欢迎来到学术参考网
当前位置:发表论文>论文发表

引物合成毕业论文

发布时间:2023-03-12 19:03

引物合成毕业论文

尽量不要。
发表不同的刊物对重复率的要求就不同,越是高级别的刊物对重复率的要求就越高。核心期刊相比较其他刊物,对重复率的要求更为严格一些,大部分核心期刊的知网查重率要求不高于10%,也有一些是不高于5%,而一般的普刊大部分要求不高于25%或是30%,由此可见,核心刊物对论文的原创水平和学术含量是有比较高的要求的,有些参评者会在投稿前自己查询知网查重率,这当然是可以的,一般只要是作者自己认真写作的论文,重复率不会超过5%,重复率超过10%只能说明引用别人的东西太多,自己的思考总结的东西太少。
对于国内SCI期刊重复率检测来说,一般整体超过15%就算重复,要求严格的5%以上就会被拒。比如一句话你连续5个单词和别的文献一样就算重复1%,若是一整长句和别人完全一样,可能重复率就大于1%,在一个文章中若是15处这样的地方,那么就有可能被拒了。
因此,综上所述,重复率高低主要看发表刊物级别高低,其实职称评审中也会对重复率作出要求并且会进行查重检测,所以作者务必要全面了解各方面对重复率的要求,按照要求去写作,同时也要掌握一些修改技巧,降低重复率,这样职称论文发表就会顺利得多。

引物的引物设计

引物是人工合成的两段寡核苷酸序列,一个引物与目的基因一端的一条DNA模板链互补,另一个引物与目的基因另一端的另一条DNA模板链互补。在PCR(聚合酶链式反应)技术中,已知一段目的基因的核苷酸序列,根据这一序列合成引物,利用PCR扩增技术,目的基因DNA受热变性后解链为单链,引物与单链相应互补序列结合,然后在DNA聚合酶作用下进行延伸,如此重复循环,延伸后得到的产物同样可以和引物结合。PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。引物设计有 3 条基本原则:首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。具体实现这 3 条基本原则需要考虑到诸多因素,如引物长度(primer length),产物长度(product length),序列 Tm 值 (melting temperature),引物与模板形成双链的内部稳定性(internal stability, 用 ∆G 值反映),形成引物二聚体(primer dimer)及发夹结构(duplexformation and hairpin)的能值,在错配位点(false priming site)的引发效率,引物及产物的GC 含量(composition),等等。必要时还需对引物进行修饰,如增加限制性内切酶位点,引进突变等。 最佳区域DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。长度引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。GC含量引物序列的 GC 含量一般为 40-60%,过高或过低都不利于引发反应。上下游引物的 GC含量不能相差太大Tm值引物所对应模板位置序列的 Tm 值在 72℃左右可使复性条件最佳。Tm 值的计算有多种方法,如按公式 Tm=4(G+C)+2(A+T),在 Oligo 软件中使用的是最邻近法(the nearestneighbor method)端避开第3位如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。选择T引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。碱基随机分布引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因为这样会使引物在GC富集序列区错误引发。自身避免互补引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol,∆G 值是指 DNA 双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性 ),否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。5′ 端中间G值应较高3′ 端较低△G值是指DNA双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G值越大,则双链越稳定。应当选用5′ 端和中间△G值相对较高,而3′ 端△G值较低(绝对值不超过9)的引物。引物3′ 端的△G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应。(不同位置的△G值可以用Oligo 6软件进行分析)5′ 端可以修饰引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。引物的延伸是从3′ 端开始的,不能进行任何修饰。3′ 端也不能有形成任何二级结构可能。单链无二级结构某些引物无效的主要原因是扩增产物单链二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关软件(比如RNAstructure)可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6l kJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。自由能∆G 值是指 DNA 双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用 3’端 ∆G 值较低(绝对值不超过 9),而 5’端和中间 ∆G 值相对较高的引物。引物的 3’端的 ∆G 值过高,容易在错配位点形成双链结构并引发 DNA 聚合反应。特异性引物设计完成以后,应对其进行BLAST检测。如果与其它基因不具有互补性,就可以进行下一步的实验了。值得一提的是,各种模板的引物设计难度不一。有的模板本身条件比较困难,例如GC含量偏高或偏低,导致找不到各种指标都十分合适的引物;用作克隆目的的PCR,因为产物序列相对固定,引物设计的选择自由度较低。在这种情况只能退而求其次,尽量去满足条件。

