欢迎来到学术参考网
当前位置:发表论文>论文发表

波动方程毕业论文

发布时间:2023-03-12 19:38

波动方程毕业论文

。。。。。数学物理方程似乎都是2阶的,波动方程,拉普拉斯方程,热传导方程,哪个不是2阶的啊。

你是本科的吧,那就抓住一个方程(个人觉得热传导方程比较简单),进行深入的探讨。因此你就只看一个方程就行。

你的时间不多了,马上就答辩,尽量写一些应用方向的东西,那个地方还比较简单,理论不太好弄。

我的论文题目是用麦克斯韦方程组浅谈磁场的性质 我是学物理的 能给些建议吗 谢谢

我是学物理师范专业,毕业论文是生物物理学关于基因数据库的。你所说的用麦克斯韦方程组浅谈磁场的性质,那么这个范围有点狭窄但可写的内容又有很多,你如果写纯粹是研究调研的话,我个人建议你先参考一些前人。如果写得是有些前言的东西,自己先复习下相关知识,找灵感,找到头绪后看看是不是已经有人已经写了相关东西,参阅后再写。

诺贝尔奖论文可以在哪里找到?

  07年11期的《发现》上有一篇题为“3篇地球人都知道的论文”的文章,原载《大学生》。文中提到的3篇论文,有一篇地球人是都知道的,就是爱因斯坦有关狭义相对论论文,但地球人不一定都知道这篇文章的题目是什么。爱因斯坦在1905年发表的这篇论文是当年发表的五篇论文之一,题目叫“论动体的电动力学”。而另外二篇就相对就要生疏多了。但作为物理教学工作者,一般可能都会听说过这“一页多的诺贝尔奖论文”。源于《发现》的这一篇“3篇地球人都知道的论文”,我想在此特意介绍一下这“一页多的诺贝尔奖论文”。

  一 故事发生在二十世纪初的法国巴黎。

  一样的延续着千百年的灯红酒绿,香榭丽舍大道上散发着繁华和暧昧,红磨坊里弥漫着躁动与彷徨。

  而在此时的巴黎,有一个年轻人,名字叫做德布罗意(De Broglie),从他的名字当中可以看出这是一个贵族,De 是法国贵族的标志,像德国贵族的“冯(von)”一样。事实上德布罗意的父亲正是法国的一个伯爵,并且是正是一位当权的内阁部长。这样一个不愁吃不愁穿只是成天愁着如何打发时光的花花公子自然要找一个能消耗精 力的东西来磨蹭掉那些无聊的日子(其实象他这样的花花公子大约都会面临这样的问题)

  德布罗意则找到了一个很酷的“事业”——研究中世纪史。据说是因为中世纪史中有着很多神秘的东西吸引着这位年轻人。

  时间一转就到了1919,这是一个科学界急剧动荡动着的年代。就在这一年,德布罗意突然移情别恋对物理产生了兴趣,尤其是感兴趣于当时正流行的量子论。具体来说就是感兴趣于一个在当时很酷的观点:光具有粒子性。
  这一观点早在十几年前由普朗克提出,而后被爱因斯坦用来解释了光电效应,但即便如此,也非常不见容于物理学界各大门派。

  德布罗意倒并不见得对这一观点的物理思想有多了解,也许他的理解也仅仅就是理解到这个观点是在说“波就是粒子”。或许是一时冲动,或许是因为年轻而摆酷,德布罗意来到了一派宗师朗之万门下读研究生。

  从此,德布罗意走出了一道足以让让任何传奇都黯然失色的人生轨迹。

  二

  历史上德布罗意到底花了多少精力去读他的研究生也许已经很难说清,事实上德布罗意在他的5年研究生生涯中几乎是一事无成。事实上也 可以想象,一个此前对物理一窍不通的中世纪史爱好者很难真正的在物理上去做些什么。

  白驹过隙般的五年转眼就过去了,德布罗意开始要为他的博士论文发愁了。

  其实德布罗意大约只是明白普朗克爱因斯坦那帮家伙一直在说什么波就是粒子,(事实上对于普朗克大约不能用“一直”二字,此时的普朗克已经完全抛弃自己当初的量子假设,又回到了经典的就框架。)而真正其中包含的物理,他能理解多少大约只有上帝清楚。

