什么迟迟不能采取行动?哪怕是去粗取精的取那么一点点。
非线性解析反演与遗传算法的结合反演方法
周辉
(青岛海洋大学海洋地球科学学院,青岛 266003)
何樵登
(长春地质学院地球物理系,长春 130026)
摘要 各向异性介质参数反演通常为非线性优化问题。非线性反演方法可以分为两大类:随机搜索方法,如Monte Carlo法、模拟退火和遗传算法及基于非线性最小平方理论的非线性解析反演方法。遗传算法能寻找到全局最优解,但它为一种较费时的方法。非线性解析反演方法能给出一个与初始模型有关的局部最优解。然而,这种方法具有较快的收敛速度。遗传算法与非线性解析反演方法相结合的反演方法利用这两种反演方法的优点而克服其缺点。因此,结合反演方法既能快速收敛,又能寻找到全局最优解。如何合理地将遗传算法和非线性解析反演方法结合是十分重要的。本文提出一种结合方案,即在连续若干次遗传算法迭代后作一次非线性解析反演。理论算例表明结合反演方法具有上述特点。
关键词 遗传算法 非线性解析反演 非线性结合反演 各向异性介质
1 引言
遗传算法为随机搜索类方法之一,它以概率论为理论基础,用于求解多极值复杂优化问题[9]。遗传算法不要求已知模型空间中后验概率密度的形状并能广泛搜索模型空间。遗传算法模拟自然选择和遗传规律,并遵循适者生存的原则。
遗传算法由Holland在1975年提出[4]。Berg首先将遗传算法应用于地球物理优化问题[1]。Stoffa等系统地研究了种群大小、交叉概率、选择概率和变异概率对多参数优化问题收敛性和收敛速度的影响[11]。Sen等讨论了在选择概率中引入温度参数的作用并提出一些退火方案[10]。周辉等则研究了目标函数与收敛速度和解的精度的关系[16]。
基于最小平方优化理论的非线性反演方法是两大类反演方法之一。当给定的初始模型位于目标函数全局最优解所在的峰谷附近时,这种下降类方法能给出正确解而与初始模型位置无关。下降类算法研究得较深入,应用较广。
Tarantola提出一种基于广义最小二乘法的多维多偏移距声波地震波形解释的一般性非线性地震波形反演方法[12]。随后,Tarantola将该理论推广于各向同性介质的弹性波反演[13]。Gauthier等用理论数据验证了Tarantola提出的方法的正确性[2]。稍后,Tarantola研究非线性解析法反射波弹性反演的策略,指出以纵横波的波阻抗和密度作为反演参数,才尽可能使反演参数之间相互独立[14]。Pan用τ—P变换研究层状声学介质中平面波地震记录非线性解析反演的理论和可行性[6]。为了更多地利用地震数据中的信息,包括VSP资料中反射和转换信息,Mora作了一些工作[5]。当仅用反射数据时反演主要解决引起反射的P波和S波的波阻抗突变。当利用转换数据时,则能分辨大尺度的P波和S波速度变化。Sambridge等改进了修改模型的方法[8]。在子空间中,可同时得到P波、S波波阻抗和密度。周辉等将非线性梯度反演方法推广于多维、多道、多分量任意弹性各向异性介质参数的反演[17]。
非线性解析反演方法和遗传算法结合的反演方法利用非线性解析反演和遗传算法的优点,克服它们的缺点。因此,结合反演方法不仅能搜索到全局最优解,而且能较快地收敛。Porsani等在遗传算法和广义线性反演方法相结合方面作了一些研究[7]。
本文讨论各向异性介质的非线性解析反演方法和遗传算法与非线性解析反演方法相结合的结合反演方法[17]。对于遗传算法读者可参考遗传算法的相关文献[3,9~11]。
2 各向异性介质参数非线性解析反演方法
2.1 共轭梯度法
反演的目的是利用地面或井中测得的位移场ui(xr,t)求取地下介质密度分布ρ(x)和弹性参数分布Cijkl(x)。ρ(x)、Cijkl(x)称为模型参数。x为研究介质中或边界上任一点,x=(x1,x2,x3),xr为接收点。反演的目标是使目标函数
岩石圈构造和深部作用
取极小值。其中Cd、Cm分别为数据(波场)和模型参数的协方差算子。m0为先验模型参数,m为反演过程中求得的模型参数。由于模型参数有多个,故用向量表示。ucal为给定m的波动方程正演记录,uobs为观测波场,上角标t表示转置。地震记录u和模型参数m之间的函数关系为
岩石圈构造和深部作用
g为非线性算子,(2)式为波动方程的算子形式。记第n次迭代时的模型参数为mn,则有
岩石圈构造和深部作用
及共轭梯度法的迭代公式[15]
岩石圈构造和深部作用
其中Gn为g对mn的Frechet导数,ηn为一常数,可由多种方法计算[5,8]。
梯度 为模型空间的对偶空间中的一个元素。模型空间和其对偶空间以模型参数的协方差算子Cm=Diag(Cp,Cc)由式(4d)相联系。在后面将给出 和 的表达式。
式(4)为梯度反演方法的基本公式。当该公式中的每一量都已知时,迭代就可进行。在这些变量中,最关键的是梯度向量。
2.2 目标函数