生物技术应用大专毕业论文怎么写

分子生物技术在微生物降解环境 污染物中的应用 [摘要〕介绍了与环境微生物关键降解酶基因的筛选、克隆及应用相关的分r生物技术,包括聚合酶链式反应技 术、基因重组技术、荧光原位杂交技术和生物信息学等技术,并对这些技术在污染物降解基因检测、筛选和克隆方 面的应用进行了阐述与探讨、 [关键词]分子生物技术;微生物;基因;环境污染物;降解 随着现代j:\地技术的发展,多环芳烃、含氯有 机物和硝基苯类化合物等人工合成井难以降解的 污染物大量排放,造成世界范围内的环境污染和生 态破坏,严重地威胁人类和其他生物的正常生存和 发展。利用微生物修复技术对受污染的水体及土 壤进行处理,凸显了其重要的意义和可行性。研究 人员发现并筛选到一些微生物,它们不仅对环境有 较高的适应性、对污染物有较高的耐受性,而且对 污染物有较强的降解效率和专一性。然而环境中 存在的大量微生物中仅有少于1%可通过传统的培 养方法进行培养、分离和纯化,绝大多数细菌需要 非常严格的营养条件川。因此,为了对修复环境有 所贡献却难以培养的微生物进行更全面了解,也为 了筛选到更多有利于降解环境污染物的微生物菌 种及其关键酶基因,分子生物技术和手段逐渐被广 泛应用到环境可降解污染物及降解机理方面的研 究中。 本文对近年来发展起来的聚合酶链式反应 (PCR)技术、基因重组技术、荧光原位杂交(FISH) 技术和生物信息学等多种分子生物技术进行了介 绍,并总结了它们在污染物降解基因检测、筛选和 克隆方面的应用。 1与环境污染物降解相关的分子生 物技术 1.1PCR及其相关技术 PCR是一种利用脱氧核糖核酸(DNA)半保留 复制原理,在体外扩增位于两段已知序列之间的 DNA区段从而得到大量拷贝的分子生物技术。根 据其模板、引物来源或扩增条件的不同,PcR技术 可分为以下几种:(l)反转录pCR(RT一PeR)技 术,将mRNA反转录为cDNA后再对其进行PCR 扩增,可用来构建cDNA文库,分析不同生长时期 的mRNA表达状况和相关性以及mRNA的定量测 定等;(2)巢式PCR技术,在扩增大片段目的DNA 时,先用非特意性引物扩增再用特意性引物对第一 次扩增产物进行第二次扩增,以获得可供分析的 DNA;(3)竞争PCR技术,是一种定量PCR,向PCR 反应体系中加人人工构建的带有突变的竞争模板, 通过控制竞争模板的浓度来确定目的模板的浓度, 对目的模板作定量研究;(4)实时荧光定量PCR技 术,在PCR反应体系中加人荧光基团,利用荧光信 号积累实时监测整个PCR进程,最后通过标准曲线 对未知模板进行定量分析,该法已广泛用于基因表 达研究、转基因研究等方面;(5)扩增的rDNA限制 酶切分析技术,根据原核生物rDNA序列的保守性, 将扩增的rDNA片段进行酶切,通过酶切图谱来分 析菌间的多样性;(6)RNA随机引导PCR技术,基 于任意寡核昔酸引物与RNA之间可能的配对,在 低严谨度条件下经聚合酶催化使链延伸,将细胞总 RNA或InRNA作为反转录反应的模板,此技术结 合单链构象多态性,用非变性胶分辨大小相同而构 象不同的片段,可用于诊断遗传突变及分析污染条 件下序列的多态性;(7)随机扩增多态DNA (RAPD)技术,是一种基于PCR检测PCR引物结合 位点序列改变的方法,通常以10bp的寡核昔酸序 列为引物,对基因组DNA随机扩增,电泳分离染色 扩‘增产物,再分析多态性。 1.2FISH技术 FISH技术利用荧光标记的探针在细胞内与特 异的互补核酸序列杂交,通过激发杂交探针的荧光 来检测信号。荧光探针比放射性探针更安全,具有 较好的分辨力,不需要额外的检测步骤。近年来, 由于FISH技术具有灵敏、便捷等优点,迅速发展完 善成为研究环境微生物的有力工具。此外,可用不 同激发和散射波长的荧光染料标记探针,在一步反 应中同时检测几个靶序列。该技术主要包括试样 固定、预处理、预杂交、探针和试样变性、杂交、漂洗 去除未结合的探针、检测杂交信号等步骤。由于 165rRNA具有遗传稳定性,因此成为FISH技术检 测最常用的靶序列。 1.3基因重组技术 基因重组技术是从供体生物的基因组中通过 酶切扩增等手段获取目的基因,与载体连接形成重 组DNA分子,再导入到受体细胞中,让外源基因得 以表达。