  五年的尽头,也就是在1924,德布罗意终于提交了自己的博士论文

  他的博士论文只有一页纸多一点,不过可以猜想这一页多一点的一份论文大约已经让德布罗意很头疼了,只可惜当时没有枪手可以雇来帮忙写博士论文。

  他的博士论文只是说了一个猜想,既然波可以是粒子,那么反过来粒子也可以是波。而进一步德布罗意提出波的波矢和角频率与粒子动量和能量的关系是:
  动量=普朗克常数/波矢
  能量=普朗克常数*角频率
  这就是他的论文里提出的两个公式

  而这两个公式的提出也完全是因为在爱因斯坦解释光电效应的时候提出光子的动量和能量与光的参数满足这一关系。

  可以想象这样一个博士论文会得到怎样的回应。 在对论文是否通过的投票之前,德布罗意的老板朗之万就事先得知论文评审委员会
  的六位教授中有三位已明确表态会投反对票。本来在欧洲,一个学生苦读数年都拿不到学位是件很正常的事情,时至今日的欧洲也依然如此。何况德布罗意本来就是这么一个来混日子的的花花公子。

  然而这次偏偏又有些不一样——德布罗意的父亲又是一位权高望众的内阁部长,而德布罗意在此厮混五年最后连一个Ph.D都没拿到,双方面子上自然也有些挂不住。

  情急之中,朗之万往他的一个好朋友那里寄了一封信。

  当初的朗之万是不是碍于情面想帮德布罗意混得一个PhD已不得而知,然而事实上,这一封信却改变了科学发展的轨迹。

  三

  这封信的收信人是爱因斯坦。

  信的内容大致如下:

  尊敬的爱因斯坦阁下:

  在我这里有一位研究生,已经攻读了五年的博士学位,如今即将毕业,在他提交的毕业论文中有一些新的想法………………

  请对他的论文作出您的评价。

  另外顺便向您提及,该研究生的父亲是弊国的一位伯爵,内阁的**部长,若您能……,将来您来法国定会受到隆重的接待

  朗之万

  在信中,大约朗之万的潜台词似乎就是如果您不肯给个面子,呵呵,以后就甭来法国了。

  不知是出于知趣呢,还是出于当年自己的离经叛道而产生的惺惺相惜,爱因斯坦很客气回了一封信,大意是该论文里有一些很新很有趣的思想云云。

  此时的爱因斯坦虽不属于任何名门望派,却已独步于江湖,颇有威望。有了爱因斯坦的这一封信,评审委员会的几位教授也不好再多说些什么了。

  于是,皆大欢喜。

  浪荡子弟德布罗意就这样“攻读”下了他的PhD(博士)。

  而按照当时欧洲的学术传统,朗之万则将德布罗意的博士论文印成若干份分寄到了欧洲各大学的物理系。

  大约所有人都以为事情会就此了结,多少年以后德布罗意那篇“很新很有趣”博士论文也就被埋藏到了档案堆里了。德布罗意大约也就从此以一个PhD的身份继续自己的浪荡生活。

  但历史总是喜欢用偶然来开一些玩笑,而这种玩笑中往往也就顺带着改变了许多人的命运。

  在朗之万寄出的博士论文中,有一份来到了维也纳大学。

  四

  1926年初。

  维也纳。

  当时在维也纳大学主持物理学术活动的教授是德拜,他收到这份博士论文后,将它交给了他的组里面一位已经年届中年的讲师。

  这位讲师接到的任务是在两周后的seminar(学术例会)上将该博士论讲一下。

  这位“老”讲师大约早已适应了他现在这种不知算是平庸还是算是平静的生活,可以想象,一个已到不惑之年而仍然只在讲师的位置上晃荡的人,其学术前途自然是朦胧而晦暗。 而大约也正因为这位讲师的这种地位才使得它可以获得这个任务,因为德拜将任务交给这位讲师时的理 由正是“你现在研究的问题不很重要,不如给我们讲讲德布罗意的论文吧”。

  这位讲师的名字叫做——薛定谔(Schrodinger)

  在接下来的两周里,薛定谔仔细的读了一下德布罗意的“博士论文”,其实从内容上来讲也许根本就用不上“仔细”二字,德布罗意的这篇论文只不过一页纸多一点,通篇提出的式子也不过就两个而已,并且其原型是已经在爱因斯坦发表的论文中出现过的。

  然而论文里说的话却让薛定谔一头雾水,薛定谔只知道德布罗意大讲了一通“波即粒子,粒子即波”,除此之外则是“两个黄鹂鸣翠柳“——不知所云。

  两周之后,薛定谔硬着头皮把这篇论文的内容在seminar上讲了一下,讲者不懂,听者自然也是云里雾里,而老板德拜则做了一个客气的评价:

  “这个年轻人的观点还是有些新颖的东西的,虽然显得很孩子气,当然也许他需要更深入一步,比如既然提到波的概念,那么总该有一个波动方程吧”
  多年以后有人问德拜是否后悔自己当初作出的这一个评论,德拜自我解嘲的说“你不觉得这是一个很好的评论吗?”