在最小二乘理论中,权函数是协方差算子逆的核。假设数据集中的误差是不相关的,它仅取决于时间或源和接收器的位置,那么有[14]
岩石圈构造和深部作用
其中σ为数据的均方差。
2.3 各向异性介质中的弹性波动方程
令fi(x,t;xs)是第s次激发的内体力密度,Ti(x,t;xs)是地球表面S的应力矢量分量,ni(x)是表面的单位法向分量。那么与第s次激发相应的位移由以下微分方程组给出[15]
岩石圈构造和深部作用
2.4 梯度向量
式(4)中梯度向量的分量为[17]
岩石圈构造和深部作用
其中,T为地震记录的长度, 为反向传播场,满足
岩石圈构造和深部作用
其中,t∈[T,0], 满足终了时间条件。
3 结合反演方法
3.1 遗传算法和非线性解析反演方法的优缺点
遗传算法是利用概率论来求解多极值复杂优化问题的一种随机搜索方法,由一组随机选取的模型开始,不需要更多的先验信息,广泛而有效地对模型空间的最优部分采样。尽管遗传算法是基于自然选择、遗传规律,搜索模型空间的最优部分而求得最优解,但它是一种计算量很大的方法。由于地震模型空间大,用全局最优化方法估计各向异性介质参数的地震波形反演十分费时。
目标函数的梯度信息是非线性解析反演方法修改模型参数的依据,它能给出一个接近初始模型的一个局部最优解。如果初始模型选择得合适,即当初始模型处在全局最优解所在的目标函数低谷时,非线性解析反演方法能收敛于全局最优解。然而,恰好给出一个接近全局最优解的初始模型的概率是非常小的,尤其对没有模型参数的任何先验信息的情况。但应强调的是,非线性解析反演方法具有较快的收敛速度。
发挥非线性解析反演方法快速收敛和遗传算法能搜索到全局最优解的优点,而克服前者仅能寻找到局部最优解和后者运算量大的缺点是很有意义的。非线性解析反演方法和遗传算法相结合的反演方法可达到上述目的。在结合反演方法中,遗传算法的作用是提供接近全局最优解的模型,非线性解析反演的作用是尽快求出全局最优解。因此,结合反演方法具有搜索到全局最优解的能力和比遗传算法收敛速度快的特点。
3.2 结合方案
遗传算法在优化过程中连续不断地搜索整个模型空间。在每次迭代结束后,得到一个本代的最优模型。根据遗传算法的数学原理[3],最优模型的数量在下一代中得以增加,同时经交叉和变异作用又有新的模型产生。在下一代种群中,最优模型可能与前一代的相同,也有可能劣于前一代的最优模型。所有这些最优模型可能在目标函数的同一低谷处,也有可能在其它低谷处。遗传算法寻找最优模型要经过多次迭代才能确定一个极值。遗传算法的随机性导致遗传算法是一种费时的方法。然而正是遗传算法的这种随机性保证了它能搜索到全局最优解。
如果将每次遗传算法迭代的最优解作为非线性解析反演的初始模型,非线性解析反演可以找出与初始模型毗邻的局部最优解。由于非线性解析反演是一种确定性的方法,它按目标函数的梯度方向修改模型,所以非线性解析反演方法只需几次迭代即可收敛。非线性解析反演求得的解是否为全局最优解,非线性解析反演方法本身是无法得以保证的。只有当遗传算法提供接近全局最优解的初始模型时,非线性解析方法反演才能收敛到全局最优解。
结合反演方法中遗传算法和非线性解析反演方法的匹配方式是十分重要的。非线性解析反演方法得到接近遗传算法提供的初始模型的局部最优解后,在以后若干代中因遗传算法的随机性而使其最优解与该局部最优解相同。如果每次遗传算法迭代后作非线性解析反演,那么结合反演的结果在几代内都是相同的。显然其中的一些非线性解析反演是没有必要的。因此,结合方式应为在连续多次遗传算法迭代后作一次非线性解析反演,然后将非线性解析反演的结果作为下一代种群中的一个母本模型。图1为结合反演的框图。
图1 结合反演框图
4 算例
为了验证结合反演方法的优越性,对一维多层横向各向同性介质参数的反演理论实例作了分析。
图2是目标函数值与迭代次数的关系图。在该结合反演算例中每次遗传算法迭代后就作一次非线性解析反演迭代。结合反演的误差在开始几次迭代中下降很快,尤其在前3次。结合反演方法在第10次迭代达到的较小误差,遗传算法在第42次迭代才达到。结合反演的误差比遗传算法的跳跃得严重。这是因为非线性解析反演得到的模型在遗传算法中作为母代参加繁衍。这个模型因遗传算法的随机性常常被新的模型替代。这两个模型可能位于目标函数两个不同的低谷中,因此非线性解析反演的结果不同。
尽管结合反演的目标函数有些振荡,但也存在连续几次迭代目标函数几乎不变的现象。这意味着这几次迭代的最优模型是很接近的。在这种情况下非线性解析反演不能提供较大的改进。所以,此时的非线性解析反演是没有必要的,否则只能增加计算量。
图2 结合反演(实线)和遗传算法(虚线)的误差与迭代次数的关系
结合反演中每次遗传算法迭代后作一次非线性解析反演迭代
图3是另一个例子。在该结合反演例子中,每五次遗传算法迭代作一次非线性解析反演。在这里遗传算法占主要地位。此时结合反演的误差函数明显比遗传算法的小。结合反演的误差在第5次迭代末突然下降,并在第10次迭代时的小误差,遗传算法在42代才达到。遗传算法始终没有到达结合反演的最小误差。结合反演的误差在后期迭代过程中平稳下降,这是遗传算法占主导地位的原因。