在已经分离出的许多菌株中,与降解能力 有关的基因多在质粒体上。由于质粒很容易在细 菌的繁殖过程中遗失,对细菌降解能力的长期稳定 非常不利,可将其与污染物降解有关的酶基因重组 到大肠杆菌等微生物中进行表达,以此构建的各种 生物降解特性增强的重组菌可用于污染环境的治 理修复或发酵某些废弃物。 1.4生物信息学 20世纪后期,生物学的迅猛发展,从数量上和 质量上极大地丰富了基因组数据库、蛋白质数据 库、酶数据库和文献数据库等许多生物科学的数据 资源。已有多个国家和国际科研组织建立了生物 信息数据库,如欧洲分子生物学实验室(Eur叩ean MolecularBiologyLaboratory)核酸序列数据库和美 国国家生物技术情报中心(Nationaleente:fo:Bio- technologyInformation,NCBI)基因序列数据库等。 科学家利用计算机及生物信息分析软件分析这些 数据资源,确定大分子序列、结构、表达模式和生化 途径与生物数据之间的关系,区分生物个体间遗传 差异,揭示DNA多样性。例如,基本局部比对搜索 工具(BasieLoealAlignmentSearehTool,BLAST), 是一套在蛋白质数据库或DNA数据库中进行相似 性比较的分析工具。它基于Altschul等的方法「2〕, 在序列数据库中对查询序列进行同源性比对工作。 BLAST程序可对一条或多条、任何数量、任何形式的 序列在一个或多个核酸或蛋白序列库中进行比对,甚 至将有缺口的比对序列也考虑在内,利用比较结果中 的得分对序列进行相似性说明。基因的序列分析可 揭示出生物物种之间的关系,在污染治理研究中可用 于生物基因组特殊区域或特异基因的测序。 2分子生物技术在环境污染物降解 中的应用 2.1土壤试样总DNA的提取 用适当方法直接从土壤中提取DNA并纯化, 是从分子生物学角度对土壤微生物进行研究的前 提条件,而后可进行酶切、PCR扩增、核酸分子杂交 等分子生物学技术操作。从土壤中提取微生物 DNA主要分为汽接法和间接法}’{。直接法是在 ogram等的方法基础卜发展起来的,其主要包括2 个步骤:(l)原位细胞裂解;(2)DNA提取和纯化。 直接法提取的DNA超过细菌总DNA的60%且省 力,但提取的DNA常常有折断、腐殖酸污染、甚至 提取物中还夹杂有未知的胞外DNA和真核生物的 DNA。最先报道间接法的是Faegri等[‘〕,其主要包 括4个步骤:(l)分散土壤;(2)分离细胞与土壤; (3)细胞裂解;(4)DNA纯化。间接法提取DNA 产量低且费力,但纯度较高、DNA损伤小,提取的 大片段DNA可用来构建cos而d和细菌人工染色体 文库等。 2.2采用PCR及相关技术扩增分析DNA片段 可降解污染物的微生物必然能产生分解代谢 该污染物的酶。selvaratnam等L’l用编码苯酚单加 氧酶dmpN摹因的RT一PCR技术来检测序列间歇 式活性污泥反应器‘{一,降解酚的假单胞菌。检测结 果表明,RT一PCR技术不仅能检测微生物降解酚的 能力,还能测量dmpN基因的转录水平,从而确定假 单胞菌特殊的分解活性,发现了在转录水平下,酚 浓度与通气时间之问存在正相关关系。 将PCR技术和变性梯度凝胶电泳(DGGE)结 合起来,在变性条件适当的情况下能分辨一个碱基 对,分辨率较高。染色后的凝胶用成像系统进行分 析,可在一定程度l几反应试样的复杂性。条带的多 少能反应试样「 一 }1微生物组成的差异,条带的亮度能 反应试样中微生物的多少。基于以上优点,日前该 技术在微生物群落结构的分析和动态研究方面得 到了厂‘泛应用。DGGE可通过分析PCR扩增的基 因点突变来探索微生物的复杂性。徐玉泉等[“〕从 某废水中分离出一株能以苯酚为惟一碳源的菌株 PHEA一2,使用PCR一DGGE技术对该菌165 rDNA进行分析,发现该菌与醋酸钙不动杆菌同源。 M盯sh等r了)利用PcR一DGGE技术获得了活性污泥 中真核微生物的种群变化情况。王峰等下8〕采用 PCR一DGGE技术对城市污水化学生物絮凝处理中 活性污泥和生物膜微生物种群结构进行了分析,结 果表明活性污泥培养前后微生物种群结构发生r 很大改变。 