  并且,德拜建议薛定谔做一做这个工作,在两周以后的seminar上再讲一下。

  两周以后。

  薛定谔再次在seminar上讲解德布罗意的论文,并且为德布罗意的“波”找了一个波动方程。

  这个方程就是“薛定谔方程”!

  当然,一开始德布罗意的那篇论文就已经认为是垃圾,而从垃圾产生出来的自然也不会离垃圾太远,于是没人真正把这个硬生生给德布罗 意的“波”套上的方程当一回事,甚至还有人顺口编了一首打油诗讽刺薛定谔的方程:

  欧文用他的psi,计算起来真灵通;
  但psi真正代表什么,没人能够说得清。

  (欧文就是薛定谔,psi是薛定谔波动方程中的一个变量)

  故事的情节好像又一次的要归于平庸了,然而平庸偏偏有时候就成了奇迹的理由。

  大约正是薛定谔的“平庸”使得它对自己的这个波动方程的平庸有些心有不甘,他决定再在这个方程中撞一撞运气。

  五

  上面讲到的情节放到当时的大环境中来看就好像是湖水下的一场大地震——从湖面上看来却是风平浪静。

  下面请允许我暂时停止对“老”讲师薛定谔的追踪,而回过头来看一看这两年发生物理学界这个大湖表面的风浪。

  此前,玻尔由普朗克和爱因斯坦的理论的启发提出了著名的“三部曲”,解释了氢光谱,在这十几年的发展当中,由玻尔掌门的哥本哈根学派已然是量子理论界的“少林武当”。

  1925,玻尔的得意弟子海森堡提出了著名的矩阵力学,进一步抛弃经典概念,揭示量子图像,精确的解释了许多现象,已经成为哥本哈根学派的镇门之宝——量子界的“屠龙宝刀”。不过在当时懂矩阵的物理学家没有几个,所以矩阵力学的影响力仍然有限。事实上就是海森堡本人也并不懂“矩阵”,而只是在他的理论出炉之后哥本哈根学派的另一位弟子玻恩告诉海森堡他用的东西在数学中就是矩阵。

  再回过头来再关注一下我们那个生活风平浪静的老讲师薛定谔在干些什么——我指的是在薛定谔讲解他的波动方程之后的两个星期里。

  事实上此时的他正浸在温柔乡中——带着他的情妇在维也纳的某个滑雪场滑雪。

  不知道是宜人的风景还是身边的温香软玉,总之是冥冥之中有某种东西,给了薛定谔一个灵感,而就是这一个灵感,改变了物理学发展的轨迹。

  薛定谔从他的方程中得出了玻尔的氢原子理论!

  六

  倚天一出,天下大惊。

  从此谁也不敢再把薛定谔的波动方程当成nonsense(扯淡)了。

  哥本哈根学派的掌门人玻尔更是大为惊诧,于是将薛定谔请到哥本哈根,详细切磋量子之精妙。

  然而让玻尔遗憾的是,在十天的漫长“切磋”中,两个人根本都不懂对方在说些什么。在一场让两个人都疲惫不堪却又毫无结果的“哥本哈 根论剑”之后,薛定谔回到了维也纳。

  薛定谔回到了维也纳之后仍然继续做了一工作,他证明了海森堡的矩阵力学和他的波动方程表述的量子论其实只是不同的描述方式。

  从此“倚天”“屠龙”合而为一。

  此后,薛定谔虽也试图从更基本的假设出发导出更基本的方程,但终究没有成功,而不久,他也对这个失去了兴趣,转而去研究“生命是什么”。

  历史则继续着演义他的历史喜剧。

  德布罗意,薛定谔都在这场喜剧中成为诺奖得主而名垂青史。

  尾声

  其实在这一段让人啼笑皆非的历史当中,上帝还是保留了某种公正的。薛定谔得出它的波动方程仅在海森堡的矩阵力学的的诞生一年之后,倘若上帝把这个玩笑开得更大一点,让薛定谔在1925年之前就导出薛定谔方程,那恐怕矩阵力学就根本不可能诞生了(波动方程也就是偏微分方程的理论是为大多数物理学家所熟悉的,而矩阵在当时则没有多少人懂)。如此则此前在量子领域已辛苦奋斗了十几年的哥本哈根学派就真要吐血了!