从该例可知,若遗传算法与非线性解析反演方法比较合理地结合,结合反演方法比遗传算法具有快得多的收敛速度。
5 结论
非线性结合反演方法扬遗传算法和非线性解析反演方法之长,抑其之短,它是一种具有较快收敛速度的全局反演方法。
在结合反演中遗传算法和非线性解析反演方法的结合方式是重要的。从算例可得出,五次遗传算法迭代后作一次非线性解析反演的结合反演的效果明显优于每次遗传算法迭代后都作非线性解析反演的结合反演的效果。但是在结合反演中连续作多少次遗传算法迭代及连续迭代次数在整个迭代过程中的可变性还有待于进一步研究。
图3 结合反演(实线)和遗传算法(虚线)的误差与迭代次数的关系
结合反演中每五次遗传算法迭代后作一次非线性解析反演迭代
在结合反演中遗传算法的作用是提供接近全局最优解的初始模型。结合反演的运算速度主要取决于遗传算法的运算速度。均匀设计理论可以应用于遗传算法以加快随机搜索的速度。
与遗传算法相同,其它随机搜索方法也可用来与非线性解析反演方法形成结合反演方法。
参考文献
[1] convergent genetic algorithm for inversion of multiparameter 60 Expanded Abstracts,1990,Ⅱ,1126~1128.
[2]er,x and -dimensional nonlinear inversion of seismic waveforms:Numerical sics,1986,51,1387~1403.
[3]c Algorithms in Search,Optimiztion,and Machine n-Wesley,Reading,MA,1989.
[4]tion in Natural and Artifical University of Michigan Press,Ann Arbor,1975.
[5].2D elastic inversion of multi-offset seismic sics,1988,52,2031~2050.
[6],y,and -waveform inversion of plane-wave seismograms in stratified acoustic media:Theory and sics,1988,53,21~31.
[7]i,,,et al..A combined Genetic and linear inversion algorithm for seismic wave-form 63 Expanded Abstracts,1993,692~695.
[8]dge,ola and alternative strategy for nonlinear inversion of seismic sical Prospecting,1991,39,723~736.
[9]dge,and c algorithms in seismic waveform .,1992,109,323~342.
[10], sampling of model space using genetic algorithms:examples from seismic waveform .,1992,109,323~342.
[11],ear multiparametre optimization using genetic algorithms:Inversion of plane-wave sics,1991,56,1794~1810.
[12]ion of seismic reflection data in the acoustic sics,1984(a),49,1259~1266.
[13] seismic reflection inverse :a,Y.-,,and d e problems of acoustic and elastic .,1984(b),104~181.
[14]ola.A strategy for nonlinear elastic inversion of seismic reflection sics,1986,51,1893~1903.
[15]e problem theory:Methods for data fitting and model parameter er Science .,1987.
[16]周辉,何樵登.遗传算法在各向异性介质参数反演中的应用.长春地质学院学报,1995,25,增刊1,62~67.
[17]周辉.各向异性介质波动方程正演及其非线性反演方法研究.长春地质学院博士论文,1995.
上一篇:好想毕业论文要晕
下一篇:迅捷在线论文查重