RAPD技术也是一种应用比较广泛的以多态性 引物来扩增某些片段的技术。RAPD技术可用于检 测含有混合微生物种群的各种微生物反应器中微 生物的多样性。用RAPD技术分析检测实验室规 模的油脂淤泥培养料中的细菌菌群发现,用油脂淤 泥改良过的培养料比未改良的更适于不同的微生 物种群生长[9j。vainio等t’。〕从516种孤立的菌落 中提取出165rDNA,经PCR扩增后进行测序,检测 活性污泥中微生物种群的结构。这些组合技术的 应用显著增强r对微生物的检测和鉴定能力,为理 论研究工艺优化及提高生物处理效率提供了条件。 2.3基因重组 基因工程技术应用于环境保护起始于20世纪 80年代。其基本原理是通过基因分离和重组技术, 将目的基因片段,比如可编码降解某种污染物的 酶,转移到受体生物细胞中并表达,使受体生物具 有该目的基因表达显现的特殊性状,从而达到治理 污染的目的。找到特定污染的抗性基因,利用基因 重组技术转基因后也可获得其他抗性植株以及筛 选到可转化污染物的植物,还可开发超量积累植物 进行污染土壤的生物修复。 罗如新等L”〕用放射性同位素标记tfdc基因片 段作探针,Southemblot杂交定位Ll菌株的邻苯二 酚1,2一双加氧酶基因位于Pstl的I片段和BamH I的M、N片段,回收并将其直接克隆至表达载体 pKT230卜,获得的重组子能转化不具开环酶活性 的甲胺磷降解菌P2,得到高于天然宿主21倍的邻 苯二酚1,2一双加氧酶。stingley等{”〕通过构建基 因文库和重组质粒等基因工程方法证实了NidAB 双加氧酶是降解菲的关键酶类,并首次鉴定出此基 因通过磷苯二甲酸实现降解功能。chae等‘”}发现 不能降解苯酚的su如lobusso扣taricu、98/2菌株中 的儿茶酚2,3一双加氧酶基因与能降解苯酚的 sulfolo右u,,o如taricu、咫有[6J源区,分析得知它们 是山共同祖先进化而来。把儿茶酚2,3一双加氧酶 基因克隆到大肠杆菌中表达,可获得有较高降解活 性的双加氧酶。 重金属污染是环境污染的重要方面之一。随 着分子生物学技术的发展,越来越多的修复性蛋白 基因正被从植物、微生物和动物中陆续分离出来, 如汞离子还原酶基因、有机汞裂解酶基因、汞转运 蛋自基因、金属硫蛋白基因、植物络合素合成酶基 因、铁离子还原酶基因和锌转运蛋白基因L’‘〕。这些 基因通过基因工程的改造,重组到合适的受休细胞 中表达相应的蛋白质和酶,达到治理难以降解的有 毒有害污染物的目的。sorsa等〔”〕把MTS插人 LamB序列的153位点,在中表达MTs,解决 r细胞内MTs对金属离子有限的吸附能力。综L 所述,基因重组技术具有快速、高效的特性,已逐渐 成为环境生物技术的研究热点。 2.4FISH技术 FISH技术利用核糖体内长度适中(约1500bp)、 高度保守的165:RNA序列作为理想的基因分类靶 序列,其中使用的165:RNA寡核普酸探针一般是 进行了荧光标记的20bp左右特异性核昔酸片段, 利用该报告分子(如生物素、地高辛)与荧光素标记 的特异亲和素之间的免疫化学反应,经荧光检测系 统对待测DNA进行定性、定量或相对定位分析。 FISH技术能提供处理过程中微生物的数量、空间分 布和原位生理学等信息。 硝化细菌是一类生理上非常特殊的化能自氧 菌,传统的研究方法要经过富集、分离、分类和鉴定 步骤,耗时长。HSH技术的引人解决了上述困难。 FlsH技术还被广泛用于活性污泥系统、硝化流化床 反应器和膜生物反应器等废水处理系统}’61。 基因工程微生物越来越多地被用于农业害虫 控制和环境污染的生物修复,对人类健康和环境的 影响引起广泛关注。1994年出现了一种新的标记 系统:绿色荧光蛋白(GFP),由于GFP基因表达产 物对细胞没有毒害作用,且由GFP产生的荧光标记 检测卜分方便、简单。在某些被污染的环境中可分 离出降解该污染物的细菌,通过基因重组等手段使 用GFP分子标记,可更容易的分离检测被标记的 细胞叫。 Bastes等[’8]进行了苯酚降解菌染色体GFP基 因标记实验。