  薛定谔方程虽然搞出了这么一个波动方程,却并不能真正理解这个方程精髓之处,而对它的方程给出了一个错误的解释——也许命中注定不该属于他的东西终究就不会让他得到。对薛定谔方程的正确解释是有哥本哈根学派的玻恩作出的。(当然玻恩的解释也让物理界另一位大师—— 爱因斯坦极为震怒,至死也念念不忘“上帝不会用掷色子来决定这个世界的”,此为后话)。

  更基本的量子力学方程,也就是薛定谔试图获得但终究无力企及的的基本理论,则是由根本哈根学派的另一位少壮派弟子——狄拉克导出的,而狄拉克则最终领袖群伦,建起了了量子力学的神殿。

  仅供参考

关于微观世界的论文,最好多来几片。在线等 好的加分。谢谢

  微观世界中的轮盘赌——量子论

  如果说光在空间的传播是相对论的关键,那么光的发射和吸收则带来了量子论的革命。我们知道物体加热时会放出辐射,科学家们想知道这是为什么。为了研究的方便,他们假设了一种本身不发光、能吸收所有照射其上的光线的完美辐射体,称为“黑体”。研究过程中,科学家发现按麦克斯韦电磁波理论计算出的黑体光谱紫外部分的能量是无限的,显然发生了谬误,这被“紫外线灾难。”1900年,德国物理学家普朗克提出了物质中振动原子的新模型。他从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光量子,简称光子。根据这个模型计算出的黑体光谱与实际观测到的相一致。这揭开了物理学上崭新的一页。量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不仅给光学,也给整个物理学提供了新的概念,故通常把它的诞生视为近代物理学的起点。
  量子假说与物理学界几百年来信奉的“自然界无跳跃”直接矛盾,因此量子理论出现后,许多物理学家不予接受。普朗克本人也十分动摇,后悔当初的大胆举动,甚至放弃了量子论继续用能量的连续变化来解决辐射的问题。但是,历史已经将量子论推上了物理学新纪元的开路先锋的位置,量子论的发展已是锐不可挡
  第一个意识到量子概念的普遍意义并将其运用到其它问题上的是爱因斯坦。他建立了光量子理论解释光电效应中出现的新现象。光量子论的提出使光的性质的历史争论进入了一个新的阶段。自牛顿以来,光的微粒说和波动说此起彼伏,爱因斯坦的理论重新肯定了微粒说和波动说对于描述光的行为的意义,它们均反映了光的本质的一个侧面:光有时表现出波动性,有时表现出粒子性,但它既非经典的粒子也非经典的波,这就是光的波粒二重性。主要由于爱因斯坦的工作,使量子论在提出之后的最初十年里得以进一步发展。
  在1911年,卢瑟福提出了原子的行星模型,即电子围绕一个位于原子中心的微小但质量很大的核,即原子核的周围运动。在此后的20年中,物理学的大量研究集中在原子的外围电子结构上。这项工作创立了微观世界的新理论,量子物理,并为量子理论应用于宏观物体奠定了基础。但是原子中心微小的原子核仍然是个谜。
  原子核是微观世界中的重要层次,量子力学是研究微观粒子运动规律的理论,是现代物理学的理论基础之一,是探索原子核奥秘所不可缺少的工具。在原子量子理论被提出后不久,物理学家开始探讨原子中微小的质量核-原子核。在原子中,正电原子核在静态条件下吸引负电子。但是什么使原子核本身能聚合在一起呢?原子核包含带正电质子和不带电的中子,两者之间存在巨大的排斥力,而且质子彼此排斥(不带电的中子没有这种排斥力)。使原子核聚合在一起,并且克服侄子间排斥力的是一种新的强大的力,它只在原子核内部起作用。原子弹的巨大能量就来自这种强大的核力。原子核和核力性质的研究对20世纪产生了巨大的影响,放射现象、同位素、核反应、裂变、聚变、原子能、核武器和核药物都是核物理学的副产品。
  丹麦物理学家玻尔首次将量子假设应用到原子中,并对原子光谱的不连续性作出了解释。他认为,电子只在一些特定的圆轨道上绕核运行。在这些轨道上运行时并不发射能量,只当它从一个较高能量的轨道向一个较低轨道跃迁时才发射辐射,反之吸收辐射。这个理论不仅在卢瑟福模型的基础上解决了原子的稳定性问题,而且用于氢原子时与光谱分析所得的实验结果完全符合,因此引起了物理学界的震动。玻尔指导了19世纪20到年代的物理学家理解量子理论听起来自相矛盾的基本结构,他实际上既是这种理论的“助产师”又是护士。
  玻尔的量子化原子结构明显违背古典理论,同样招致了许多科学家的不满。但它在解释光谱分布的经验规律方面意外地成功,使它获得了很高的声誉。不过玻尔的理论只能用于解决氢原子这样比较简单的情形,对于多电子的原子光谱便无法解释。旧量子论面临着危机,但不久就被突破。在这方面首先取得突破的是法国物理学家德布罗意。他在大学时专业学的是历史,但他的哥哥是研究X射线的著名物理学家。受他的影响,德布罗意大学毕业后改学物理,与兄长一起研究X射线的波动性和粒子性的问题。经过长期思考,德布罗意突然意识到爱因斯坦的光量子理论应该推广到一切物质粒子,特别是光子。1923年9月到10月,他连续发表了三篇论文,提出了电子也是一种波的理论,并引入了“驻波”的概念描述电子在原子中呈非辐射的静止状态。驻波与在湖面上或线上移动的行波相对,吉它琴弦上的振动就是一种驻波。这样就可以用波函数的形式描绘出电子的位置。不过它给出的不是我们熟悉的确定的量,而是统计上的“分布概率”,它很好地反映了电子在空间的分布和运行状况。德布罗意还预言电子束在穿过小孔时也会发生衍射现象。1924年,他写出博士论文“关于量子理论的研究”,更系统地阐述了物质波理论,爱因斯坦对此十分赞赏。不出几年,实验物理学家真的观测到了电子的衍射现象,证实了德布罗意的物质波的存在。
  沿着物质波概念继续前进并创立了波动力学的是奥地利物理学家薛定谔。他从爱因斯坦的一篇论文中得知了德布罗意的物质波概念后立刻接受了这个观点。他提出,粒子不过是波动辐射上的泡沫。1925年,他推出了一个相对论的波动方程,但与实验结果不完全吻合。1926年,他改而处理非相对论的电子问题,得出的波动方程在实验中得到了证实。
  1925年,德国青年物理学家海森伯格写出了一篇名为《关于运动学和力学关系的量子论重新解释》的论文,创立了解决量子波动理论的矩阵方法。玻尔理论中的电子轨道、运行周期这样古典的然而是不可测量的概念被辐射频率和强度所代替。经过海森伯格和英国一位年轻的科学家狄喇克的共同努力,矩阵力学逐渐成为一个概念完整、逻辑自洽的理论体系。
  波动力学与矩阵力学各自的支持者们一度争论不休,指责对方的理论有缺陷。到了1926年,薛定谔发现这两种理论在数学上是等价的,双方才消除了敌意。从此这两大理论合称量子力学,而薛定谔的波动方程由于更易于掌握而成为量子力学的基本方程。
  海森伯格不确定原则是量子论中最重要的原则之一。它指出,不可能同时精确地测量出粒子的动量和位置,因为在测量过程中仪器会对测量过程产生干扰,测量其动量就会改变其位置,反之亦然。量子理论跨越了牛顿力学中的死角。在解释事物的宏观行为时,只有量子理论能处理原子和分子现象中的细节。但是,这一新理论所产生的似是而非的矛盾说法比光的波粒二重性还要多。牛顿力学以确定性和决定性来回答问题,量子理论则用可能性和统计数据来回答。传统物理学精确地告诉我们火星在哪里,而量子理论让我们就原子中电子的位置进行一场赌博。海森伯格不确定性使人类对微观世界的认识受到了绝对的限制,并告诉我们要想丝毫不影响结果,我们就无法进行测量。