通过PCR和Southemblot分析,证明 GFP基因已成功整合到宿主细胞的染色体中。对 标记菌与野生型的降解能力比较结果证明,GFP分 子标记的插人并不影响细胞的苯酚降解能力。 用G即标记Pseudomonasputida,研究活性淤 泥中细菌存活情况{’9飞。Pseudomonasputida被转到 活性淤泥2min后,观察到细胞在淤泥絮凝物间自 由游动;培养3d后,发现荧光细胞减少,大部分已 被合并到淤泥絮凝物中,以防止细菌被原生动物捕 食。用oFP标记石.eozi和Serraliamarceseern,考 察菌株附到絮凝物卜的过程{’()j。使用表面荧光显 微镜能将带有GFP标记的细胞从活性污泥中区分 开,井进行观察和记数。而聚焦激光扫描显微镜 (cLsM)可使GFP标记细菌产生三维轮廓,结合表 面荧光显微镜和CLSM观察GFP标记细胞,结果表 明,细胞表面疏水性在细菌附到絮凝物的过程中起 重要作用,两种细菌附在絮凝物上的模式有很大不 同,通过这种方法可更好地理解细菌赫附机理,有 助于提高废水处理效果。 3结语 分子生物技术的应用使研究人员可从微观的 角度更细致深人地了解微生物对污染物降解的具 体生理生化机制,在分子水平 _ _ [揭示生物体吸收、 迁移、积累有害物质最终被毒害,及适应、抗性等生 态问题,从而筛选到更多有利用价值的微生物。随 着越来越多微生物全部基因序列的解码,对各种细 菌体内可降解基因的分布和表达会有更深人的了 解,有关技术的发展和成熟必将对污染物的降解过 程有一个整体的、生态水平上的认识。 参考文献 l李凤,刘世贵 . 分子生物学技术在环境微生物研究中的 应用 . 世界科技研究与发展,2003,25(4):88一92 2AltsehulSF,GishW,MillerW,oealalign- mentsearehtool . JMolBiol,1990,215(3):403一410 3魏志琴,曾秀敏,宋培勇 . 土壤微生物DNA提取方法研 究进展 . 遵义师范学院学报,2006,8(4):53一56 4FaegriA,TorsvikVL,ia]andfunga] aetivitiesin5011:seParationofbacteriaandfungibyaraPid fraetionatedeentrifugationteehnique5011BiolBioehem, 1977,9(2):105一112 5SelvaratnamS,SehoedelBA,MeFarlandBL,etal APPlieationofreversetranseriPtasePCRformonitoring exPressionoftheeataboliedmPNgeneinaPhenol- degradingsequencingbatehreaetor . APPIEnviron Microbiol,1995,61(11):3981一3985 6徐玉泉,张维,陈明等 . 一株苯酚降解菌的分离和鉴 定 . 环境科学学报,2000,20(4):450一455 7MarshTL,LiuWT,ForneyLJ . Beginningamoleeular analysisoftheeukiU洲aleollllllunityinaetivatedsludge. WaterSeiTechnol,1998,37(4一5):455一460 8王峰,傅以钢,夏四清等.PCR一DGGE技术在城市污 水化学生物絮凝处理中的特点 . 环境科学,2004,25 (6):74一79 9涂书新,韦朝阳 . 我国生物修复技术的现状与展望 . 地 理科学进展,2004,23(6):20一31 10VainioEJ,MoilanenA,KoivulaTT,etal . ComParison ofpartial165rRNAgenesequeneesobtainedfromactiva- tedsludgebaeteria . APPIMierobiolBioteehnol,1997,48 (l):73一79 11罗如新,张素琴,李顺鹏 . 邻苯二酚1,2一双加氧酶

上一篇:论文摘要研究背景

下一篇:本科论文文献搜索