  量子力学的奠基人之一薛定谔在1935年就意识到了量子力学中不确定性的问题,并假设了一个著名的猫思维实验:“一只猫关在一钢盒内,盒中有下述极残忍的装置(必须保证此装置不受猫的直接干扰):在盖革计数器中有一小块辐射物质,它非常小,或许在1小时中只有一个原子衰变。在相同的几率下或许没有一个原子衰变。如果发生衰变,计数管便放电并通过继电器释放一个锤,击碎一个小小的氰化物瓶。如果人们使这整个系统自在1个小时,那么人们会说,如果在此期间没有原子衰变,这猫就是活的。第一次原子衰变必定会毒杀了这只猫。”
  常识告诉我们那只猫是非死即活的,两者必居其一。可是按照量子力学的规则,盒内整个系统处于两种态的叠加之中,一态中有活猫,另一态中有死猫。但是有谁在现实生活中见过一个又活又死的猫呢?猫应该知道自己是活还是死,然而量子理论告诉我们,这个不幸的动物处于一种悬而未决的死活状态中,直到某人窥视盒内看个究竟为止。此时,它要么变得生气勃勃,要么立刻死亡。如果把猫换成一个人,那么详谬变得更尖锐了,因为这样一来,监禁在盒内的那位朋友会自始至终地意识到他是健康与否。如果实验员打开盒子,发现他仍然是活的,那时他可以问他的朋友,在此观察前他感觉如何,显然这位朋友会回答在所有的时间中他绝对活着。可这跟量子力学是相矛盾的,因为量子理论认为在盒内的东西被观察之前那位朋友仍处在活死迭加状态中。
  玻尔敏锐地意识到它正表征了经典概念的局限性,因此以此为基础提出“互补原则”,认为在量子领域总是存在互相排斥的两种经典特征,正是它们的互补构成了量子力学的基本特征。玻尔的互补原则被称为正统的哥本哈根解释,但爱因斯坦一直不同意。他始终认为统计性的量子力学是不完备的,而互补原理是一种绥靖哲学,因而一再提出假说和实验责难量子论,但玻尔总能给出自洽的回答,为量子论辩护。爱因斯坦与玻尔的论战持续了半个世纪,直到他们两人去世也没有完结。
  薛定谔猫实验告诉我们,在原子领域中实在的佯谬性质与日常生活和经验是不相关的,量子幽灵以某种方式局限于原子的阴影似的微观世界之中。如果遵循量子理论的逻辑到达其最终结论,则大部分的物理宇宙似乎要消失于阴影似的幻想之中。爱因斯坦决不愿意接受这种逻辑结论。他反问:没有人注视时月亮是否实在?科学是一项不带个人色彩的客观的事业,将观察者作为物理实在的一个关键要素的思想看来与整个科学精神相矛盾。如果没有一个“外在的”具体世界供我们实验与测量,全部科学不就退化为追逐想象的一个游戏了吗
  量子理论革命性的特点,一开始就引起了关于它的正确性及其解释内容的激烈争论,在20世纪中这个争论一直进行着。自然法则从根本上将是否具有随机性?在我们的观察中是否存在实体?我们又是否受到了观察的现象的影响?爱因斯坦率先从几个方面对量子理论提出质疑。他不承认自然法则是随机的。他不相信“上帝在和世界玩骰子”。在和玻尔的一系列著名的论战中,爱因斯坦又一次提出了批判,试图结实量子理论潜在的漏洞、错误和缺点。玻尔则巧妙地挫败了爱因斯坦的所有攻击。在1935年的一篇论文中,爱因斯坦提出了一个新证据:断言量子理论无法对自然界进行完全的描述。根据爱因斯坦的说法,一些无法被量子理论预见的物理现象应该能被观测到。这一挑战最终导致阿斯派特做了一系列著名的试验,准备用这些试验解决这一争论。阿斯派特的实验详尽地证明了量子理论的正确性。阿斯派特认为,量子理论能够预见但无法解释一些奇妙的现象,爱因斯坦断言这一点是不可能的。由此似乎信息传播地比光速还快-很明显地违背了相对论和因果律。阿斯派特的实验结论仍有争议,但它们已促成了关于量子论的更多的奇谈怪论
  由玻尔和海森伯格发展起来的理论和哥本哈根派的观点,尽管仍有争论,却逐渐在大多数物理学家中得到认可。按照该学派的观点,自然规律既非客观的,也非确定的。观察者无法描述独立于他们之外的现实。就象不确定律和测不准定律告诉我们的一样,观察者只能受到观察结果的影响。按自然规律得出的实验性预见总是统计性的而非确定性的。没有定规可寻,它仅仅是一种可能性的分布。
  电子在不同的两个实验中表现出的波动性和粒子性这一表面上的矛盾是互补性原理的有关例子。量子理论能够正确地、连续地预测电子的波动性或粒子性,却不能同时对两者进行预测。按照玻尔的观点,这一矛盾是我们在对电子性质的不断探索中,在我们的大脑中产生的,它不是量子理论的一部分。而且,从自然界中只能得到量子理论提供的有限的、统计性的信息。量子理论是完备的:该理论未能告诉我们的东西或许是有趣的猜想或隐喻。但这些东西既不可观测,也不可测量,因而与科学无关。
  哥本哈根解释未能满足爱因斯坦关于一个完全客观的和决定性的物理定律应该是什么样的要求。几年后,他通过一系列思维推理实验向玻尔发起挑战。这些实验计划用来证明在量子理论中的预测中存在着不一致和错误。爱因斯坦用两难论或量子理论中的矛盾向玻尔发难。玻尔把问题稍微思考几天,然后就能提出解决办法。爱因斯坦男买内过分地看重了一些东西或者忽略了某些效应。有一次,具有讽刺意味的是爱因斯坦忘记了考虑他自己提出的广义相对论。最终,爱因斯坦承认了量子理论的主观一致性,但他仍固执地坚持一个致命的批判:EPR思维实验。
  1935年,爱因斯坦和两个同事普多斯基和罗森合作写了一篇驳斥量子理论完备性的论文,在物理学家和科学思想家中间广为流传。该论文以三个人姓氏的第一个字母合称EPR论文。他们假设有两个电子:电子1和电子2发生碰撞。由于它们带有相同的电荷,这种碰撞是弹性的,符合能量守衡定律,碰撞后两电子的动量和运动方向是相关的。因而,如果测出了电子1的位置,就能推知电子2的位置。假设在碰撞发生后精确测量电子1的位置,然后测量其动量。由于每次只测量了一个量,测量的结果应该是准确的。由于电子1、2之间的相关性,虽然我们没有测量电子2,即没有干扰过它,但仍然可以精确推测电子2的位置和动量。换句话说,我们经过一次测量得知了电子的位置和动量,而量子理论说这是不可能的,关于这一点量子理论没有预见到。爱因斯坦及其同事由此证明:量子理论是不完备的。
  玻尔经过一段时间的思考,反驳说EPR实验非但没有证否量子理论,而且还证明了量子理论的互补性原理。他指出,测量仪器、电子1和电子2共同组成了一个系统,这是一个不可分割的整体。在测量电子1的位置的过程中会影响电子2的动量。因此对电子1的测量不能说明电子2的位置和动量,一次测量不能代替两次测量。这两个结果是互补的和不兼容的,我们既不能说系统中一个部分受到另一个部分的影响,也不能试图把两个不同实验结果互相联系起来。EPR实验假定了客观性和因果关系的存在而得出结论认为量子理论是不完备的,事实上这种客观性和因果性只是一种推想和臆测。
  尽管人们对量子理论的含义还不太清楚,但它在实践中获得的成就却是令人吃惊的。尤其在凝聚态物质——固态和液态的科学研究中更为明显。用量子理论来解释原子如何键合成分子,以此来理解物质的这些状态是再基本不过的。键合不仅是形成石墨和氮气等一般化合物的主要原因,而且也是形成许多金属和宝石的对称性晶体结构的主要原因。用量子理论来研究这些晶体,可以解释很多现象,例如为什么银是电和热的良导体却不透光,金刚石不是电和热的良导体却透光?而实际中更为重要的是量子理论很好地解释了处于导体和绝缘体之间的半导体的原理,为晶体管的出现奠定了基础。1948年,美国科学家约翰·巴丁、威廉·肖克利和瓦尔特·布拉顿根据量子理论发明了晶体管。它用很小的电流和功率就能有效地工作,而且可以将尺寸做得很小,从而迅速取代了笨重、昂贵的真空管,开创了全新的信息时代,这三位科学家也因此获得了1956年的诺贝尔物理学奖。另外,量子理论在宏观上还应用于激光器的发明以及对超导电性的解释。
  而且量子论在工业领域的应用前景也十分美好。科学家认为,量子力学理论将对电子工业产生重大影响,是物理学一个尚未开发而又具有广阔前景的新领域。目前半导体的微型化已接近极限,如果再小下去,微电子技术的理论就会显得无能为力,必须依靠量子结构理论。科学家们预言,利用量子力学理论,到2010年左右,人们能够使蚀刻在半导体上的线条的宽度小到十分之一微米(一微米等于千分之一毫米)以下。在这样窄小的电路中穿行的电信号将只是少数几个电子,增加一个或减少一个电子都会造成很大的差异
  美国威斯康星大学材料科学家马克斯·拉加利等人根据量子力学理论已制造了一些可容纳单个电子的被称为“量子点”的微小结构。这种量子点非常微小,一个针尖上可容纳几十亿个。研究人员用量子点制造可由单个电子的运动来控制开和关状态的晶体管。他们还通过对量子点进行巧妙的排列,使这种排列有可能用作微小而功率强大的计算机的心脏。此外,美国得克萨斯仪器公司、国际商用机器公司、惠普公司和摩托罗拉公司等都对这种由一个个分子组成的微小结构感兴趣,支持对这一领域的研究,并认为这一领域所取得的进展“必定会获得极大的回报”。
  科学家对量子结构的研究的主要目标是要控制非常小的电子群的运动即通过“量子约束”以使其不与量子效应冲突。量子点就有可能实现这个目标。量子点由直径小于20纳米的一团团物质构成,或者约相当于60个硅原子排成一串的长度。利用这种量子约束的方法,人们有可能制造用于很多光盘播放机中的小而高效的激光器。这种量子阱激光器由两层其他材料夹着一层超薄的半导体材料制成。处在中间的电子被圈在一个量子平原上,电子只能在两维空间中移动。这样向电子注入能量就变得容易些,结果就是用较少的能量就能使电子产生较多的激光。
  美国电话电报公司贝尔实验室的研究人员正在对量子进行更深入的研究。他们设法把量子平原减少一维,制造以量子线为基础的激光器,这种激光器可以大大减少通信线路上所需要的中继器。
  美国南卡罗来纳大学詹姆斯·图尔斯的化学实验室用单个有机分子已制成量子结构。采用他们的方法可使人们将数以十亿计分子大小的装置挤在一平方毫米的面积上。一平方毫米可容纳的晶体管数可能是目前的个人计算机晶体管数的1万倍。纽约州立大学的物理学家康斯坦丁·利哈廖夫已用量子存储点制成了一个存储芯片模型。从理论上讲,他的设计可把1万亿比特的数据存储在大约与现今使用的芯片大小相当的芯片上,而容量是目前芯片储量的1·5万倍。有很多研究小组已制出了利哈廖夫模型装置所必需的单电子晶体管,有的还制成了在室温条件下工作的单电子晶体管。科学家们认为,电子工业在应用量子力学理论方面还有很多问题有待解决。因此大多数科学家正在努力研究全新的方法,而不是仿照目前的计算机设计量子装置。
  宏观世界的定律保持着顽固的可验证性,而微观世界的定律具有随机性。我们对抛射物和彗星的动态描述具有明显的视觉特征,而对原子的描述不具有这种特征,桌子、凳子、房屋这样的世界似乎一直处于我们的观察中,而电子和原子的实际的或物理性状态没有缓解这一矛盾。如果说这些解释起了些作用的话,那就是他们加大了这两个世界之间的差距。
  对大多数物理学家来说,这一矛盾解决与否并无大碍,他们仅仅关心他们自己的工作,过分忽视了哲学上的争议和存在的冲突。毕竟,物理工作是精确地预测自然现象并使我们控制这些现象,哲学是不相关的东西。
  广义相对论在大尺度空间、量子理论在微观世界中各自取得了辉煌的成功。基本粒子遵循量子论的法则,而宇宙学遵循广义相对论的法则,很难想象它们之间会出现大的分歧。很多科学家希望能将这两者结合起来,开创一门将从宏观到微观的所有物理学法则统一在一起的新理论。但迄今为止所有谋求统一的努力都遭到失败,原因是这两门20世纪物理学的重大学科完全矛盾。是否能找到一种比现有的这两种理论都好的新理论,使这两种理论都变得过时,正如它们流行之前的种种理论遇到的情况那样呢?

上一篇:空军士官毕业论文

下一篇:议论文素材高考版